AT&3000063
TR A

».i PH UWThPh-~1987~3

ASYMPTOTICS OF THE MODAL LINES OF SOLUTIONS OF
2-DIMENSIONAL SCHRODINGER EQUATIONS

M. Hoffmann-Ostenhof"
Institut tir Theoretische Physik
Universitit Vien

#) Partially supporced by Bundesministerium fiir Vissenschaft und Forschung,
Auscris, and by “Fonds zur Fdrderung der vissenschaft!ichen Forschung

in Usterraich”, Project Mr. P6103P.



I. Introductiun and Previous Results

In this paper we sharpen results on nudal propercties of Li-solutions
of 2-dimensional Schridinger equations, recently obrained in collaboration
vith T. Hoffmann-Ostenhof and J. Swetina in [I]. We ahall consider real
valued Uz'z‘lolutionl 9(x) of the Schridinger equation

(-4 ¢V-Ee=0 for vaﬂ..
Q.
n.-(xelllrs |x] > &}, >0,

{vhera the Sobolev space "2,2 is defined as {n (2]). Ia the following it
will alvays be assumed chat

E«<0 (1.2)
and thac
V(x) is real valued and continuous in 75
} (1.3)
and lim ¥(x) » O .
rem

Due to these assumprions we can choose R so that

inf (V(x) - —-£)>0 (1.8)

e et
wvhich implies chat the Dirichlet problem (!.!) with continuous boundary
data is uniquely solvable (see [1]). Mote also that ¢ € C'(nl) (sae
e.g. {2]). In the following wve shall use polar coordinates X, =t cosu,
g er sin w with r > R and & E f-7,#], and denote » = g(r,u).

Under additional suitable assumptions on V the generally unbounded
nodal sec of ¢, i.e. (XK E ‘ll #(x) = 0) vill be investigated for r + =,
Particularly it will be shown (Iheorem 2.3) that for large r the nodal
set of ¢ consists of non-intersecting nodal lines which look roughly
speaking asymptotically either like straight lines or Like branches of
parabolas.



By the folluwing example (compare alsu [1]) it is illustrated that
alceady for spherically symmetric V it is in general far from trivial to
determine the asymptotic behaviour of the zeros of ¢: Let LIy b‘ € R for
0 <t <mvithe €M U (0] and denote by 'a,t(') for 0 < t < = the
Vhittaker functions (see [3]). Define

=1/2
L

or.e) »r (.‘ sin tu ¢ b‘ cos lu)ilo'.(r) B

Then it is easily seen that (- 3 ¢ 1/4)9 » O in n. asd since for all 2
v 0 =20 e 06T (see 1),

0,
R -
A(w) 7 lim — 3 L « J (s, sin t ¢ b, cos te)
]
| ol 4 ¥ () 1=0

wharaby (- & ¢ llh)t-'“ \lo °(r) = Q ia - Obviously given any H > |, then

., 8. I:l can be chosen suitably so that A vanishes e.g. in w = 0 of
order K. In Theorem 2.) it is demonstrated how the order M of the zero
of A is connected wich the asywptotics of the nodes of ¢ fu a cone
Jul ¢ ¢ for ¢ small enough.

In the following we suppose (as in [1]) thet

V(x) » ¥, (r) + V,(x)

vhere V| and V, obey ().3) and ().4) sepsrately.

2

The sbove assumptions imply (see [1] and [4]) that there exists v € L‘(n.).

v > 0 for r > R such that *

(-8+V, ~Ev=0 tor r>R. (1.8)
Now define
u(e,w) = (r, )/ v(r) .7

and note that u and ¢ have the same 2er0s. The derivation of our results



on the nodal lines of # will be basad on results on the ssymptotic
behaviour of u given in (1) (see also [S)). We shall summarize these
relevant results in Theorem 1.1. Por this and later on we need

Def. 1.1. (i) Let 1°,1 C R denots finite open intervals and let £: (R,=)«l R
denoted by ( = f(r,s). { is called real analytic in s uniformly wicth respect
tor, if VR>R £ is real snalytic in the variable s Vr;i and if vI'C chere
exist §,C > O (not depending om r) such that lbk!(r.n)lhkl <C 1/8*
vs€1l', vr>R and for k € M U {0).
(i) Lec g: Q) +R and define Yo €(-3,7) #-'(¥) = (cos (w5, sin(u-w)) € §!
Ve € (-u,7]. Ve say g is resl analytic in w uniformly wicth respect to z, if
for all @ ;(uE'(u)) is real analytic in w vniformly with respect to r (as
defined in (i)) wich C, § not depending on w. In accordance with the fore-
going we dencte g(n;'(u)) = g(r,v).

According to [1] (resp. [4]) wa have

Theorem 1.!. Lot V = V' . V2 be given according to (1.3), (1.4) and (1.5).

Assums that A& is continuously differentiable with

. .
ITEL' cer'™ for r>n (1.9

for some ¢, ¢ > O and that

for soms a > -l-, r‘“ v is real snalytic in w
? z } (1.9
uniformly with respect to r.
Let ¢ and v be given according to (1.1) and (1.6).
(i) Then u is real analvtic in w uniforamly with respect to r,
lim u(r.«) 3 A(s)
ro-
exists, A is real snalytic in w and for kK € W U {0}
Jh -8
g (ulro) < A))i L C o, s = min(i,a)
o
{1.10)

in .’.i for R > R large anough, vith some C‘ < -

(not depending on rv).



(ii) Let 8 ¢ (0.1'-) and Pa - {x C n.‘:ful < r-') vith R, sufficiencly

8
large. Suppose A(0) = 0, then for some M € N and |uw| small

A = o+ 00™h

.

lllliub.!otu-\o,l>o

M w2 w2-5, .

u(r,u) = (2v) llu( Tw) (1 +0(c" ")) + O(r

vhere b-(ll]ll)'“ sod %, denotes the Hermitapolynomisl
of order M

(wf2)
II-!l
(g) = (‘l) (22) s ER,
b :fo 7'—)":&
({W/2] denotiag the integer part of W/2).
Soms {wmediate cousequences of Theorem I.! on the nodes of ¢ have
been slready noted in [1). Ses Remmrk 2.3.

Corollacry I.1. Choosing w=s/(b/¥), (.11} isplies

w2 - .
w(r,—)r ~ (2v) (z) for vt +e VvER (1.12)
e b .
and the convergence is uniformly fin sny co-put interval.

In the followving we denote ll’(.“ . — "ll

&

n/2 (k) 2
(r,3) 2 u(r,~=)r"'" end 0 od1pw, . wew. 01.13)
b i ar ¥

Note that Il'(‘u exists since Iknlhk exists for sll k € N due to Theorem
1.i.

Theorem 2.! deals vith cthe behaviour of U for v = « for k € N,
In Theorem 2.2 tha ssymptotics of /it is chancunud With the help

of these tuwo theorems the main result on the nodal lines of 9, stated

(k)



in Theorem 2.) will be obtained. In sections 3, &, sad 3 the theorems

given in section 2 are proven.

I thenk T. Hoffmsan-Oscenhof for helpful discussions end W. Thirring
for continuous intarest and support. Part of cthis work ves doom during wy
stay at the Institut £Or Mathematik der Universitiit VWien.



2. Statement of the Results

The firsc result is concerned with the asymptotic properties of I.IH
as defined ia ().13).

Theorem 2.1. Under the assumptions of Theorem 1.1, Il"(r.x) is real anslycie
in z uniformly with respect to r (in the ser.e of Def. 1.1) vhereby 2z € T,
[ any finice open interval.

Furtharmore for k € K ¢ {0}

ta X0 (e - 7t & Ay (2)
m—h a*

with b = ([2]/)'7*, for x €,

2.1

and the convergence is uniformly in any compact interval.

Remark 2.1. Clearly (2.1) implies that U’('“ +0forr+e, vx ER for
k2Mel,

The next result gives detailed informacion on the asymptotics of

du/orx.

Thaorsm 2.2. Under the assuaptions of Theorem I.1, r'" :—: (with

a = afn(i,a)) is real analycic in w uniformly with respect co r.
Further let A{0) = O with

A =W s ad™! s 0™ for ju) seall (2.2)

for some d €ER and M € N.
If ¥ =}, then for some ¢ > O

2 u
! —{r,0) = * 0(r )
g 3

(2.9
for all w with |/r »' bounded for r ~ = .



l(H-Z-.-:I.:Mn

H/Z*l du

-M
“( ) = (2b) "(N-”"H-I(') + o{1) (2.4)

w=z/(b/r)

for |z! bounded and t + .
If X =2a+l, m> 1, then for some ¢ > 0

luzol 3u

-M
- @)™ ne-nR (0) o
L-zl(b/_) -2
o (R L gy V2G0T -
e 0c % o 2] o) 2.5)

for |z| bounded and t + =.

Remark 2.2. (a) An immediate consequence of Theorem 2.2 is that
r)ﬂnlar + 0 for r = for z € R.

(b) Clearly (2.5) implies that (2.4) holds for M odd. Hcwever, for M
odd wve shall need the more detailed asymprotics of (2.5) larer onm.

Theotem 2.! and 2.2 together vill enable us to obtain our msin

result:

Theorem 2.3. Suppose the assumptions of Theorem 1.1 hold. Assume A(Q) = O
with

Aluw) » M. du“" . O(as’z) for jw| small (2.6)

for some d €ER and M € N. Let 5, €R for 1 < i ¢ M denote the zeros of
the Hermite pcolynomial ".", i.e. ")l(li) =0 for 1 <i¢M.

Then for ¢ » O sufficiently small and l‘ large the nodal set of »
inp = {x € nlir > l‘.’ul < ¢} consists of M nodal lines (corresponding
to the M zeros of "H)‘ They admit a representation in cartesian coordinates
((l'.lz) € R?) denoted by xy = G‘!xl) for | < i ¢ M. Therefore denoting
| 2 9(‘..'1). ’('I'ci(’l)) «Q for | < i < M. For all i, ¢;4l is continuously

differentiable and the nodal lines have the following asymptotic behaviour:



FurH:_Znndziio

z,
‘.‘(;I) -(.;‘. . o(l))/x_. for large x (2.7)

1
vith b = (Illld)"‘. Furcher if L > 0 (< 0), then G‘ is striccly mono-
tonically increasing (decreasing) for large LT

Yor M odd, Il(o) ® 0 and without loss let 2, = O, then

6 (x,) = + o(l) for large x, (2.8)

vith 4 given {n (2.6).

Ramark 2.3. As a cousequence of the resuits summarized in Theorem 1.!

it vas noted in (1) chac in D‘ for each r thare exist .i.(')' 1ci<N
with u(t.u‘(r)) = 0. In Theorem 2.3 the case A(0) = O is considared vwith-
out loss of generality, since by rotation of the coordinate system
corresponding results to (2.7) and (2.8) are immediately obtained if,

for instance,
Alw) = (u-uo)n L4 d(u-uo)uﬂ + Dau-ua)nﬂ) for lu-uol small.

Mute that since A is real snalytic it has only a finite number of zeros.
Hence the zaro set of ¢ consists of non-intersecting nodal lines

characterized by the results givea in Theorem 2.3.

Remark 2.4. In some sense our asymptotic results on nodes might be con-
sidered as analogs of the local results on nodes of L. Bers (6], S.Y.
Cheng [7] and recently L.A. Cafarelli and A. Friedmann [8].

There are some results on generic properties of eigenfunctions of
elliptic operstors on compact manifolds by J. Albert (9} and X. Uhlen-
beck {1u]. Io cthe appropriate setting the generic case for the nodal
lines of ¢ for r + = ghould be straight lines as given ia (2.8). We hope

to investigate this problem in future work.



Remark 2.5. The results given in Theorem 1.1 have been generslized to
the n-dimensional case in [5). Naturally the structurs of the nodal set
near infinity of such a solution can show a such more complicated

pattern than in two dimensions. Partial results will be givea in [11).

3. Proof of Theorem 2.1

To verify the uniform real analyticity of.:)" it suffices to show

that given [, then for some c, é > O,
W) <c ¥ veer eand weorid a.n
.| - ‘k -

tor some & 2 R large
To derive (3.1) we first shov that given any cowpact interval J CR,
then the family of functiods
o p(®
Py o=
is uniformly bounded for 0 <k <M.

This can be verified by making use of the following inequality:

(t,*): J+R,r > &l (wich som & > B)

If £ is an n-times differentiable function on a closed interval J TR
of length |J] and if |f(x)| :“o and |f(n)(x)l 1“n‘ vhere Nj -

= sup Il(j)(x)l. 1 <j<n, then for x € Jand for O < k < a
x€J
(k) 1-k/n ,,k/n
17 (x| e g w (3.2)

vhere M) = nx(!ln.llunli.lrn) and n.k is a constant depending oaly on o
and k. (See e.3. (12].)

Since for every arbitrary fixed v > I.UH(r.x) fulfills the adove
conditions (due to the known properties of u) on any compact interval
J CR, inequality (3.2) can be applied and it remains to sbow that
sup IU"(r.z)] and sup ]U,('m(r.z)l are bounded for r + =, vhich will
2€) €]
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becoma clear from the folliuvinz: That

sup U (r,2)i < C(J) for > R
€J

is an immediace cansequence of Corollsry i{.). On the other hand, since

L.
0 -M 3 z
) °b = ulr,——)
N Inn br

wve conclude by (1.10) (wicth k = M) thst vz € J

N
00,2 - M2 a5 <o) € for large r (3.4)
N NS

Ll
wvith some C(J) < =, Particularly (3.4) implies chat

M
0 » g 80 for £ + = wiformly in J. (3.9

Bence it follows via inmequality (3.2) that Fk is uniformly bounded for
0 <k <M ¥or k > M| the uaiform boundedness of Fk is essily seen from

(4 3} -H-j -j/2 3""‘ | 3 .
v (r,z2) = b  d —r u(r,— YJEN (3.6)
L] h""' b/r-) !

and the fact that due to Theorem (.1 u is resl analytic in @ uniformly
with respect to r. But this implies furthar that given I C R, then for

soms ¢, § > 0,

-3/ (uej)!

>

Iu.('mi)(r.z)l ccr Ve €Ll and large r . 3.7
(3.7) together with che uniform boundedness of Fu for 0 < k < H verifies
(3.1). Furthernors (3.7) implies (2.1) for k > M+1.

So finally it remsins co verify (2.1) for O < k < N: Hote first
that Fk is for sll k € N an equicontinuous family of functions since for
51,8y €Jand zr>1

3
B e -0ty < [ 10 eaian < g ley s,



for some ¢ < = {not depending on t) due to the uniform boundednass of

kel
F for all k.

To simplify notation let g(z) = (2b) ll“(z) and ;n(a) - u"(r“.z)
with z € J, where (:n) is an arbitrary but fixed sequence with "
for n + =»,

From Theorem !.| wve know that 5, s vniformly in J. Now let
k€ (1,2,..,01}, 2 €J lrbitury but fined and let a denote sn sccumu-
lation point of the sequence (g. )(t)).

Then a subsequence (.‘u)) of (;.) exists such that ;a( )(t) .
for i -~ =, But (i) + g for i + = uniformly om J and F is uniformly
bounded and equicontinuous. Hence by Arcela-Ascoli's thaorn (see e.g..
l'(3_1)) it l?l;on that & subsequence (l;(nl of (‘ﬂ(l)) exists wicth
'6'} + 37 tor { + » unifornly on J for j = 0,1,2,..,M. Therefors

(l)(a) - and further (“(:) - '(k)(.) Since z € J wvas acditrary

wve obtain k) - |( ) ia .l for n + =, and the convergence is uniformly
since g(“) - '(K) for n * = uniformly on J due to (3.5).

This compleres rhe prrof of Theorem 2.1!.

4. Proof of Theocesm 2.2

For tha proof we shall need the following

Lemms 4.1. Let Vl and v be givea according to Theorem 1.] 80 rhat
-V v, - tar? =B}V =0 for r > R, vhera v = /7 v. Than for lacge ¢

0 Y T S— Y122 D T35 U 4.0
r 2V, - 1/act -8
for y > 0
R TR VO T L ey -c
(r) [ vx)x dn = v Y(1eo(r ")) (4.2)
r 2/|e}

for some ¢ > 0.



Lst y‘ ~O0for 1 i<k, k€N, denote

q - tz(yi)lbl(-i)

and
k -\-—" ow o a - - k _‘_Y‘
<1 Qy; > ] T ] ] ] 4, "l“k eoe dydx,
i=) LR T J "H S AL
then for largs r
1 3 -{-y, X

¢‘l' q‘,‘ > «0(r) where y = ‘I' v specifically for

N (.3

om0 <K Qrd e ot G . o)
ft U1 Y Ci

Proof of Lemms 4.1. For s proof of (4.1) see Lesma 2.5 in [1]. Applying
(4.1) we odtain immedistely that for some ¢ > O

T ! Y VY dx < Pl S S PR N 1 I
r 2/]e|

To derive ths lower bound we use partial integration, apply (4.!) and
aobtain for som ¢, € > O

- - - -
J S2mya Y ax o 7Y ] Vi(x)dx - (Vo) [ Y | $2(y)dyax >
t r r x

-t
> l'-‘ vy i-cr tz(‘_)
2/]e]

implying (4.2). Using induction (4.3) follows easily by application of
(4.2). 0

Nouw we investigate the properties of 2u/i- for ¢ + =: Noting that
¢ obeys (1.1) and v obeys (1.6) it follows .iat

2
B . L LI TR ] in . (4.4)
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Having in mind that limu = A i¢ is easily seen that u obeys the follow
re=

ing intagrodifferential equation

u(r,w) = Ale) + [ Vi [ ey ¥, Vy(y.))uly,wddyds  (4.5)
T x 3-1

(see Bqu. (4.2) in [1]). Therefrom

__(, w) ==y (,) [ Vi{y) (- , .;’— + vz(y..))u(y.u)dy (4.6)

follows. Since u, r e '1 are real anslytic in w uniformly with respect tor,
Ve> 0 small, there exist C ,C,.6>0 such that for {e] < v—¢ snd large ¢

. 24§ )
1 ? ! .
|__..v ¢! |_4_C°:-i- and I—J;i-ullc“:-] for j €E M U {0}

Therefore for some C < » (not depending on k and y)

k

- 2
Bt- y 23 sy vy yedu(y ] <
t™ qu

:ly'z 20&"' { []l u-_, 2”—-r|||<c for k €M u {0}

vith & = min(),0). Applying (4.2) in Lesma 4.1 we obtain for large r and

some C < =
- Py -1=

i I V’(y)I-T(- —-‘-' + vu)ldy s € = ” "8 forkemu o).
[ 4 el 5

(4.7)

Hence ve conclude from (4.6) and (4.7) that for k € N,v|u| <=¢ and large r

! r * -2 3y

M uw(r,u) » - }"‘m I 31(:') -—;(- — .9 u)dy (4.8)
drdu [ 4 da Wl
and .
ket _
32 T W cc 5& e (4.9)
e k]

Clearly an snalogous escimste to {4.9) is obtained after rotaci~a of the

coordinate system by proceeding in the above mannacr. Buc this
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implies that el H‘ is real analytic
in w uniforely vith respect to r, verifying the first part of Theorsam 2.2.

To prove the second part of Theorem 2.2 we start with the case M = ):
Revriting (4.6) we have

Biew = - Vo ! eyt :T‘ . v Ay -

-V [ Vi 2 2. v (u-A)y .
r i

Hsving in mind (1.10) of Theorem 1.1 application of Lemma 4.! lesds to

2 2 _ - -1 -
Bl - AW "2y ,0(,7C)) » ateioe™ '™ ¢ 0te”' 2

2/)z}

V2 112

Since for w = 0(r"M?), al/ast = 20 + ote™) ana a = 07D, 2.1
follows immediately from tha above.
Wow we have to investigate the case M > 2:

Due to the real analyricity of du/ir wve have

- hol
n
r,w) = u(r, 0) for emall |u| and large r. (4.10)
¥ kzo -~

To detrive the asymptotics of the r.h.s. of (4.10) we shall use (4.8) wicth
w e 0 snd the fact chat

X
'—: (e, ~L) = p (012 m(z 2) for 2ER and k € N U (0)
L i 4.11)

Thecafore we obtain

LU S -
-2 N ~Lo(k-M)/2  Re2 , (ko2)
Wr0) 2= ] =300 [V ly 2 gD 0y -
=l Irqu W t§| k! . N

k L3
-1 [F i Vy(y.0) u(’)()'.l))hJ G172y,
b

Since due to Theorem 2.1 iu,"j)(r.m - (Ib)‘" IS(‘”

c.h.s. of ths above equation

{0)] ~O0 for v = = the
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.l -
[ 5% [ 3ty I o2 ()M Do) 0 actn) -
-l

(j-M)/2 % . (j)

W™ w2 0) ¢ atley

’ﬂ” V(yo)y

J
Furcher since dua to our assumptioas -:—-]v Vz r'" is uniformly bounded
tor r + = tor all j €M U (0}, application of Lesss 4.1 implies that the above

M=t k ke
S e L Sl L TN R T VR
ket 2/ie]

P it L TESY I 4.1

Therafora for w = 2Ab/T)and 2 € J (J sn arbitrary but fixed compact

intecval)

M=l ket
- — ulr, 0)(—) 2.
kel Jrdw
~le PV of I - -
= e ™ T L @ P+ ot sote™n » feloe™ .
k=t (&.13)

On the other hand by applying (4.9) it is straightforwvard to see that
for 1 € J
-

k kel
i L l’ u(e,0)| < € |af :’"‘lz"-' (4.14)
k= o e -

for largs r vith some € « =, Combining (&.13) and (&.14) we arrive at

u u

—~(r,w) = —~(r.0) ¢

* L.-z/(ufn o

o 2 L™ { & n,' %02 (0) + 001101 +0Ce™Y) « fajote™ HNE)
.15

Due to (6.6) and (4.11) and Theorec 2.) it follows that
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200 - Vo [T LR D000 « 00,000 2y 0y 000y -
| ¢
« G ™ WP e 0 M0 0™ v oMY L Wi

Purther note that

ok,

kzo 5 u"""”(o) - n,"”(a) - HOE1) B () . TR

Bov if M = 2m, w EN, then (4.16), (4.17) togetber with (4.15)
odbviously verify (2.4).

Pinally let ¥ = 2m+l, m € N: Since IIH(O) = 0 (4.17) together vith
(4.15) yield

F.) u --n/2 n(n-n
=(r,») * >—(r,0) + (z) + [2] o(1)) (4.18)
¥ —b7T) ¥ "H—Z

for large r and z € J. However (4.18) only implies that

%‘s(r.O) x 1+n/2 -0 for v + =« |

Suppose va have shown

Lemma &4.2. For M = 2m+ ), m € N,

- - - -
™ Vo) - LN DL o) s 0™ . (6.19
(2v) Y

Then (4.19) together with (4.18) verify (2.5), finishing the proof of
Tharrem 2.2.

Proof of Lewma 4.2. For the proof we shall proceed in an anslogous vay
as in {1] resp. (5] for working out the asymptotics of u. We shall use
the following notation (cumpare Lesma 4.1):

-2 3 -2 3

)
T. N -:; M PL FRCI I T=--y ; * Valyw) o
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) ~-2
q vy v (‘i) '

L .. » - - -

cnque[[ [ [ ... | qT ...QTf(y, )y dxdy, _,..dy dx,
isml T Xy ¥y X3 vl.—l x‘

vhere f is identified with u or A. When ary the depend of <...»

on cthe variable r will be denoted by AP Using the above notation,

equation (4.5) resp. (4.6) read

Y <Q, 'l‘l w (4.20)
2T [V T ulreay .21
T

Iterating equation (4.20) gives

Mot ]
u=Aa+ ] <1 QT A ¢ < QT (u - A . (4.22)
L=l is=) il

Combining (4.22) with (4.21) leads to

- “ t M
L] .-y 2 -
7w v (r) { vi(y)T(A ‘1Z|‘i5| QT A e <iEI Q;T; (u=A)> )dy .

(4.23)

Now we investigate the ssymptotics of the terms on the r.h.3. of (4.23):

k
Note that due to assumption (1.9) r"' -a—‘ Vl2 is uniformly bounded ia ¢

v
k
for r + = for sll k € Ny {0} and that ! ’—k (u-A) is in the sama sense
e
bounded because of (1.10). Taking this into account and using Lesma §.1

it is straightforward to show that for all & and large enough t

" )]
Tell Q.T.(u-A)> =<1 QTT,...T (uly,,») - A)>_
iwt i1 y jel i 1 H . y
] ’
- ~1-s ~i-2a bt R IO -aM-23-1, _ -u-2-a
0(<i2' Qy, Qy 7 ) = Oy ) = oy )

and therefore



\z(r)/v(y)rvn QT(n'A)’dy-n(rrz'l

4 1=

(4.24)

Next we obssrve ia an analogous vay that tor 1 «ctcm

<| T T -<: "2, («n*" -2 4492 A R
B UTT TR g < G, C0T T Sy A

l
vhere R is a sum of terms, each of them depending on —E A(0) for soms
l
k with O < k <« 2t, S\uc—EA(D)-ototottt hcul 1<t cmche
above implies thac

o for 1 <& <ol

isl a 2d

[ 3
s eri"lu-o ®
< l Q"‘ > -1y -—2—2“0) fort = m

and we conclude from the above via Lesma 4.1 that for some ¢ > 0

_ M2 e ~2 * 1t -
(o) { viy) T §.<i:' LRI T

gt

- -

- . me2
(1 e o™NTHD) [ 3200 57 0y S a0 -

Y

(eor Sy ™2, (4.2%)

‘hoz
where we used —_2707 A(0) = d(M+1),

t
It remains to investigate the asymptotics of Tc o T. bl.—o for
i=)
mtl ¢ L < 2mel: Theraby it is sot difficult to see that

< l Q‘TT . "I-o
i=1
2 a4 ¢ ‘Zl
=< l Q‘! ’(( |) —_f A(0) » V,(y,00(-1) —Tt'k(ﬂ)) * R

i=) dw (4.26)
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where the rest R is 4 finite sum of cerms of cwo types denoted by J
and [

k.t

g g Mith 1 < ket < L characterized by the following:

Lac (il..-.it) denote a permutacion of (1,2,...L) and let a € N,
ujilu {0} for ke} < j < £, then

t ko, ot % -2 48
J =< Q, § ¥y B =gy, ,0)0>_y ~——4A(0)
Kt e ‘j.n by jeket dw ) 2 ‘j y -
' 4.17)
vith 2e¢) ca <22 and | o sa=2ke2
j=ks)
and
L ko, S a
=< Q § ¥y T g7 %,(y; ,0)> v (y,0) — A(0)
et i1 T8 ekt 21 24 279 3
' (4.28;
vich 2wel cac2t-2, [ @ +ae2k.
j.k’l j
Anglogously to the foregoing considerations it follows that
L 3 t
a0t a1 oyt g TR L gTieleR)
4 foi el Y jeket '3 Y
-0y ™Y 4.29)

vsing k > m in the last step (according to (4.27)) and

| 3 [ -2 3 ~y-s
feg =08 Q 0 y B y

~k-a(t-k)-1-a
)
i=1 jor tj jeket Y5 Y

v <oty

~2-m-2a

= O(y ) (4.30)

using k > a¢! in che lasc step (according co (4.28)). (4.29) and (4.30)
imply that

Re= D(y-z_r.) .

Therefore and again vith the help of Lewms 4.), (4.25) yields



- t
Ve | Yy CH O TT T dy e o s,
v =1 (4.31)

for m¢l < L < 2mel = W .
Application of (4.31), (4.23) sad (4.29) to (4.23) varifies Lesma 4.2.0

Remark A.1. (4.19) holds slso for m = O as can be ssen sasily dy pro-
cesding as above, but we shall not. need it for the following.

Wa first show the existence of exactly M nodal lines im n‘: Let
.II(:) s 0 and chooss ¢° > 0 such that (vithout loss)

$ a0 forse AT O R IR PR R NCRY

This is possidle since ll,' has only nondegensrate zeros. Further choose
l.. 50 large that

n;l)(t.l) > 0 torv> and x € l,o(;': {3.2)

which is possidle due to Theorem 2.1. Purther by Theorem 2.1 tha above

implies that V6 € (0,4 ) there is some K, > R such thet for ¢ > R,

sgn u"(x.i t 8) v sgn ll"(; t8) .

fence for all r > l‘ the~e exists g(r) € l‘l_;) with u"(r,g(r)) =0 and
due to (35.2) it is unique. Raving in mind thac u € C'(ﬂ.) the implicic
function theorem implias that g is contiowously diffaerentisbie. Further-
wore it follows that g(r) » 2 for r = =,

The foregoing considerations imply that for each zero 3 i (teicn)
of W, there is at least one nodsl line of u in D gives by -.‘-;i(.yo/?-),
u(r.-i) » 0 vhere .i(l’) .5 for r =,



Now suppose there exists r_ + = for m + = and ;(rn). such that va
,';(rn)l <c, ;(ru) [ 'i('n)' for | < i ¢ Mand “('n';('n)) « 0. Then
since u » A for ¢ + = unitormly and A(u) $ O for O ¢ luw} < ¢ tor ¢
smal)l enough, ;(r') + 0 for n + = follows. Together vith the foregoing
considerationv we obtgin that for some n(rn) +0 forae= ¢ (t..o(r-)) -
= 0 vn. Since 3? AL R T uaiformly we obtain 3"‘“)/3-“ -0
vhich is & contradiction to the assumption on A. Hence there are exactly
# wodal lices of u in D‘ for ¢ small snough.

Let g + 2 for r = = ba given as before and denote £(r) = g(r)/(b/T).

Thea for large
o(r,f(r)) = O

Berw) | g ey * B tC)) (1) = 0. 4.9
This implies further
() - - T‘:(:,-)",") D LIS u;"(z..(:)))". (5.4)
Since due to Theorem 2.1

lin u.f"(r.;(r)) @M ma, @ so (s.5)

=

- 12
and since due to Theorem 2.2 r -3—';(!,-)?“_“') is bdounded for

£ * » va obtain from (5.4) that for eome C <« =

32

It sce for large t . (5.6)

Denoting v,(r) e r con f(r), '2(') o ¢ sin f(r) va conclude from >.6)
that for large r for some ¢ » O

y;(!) = cos f(l-v £* tg ) > cos £(I m(:")) 2¢>0. 5.7

Therefore the iavarse 1;‘ exists, leplying che representstion of the



nodal line in carcesian coordinates (-'.xz) en? by X C(xl) wvith
G- vzovzl.

Bext ve verify the asymptotics of the nodal limes of 9. We atart
with the sisplest cass:

ned
Ve use the asymptotics of du/dr given in (2.3) of Theores 2.2, take into
sccount (S.5) and apply thesa findings to (5.4). This gives

£0) = (- =24 o(1)) 2

/ie)

and jotegrating from r to = gives

(x) = { .‘_ * o(1)) LI
4

Therefors

1p0) = ¢ win €)= et o0t /Y o w0y
/Is]

and v, (r)/r = cos £(r) + | for r + =, implying G(x,) = l//]TI ¢ o(1) and
verifying (2.8) fucr 1 = ).
Next ve consider the case

Mp2andzbo

Since g(r) = % for r + we obviously have

Ya(e) = v sin A = K /F(1 s 0te™Y)) - (i + ol 1)T

2 o ° ()
and \‘|(l)/l' + 1 for r » = and therefore C(:') « (z/b o o(l))fq for large
z, varifying (2.7).

To prove the monotonicity of G(l|) it suffices (decause of (35.7))
to show the sonotonicicy of vz(r): Since

vj(e) = cos £(rt* o eg £) 9)%&:’“:’ steote ) .
T

we have to iovestigate the asymptotics of t': Taking into sccount (2.4)
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and (2.3) of Theorem 2.2 we conclude

e M Bl gy = HOED@ M @) ¢ 0() .9

and wote that “n-z‘;’ # 0. Applying (3.9) and (5.3) to (5.4) we arrive
at

1/z(n-| L)
\H(l)

Woting that n"G) e0=2 5'_,(2) - 2w1) -H(;). (5.10) leads to

f'(r) = - * a(l)) . (3. 10)

£(r) = (- -z% eoune V2 (s.11)

Combining (5.11) with (5.8) and taking iato account that /r f~ z/b for

r + = we obtain
g v3(r) = sgn (1) for large r . (5.12)

(5.12) together with (5.7) shows that vzoy;I is striccly monctonously
increasing for >0 respectively decreasing for 5 <0,

Finally ve have to consider the case

Me2uel, m€Wand s = O:
Due to (2.5) of Theorem 2.2 we have

‘ o
22 T g/ 70 TN - 0t s, ,
. %7‘1 By (800 + o(a(r)) (.13
{}

vien 4, » (0" LB g ()

and via Theorem 2.1

U:.”(r.g) o 20) M m Ry (8) #ol)) . (5.14)
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Applying (5.13) and (3.14) to (5.4) and taking into account that

L]
1 . (.' - )
153 }""

we obtaia
.' - {'- - I.Iz g('..) |"(',(";')('l'('),)-l -

1 (1 +0(™4)) ¢+ 0™ 8, o0 + otlsh
e = - (%) —TT——‘T)—) . (3.19)
L R M, (0 o)) B (8) +0

Since for k €N, 'zu“” - ('l)t(lk)llkl and u.'._z(o) - 2()!-2)!‘_3(0).

By . w, _,(® +o(lsl®

W " * = g1 ¢ o(}))
1 R, ;0 +o(lgl®)

we obtaia from (35.135) for some C.(r).lz(r) + 0 for v + @ that for large ¢
o =L e v 6 (en - ARY ¢ et (5.16)
In the followisg we show with the halp of (5.16) that
lin T get . (.17
| ®»

Let us first consider the case d > O
Suppose that for soma r large ;(;) < 0, than becauss of (5.16), for r;;
8 < O and g strictly monotonously increasing follows, concradictiag g-0
for r + @, Tharafore § » O for large r. Lat
a(Me1

- N -
epog(ted) ad o, T4

for some Z,.g, > O srbitrarily emall, then due to (5.16)

r-)l!

LA L

' <<8 ;' a3} for large enough r .



Further let
- -
h{r) = _—Ll- 4 12 »
©1°%
then
el ;l. -c 32
and hence

M- _)_;' % (h-g) for larger .

Suppose thare exists r (acbitrarily largs) with (h-g)(r) » O. Thea the
above inequality implies that 0 < h-g and h~g atrictly monotomously
increasing for r » T, which contradicts h=g+ 0 for r » », Banca for
large 1, § > h and therefore wicth some § > O arbitrarily small

-1/2

s(e) > (—z‘; -8 for large r . (3.18)

Combining (3.16) with (5.18) we obtain for some §,, §,. & » O arbitrarily
small

SN TETRYC SR L0 MY R LT SRR
for large r. Integrating the sbove inequality leads to
s Gp oot (5.19)

vith some § > O arbitrarily small for v » =. (3.18) and (3.19) imply
(5.17) foxr ¢ > O.

The case d < O follovs in the sams way.

Por d = 0 lim /T g » O can be sesn by the following: Suppose there exiats
Tom
3.0-lor o < = such that /rn g(ru) +k forn o vwithO <k <= Thm

because of (5.16)
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§ = (T g0 es e - s ene?
2 ] 2
and cherefore g » O and g is strictly monotoruvusly increasing for large
r, contradicting g = O for c ==, For 0 » k > - = the conclusion is
analogously. This proves (3.17).
By (5.17) we tinally obtain

'2(') = r ain A=« -'El . o(g/;)’ r-z) « 4 + o(1)
v ° n?

and since vl(r)lr + 1 for v + « this verifies (2.8) and finishes the

proof of Theorem 2.3.
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