

В.В. Аликаев, В.А. Вершков, Ю.В. Есничук, К.А. Разумова ИАЭ-4268/7

О СВЯЗИ ПРОФИЛЕЙ ПАРАМЕТРОВ С УДЕРЖАНИЕМ ПЛАЗМЫ В ТОКАМАКЕ

УДК 533. 932

「「「「「「「「「「「「」」」」」

Ключевые слова: токамак, профили температуры, теплопроводность, дополнительный нагрев, законы подобия.

Показано, что режимы токамака грубо могут быть разбиты на два типа. В одном из них при более пикированных профилях параметров коэффициенты переноса приближаются к неоклассическим значениям, за исключением величин. характеризующих материальный баланс электронов. В другом, наоборот, при малых коэффициентах диффузии и скорости пинчевания электронов становятся сильно аномальными остальные переносы. Рассматривается влияние на переносы дополнительного нагрева на частоте ЭЦ-резонанса (ЭЦН). Высказываются предположения о природе наблюдаемых закономерностей.

> © Центральный научно-исследовательский институт информации и технико-экономических исследований по атомной науке и технике (ЦНИИатоминформ), 1986

「「「「「「「「「」」」」」」

1. ВВЕДЕНИЕ

В экспериментах на токамаках неоднократно обнаруживались сильно отличающиеся режимы разряда при малой разнице внешне заданных параметров. Режимы отличались преимущественно профилями электронных температуры и концентрации, а также поведением примесей и величиной $Z_{эф}$. В экспериментах на ORMAK [1] в одном из режимов наблюдалось сильное пикирование примесей к центру разрядной камеры, вплоть до появления полого профиля T_e , а при незначительном уменьшении \vec{n}_e профили всех параметров, включая распределение примесей, оказывались существенно более широкими. Интенсивное пикирование примесей в центральной части плазменного шнура наблюдалось также в работах [2, 3]. В экспериментах на ASDEX [4] при инжекционном нагреве оказалось, что некоторый эмпирический подбор условий на границе плазменного шнура позволяет улучшить τ_E в нагретой плазме почти в 2 раза При этом также происходит концентрирование примесей [5].

Сильно отличающиеся результаты получались и при измерении электронной теплопроводности плазмы K_e в установке Т-10. В очень близких по внешним параметрам разряда условиях удавалось наблюдать как "типичную" для токамака величину K_e в центральной части плазменного витка, $K_e \simeq 2.10^{17}$ см⁻¹ с⁻¹ [6], так и экстремально низкие значения $K_e \simeq 3 \div 5.10^{16}$ см⁻¹ с⁻¹ [7, 8]. Возникает естественное желание найти единое объяснение наблюдаемым явлениям – резким изменениям поведения плазмы при слабо изменяющихся внешних условиях. Если бы это удалось, мы, по-видимому, существенно продвинулись бы в понимании процессов, определяющих удержание плазмы в остальных режимах, с привычным для экспериментаторов поведением параметров

Поставленная с такой целью серия экспериментов на T-10 была проведена преимущественно в условиях, когда описанные аномалии в поведении наблюдаются наиболее выпукло: в режимах с низкими токами, т с большими q(a₁) (a₁ – радиус ограничивающего плазму лимитера).

2. НЕКОТОРЫЕ ОСОБЕННОСТИ РАДИАЛЬНЫХ ПРОФИЛЕЙ Параметров плазмы в токамаке

Профили n_e и T_e в токамаке существенно зависят от величины тока І_р и средней концентрации плазмы п_е [9]. При малых І_р в Т-10 профили Т, (и плотности тока ј) оказываются острыми - такими, что 90% тока плазмы протекает внутри поверхности с q = 2,5. Значительная часть разрядной камеры при этом заполнена сравнительно холодной плазмой низкой концентрации. Изменение радиуса ограничивающего плазму лимитера в этих условиях мало изменяет характеристики центральной части плазмы, пока $q(a_1) \ge 3,5 \div 4$. Увеличение тока расширяет зону его протекания: до тех пор, пока поверхность q = 2 не приблизится к лимитеру. Дальнейшее увеличение тока приводит к значительным изменениям радиальных профилей параметров плазмы. Во всех этих режимах доминирующей МГД-модой является m = 2. Поэтому величина q(a,), -- видимо, параметр, который слабо характеризует плазму при $q(a_1) > 3.5$. В установке Т-10 разряд формируется на начальной стадии специальным способом: методом обратной связи временной ход уровня МГД-активности m = 2 устанавливается подобным временному изменению тока плазмы с помощью программированного напуска рабочего газа. Однако мы можем утверждать, что устанавливающиеся в стационарной фазе разряда радиальные профили параметров не определяются начальной фазой разряда. На рис. 1 приведены профили п, для двух режимов. В одном из них ток

Рис. 1. Профили п_с при B_T = 3,0 Тл: $1 - I_p = 180 \text{ кA}$; $2 - I_p = 315 \text{ кA}$ (профиль регистрируется при t = t₁); $3 - I_p$ сбрасывается в процессе разряда с 315 до 170 кА (профиль регистрируется при t = t₂). Профиль 1 нормирован на профиль 3 с нормировочным множителем, близким к единице

2

States States and and the states and the

 l_p поддерживался постоянным на уровне 180 кА, в другом – после установления стационара при $I_p = 315$ кА ток уменьшался за время $\Delta t \simeq 50$ мс до того же уровня $I_p = 170$ кА. Мы видим, что профиль, более широкий при большем токе, релаксировал к тому же профилю, что и при стационарном низком токе.

Таким образом, можно заключить, что более острые профили параметров при низких токах есть результат сбалансированных процессов переноса в плазме, а не метода ее создания.

Так как в режимах с большими значениями $q(a_L)$ горячая плазма удалена от стенок и лимитера, влияние их в данном случае минимально и профили параметров лучше отражают процессы, механизмы которых мы хотели бы понять. Исследование именно этих режимов показалось нам наиболее информативным.

В основном было обращено внимание на измерение локальных характеристик разряда и коэффициентов переноза: коэффициента диффузии основной плазмы D_e и примесей D_Z ; скорости пинчевания электронов v_e и примесей v_Z ; коэффициентов теплопроводности электронов K_e и ионов K_i .

3. МЕТОДЫ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТОВ ПЕРЕНОСА

3.1. Измерение D_е и v_е. Как описано в [10, 11], на Т-10 был развит метод раздельного измерения величин коэффициента диффузии и скорости пинчевания плазмы. Для этой цели измерялась скорость распространения волны повышенной концентрации от импульсного клапана, дающего одиночный импульс или серию коротких импульсов напуска газа. Изменение концентрации составляло 1 – 2% в первом случае и доли процента - во втором. В совокупности со стационарным профилем для внутренних областей плазмы, где скорость ионизации нейтрального водорода уже не составляет заметной величины, эти данные путем модельного решения уравнений и подбора D_е и v_е позволяют определить их значения раздельно. Значения D_e и v_e, как показано в [10, 11], зависят от предположений о функциональной зависимости коэффициента D_e , но не слишком сильно: предположение, что $D_e \sim f(r)/n_e$, уменьшает его величину на 25 - 30% по сравнению с вариантом $D_p = const.f(r)$. Надо, однако, помнить, что все результаты получены в предположении, что малый импульсный напуск не изменяет удержания частиц.

3.2. Измерение величин D_Z и v_Z . Коэффициенты переноса для примесей измерялись с помощью напуска в плазму аргона и инжекции пеллеты КСІ [12].

3

Известно, что аргон практически не сорбируется стенками, в то время как калий согласно измерениям [12] имеет коэффициент рециклинга < 10%. В экспериментах кроме низкозарядных ионов изучалось поведение ионов K⁺¹⁷ и Ar⁺¹⁶, близких по величине заряда. При этом для аргона устанавливалось стационарное распределение, тогда как ионы калия проникали в центр после сгорания пеллеты на r ≈ 20 см и затем уходили из плазмы. Решением модельной задачи с подбором коэффициентов в уравнении баланса ионов находились величины D₂ и v₂.

3.3. И з мерение K_e и K_i [13]. Обычный метод измерения K_e и K_i использует стационарные профили T_e , T_i , n_e и профиль радиационных потерь P_{pag} . При этом под K_e понимается коэффициент, стоящий перед $\partial T_e/\partial r$ в уравнении

$$P_{K}(r) = P_{\Pi \sigma \pi H}(r) - P_{pag}(r) - P_{ei}(r) = \frac{1}{r} \frac{\partial}{\partial r} (r K_{e} \frac{\partial T_{e}(r)}{\partial r}), \quad (1)$$

где P_{pag} – удельные радиационные потери; $P_{полн}$ – полная введенная мощность; P_{ei} – мощность, передаваемая от электронов к ионам. Таким образом, в коэффициент теплопроводности оказываются включенными и потери тепла, связанные с уходом из плазмы частиц, и другие тепловые потоки, не зависящие прямо от ∇T_e .

Различить эти величины можно, если использовать "динамические" методы измерения теплопроводности, т.е. такие методы, при использовании которых быстро изменяется локальная температура плазмы, а затем исследуется скорость распространения тепловой волны. В общем виде поток тепла должен описываться уравнением

$$P_{K}(r) = \frac{1}{r} \frac{\partial}{\partial r} r \left[K_{e} \frac{\partial T_{e}}{\partial r} - n_{e} T_{e} v_{e} + \frac{5}{2} D_{e} T_{e} \frac{\partial n_{e}}{\partial r} \right], \qquad (2)$$

поэтому можно ожидать, что резкое увеличение ∇T_e выделит первый член по сравнению с остальными, и тогда можно измерить "истинное" значение K_e .

Для проведения таких измерений используется либо локальное охлаждение плазмы в результате сгорания пеллеты, либо тепловая волна, возникающая в области $r > r_{\rm S}$ – радиуса смены фазы пилообразных колебаний – из-за пилообразных колебаний температуры во внутренней зоне плазмы. Скорость распространения этих волн и дает сведения о $K_{\rm e}(r)$. Так как эти методы дают зачастую очень противоречивые результаты, на T-10 был разработан еще один метод: измерение скорости распространения тепловой волны от ЭЦН. Он обладает преимуществом

-4

перед упомянутыми выше методами, заключающимся в возможности изменять амплитуду возмущения до очень малых величин ($\Delta T_e < 50$ эВ) и наблюдать распространение волны в любую сторону: к центру или к периферии. К сожалению, мы пока не достигли достаточно высокой точности регистрации изменения $\Delta T_e(r)$ и точность определения K_e оценивается в 50%.

Измерение К_і велось обычным способом:

$$P_{ei}(r) = \frac{1}{r} \frac{\partial}{\partial r} \left(r K_i \frac{\partial T_i}{\partial r} \right).$$
(3)

При таком определении в К_і также включены потери с частицами и перезарядкой.

Точность определения K_i и особенно K_e по энергобалансу при высоких значениях \bar{n}_e зависит от точности определения потока Q_{e_i} , который, в свою очередь, определяется точностью значения T_i .

В экспериментах на T-10 $T_i(r)$ определялось методом анализа атомов перезарядки, а $T_i(0)$ также и по величине доплеровского уширения К-линии хрома

4. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ КОЭФФИЦИЕНТОВ ПЕРЕНОСА

Результаты экспериментов [10 – 12, 14] просуммированы в табл. 1.

Таблица I

	Pe	КИМ		Диапа- зон из- мере- ний, г	Моделя = const	5 D = .f(r)		Модел ∽f(r)/	в D∽	Приме- чание
I _р ,кА	В _т , Тл	۹(۵ _Ľ)	п _е .10 ¹³ , см ⁻³	СМ	D _e , см²/с	^v e, см/с	v _{neo} , см/с	D _e , см²/с	^v е, см/с	
410 220	2,5 2,5	2,2 4,2	5,5 3,5	18 - 25 10 - 20	800 3÷4.10 ³	50 200	25 10	600 2÷3x x10 ³	35 150	
200	3,0	5,8	3	10 - 20	3.10 ³	150				В (bell- like) — режим с напуском неона
200	3,0	5,8	3	10 – 20	700	30				S(stret- ched) — режим

Мы видим, что величины D_e и v_e различны в различных режимах токамака: при низких $q(a_L) D_e \leqslant 800 \text{ см}^2/\text{с}$, а v_e не противоречит скорости неоклассического пинчевания; при уменьшении тока обе величины возрастают, не сильно изменяя суммарное удержание частиц в плазме. Режимам с большими значениями D_e и v_e соответствуют более пикированные профили T_e и n_e .

Особенно интересно поведение D_e и v_e для режимов с большими значениями q(a_L) [12]. На рис. 2 приведены радиальные профили T_e и n_e для двух режимов, которые отличаются лишь тем, что в одном из них с помощью импульсного клапана вводилось небольшое количество

Рис. 2. Профили п_е и T_е на стационарной стадии разряда в дейтерии (– – –) и после импульсного напуска неона (______): 1_p = 200 кА; B_T = 2,5 Tл; $\overline{n_e} = 4.10^{13}$ см⁻³

неона, что привело к увеличению радиационных потерь с периферии плазменного шнура. Мы видим, что профиль T_e в "чистом" дейтерии (S-режим) широкий и напоминает параболу, в то время как в режиме с напуском неона (B-режим) он уже и имеет колоколообразную форму. Переход от одного режима к другому приводит к резкому изменению величин D_e и v_e : от 700 см²/с и 30 см/с в режиме S до 4000 см²/с и 150 см/с в режиме B. Такого же эффекта можно добиться, увеличивая концентрацию плазмы или имея повышенное поступление в плазму легких примесей (O и C) в результате плохого состояния стенок камеры.

Иногда наблюдается и самопроизвольный переход из одного типа режима в другой. На рис. З приведены осциллограммы интенсивности мягкого рентгеновского излучения I_x для разряда с $I_p = 250$ кА, $B_T = 3.04$ Тл, $a_L = 29$ см. Крутой рост I_x на t = 0.3 ÷ 0.4 с связан с изменением характера удержания примесей и собиранием их в центральной части шнура.

Рис. 3. Осциялограммы интенсивности мягкого рентгеновского излучения I_x и \overline{n}_c : $I_p = 250$ кА; $B_T = 3,04$ Тл; $Z_{adb} = 2$

При инжекции пеллет в режимах типа В ионы калия медленно появляются в центре плазмы и медленно уходят оттуда.

Изменяя упомянутые выше условия, можно плавно переходить из одного типа режима в другой. При увеличении переходить и уменьшении I реализуется некоторый экстремальный режим типа B, в котором ионы калия не уходят из плазмы сколько-нибудь заметно за время от момента инжекции до конца разрядного импульса

Время удержания τ_Z ионов K⁺¹⁷ определялось по скорости спада их концентрации. На рис. 4 приведены зависимости τ_Z от \mathbf{I}_p и $\mathbf{\bar{n}}_e$. Видно, что при больших \mathbf{I}_p ($\mathbf{\bar{n}}_e$ = const) реальзуется S-режим, в то время как снижение тока приводит к резкому улучшению удержания примесей.

Зависимость τ_Z от параметра \bar{n}_e/I_p^2 изображена на рис. 5. Резкому увеличению τ_Z соответствует сильное обострение профилей T_e и n_e при дельнейшем увеличении параметра \bar{n}_e/I_p^2 наступает срыв.

Рис. 4. Время удержания ионов K^{+ 17} в функции: l_p при \overline{n}_e = const = 4 ÷ 4,5.10¹³ см⁻³ (a) и \overline{n}_e при l_p = 220 кА (б)

Рис. 5. Время удержания глубокононизованных атомов (K^{+17} и Ar^{+16}) в функции \overline{n}_c/I_p^2 , при различных вакуумных условиях: через одну (кривая 1) и две (2) недели после напуска атмосферы и в чистой камере (кривая 3)

Радиальное распределение D и v для основной плазмы и примесей в режимах обоих типов можно видеть на рис. 6. Характерно, что при больших козффициентах D_e всегда наблюдаются большие скорости пинчевания v_e и наоборот, так что величина v_e/D_e мало изменяется от режима к режиму: соответственно несильно изменяется и удержание частиц. Так как описанные явления оказались индифферентными к величине B_T, следует заключить, что именно увеличение тока уменьшает удержание примесеи.

Для измерения К_е были использованы все описанные выше методы. Оказалось, что распространение волны охлаждения от сгорания пеллеты

Рис. 6. Профили коэффициентов диффузии и скоростей пинчевания для основной плазмы (e) и для примесей (Z) при тех же параметрах, что на рис. 2: - - - разряды в дейтерии; ----- с напуском неона

дает величину К^р_e, почти в 2 раза большую, чем вычисленная из энергобаланса К^B_e. Учет изменения вклада омической мощности за счет охлаждения плазмы в эсне, возмущенной пеллетой, позволяет значительно уменьшить это расхождение.

Измерение K_e по скорости распространения тепловой волны от пилообразных колебаний дает K_e^{st} , превышающее K_e^B не более чем в 2 – 3 раза, если амплитуда возмущения мала, что и реализуется при низких токах I_n .

Совпадение с K_e^B в пределах ошибок измерений было получено при измерении $K_e^{\Theta UH}$ по скорости распространения тепла от ЭЦР-нагрева. Эксперименты проводились в режиме: $I_p = 27 \text{ кA}$, $B_T = 3 \text{ Тл}$. Для этого случая $K_e^{\Theta UH} = K_e^B = 2.10^{17} \text{ см}^{-1} \text{ с}^{-1^P}$. Результаты не зависели от того, на каком фронте импульса нагрева проводились измерения — переднем или заднем, а также от направления распространения волны. Следует отметить, что точность измерений при распространении волны от периферии к центру была хуже 50%.

Величина измеренной теплопроводности (~ 2.10^{17} см⁻¹ с⁻¹) слабо изменялась в сечении плазменного шнура. По-видимому, из этих измерений можно сделать вывоч, что по крайней мере для указанисто режима токамака член уравнения баланса (2), содержащий ∇T_{e_1} вается основным.

Типичный профиль K_e^B для режима с $I_p = 180$ кА, $B_T = 3,0$ Тл и $\overline{n}_e = 3.10^{13}$ см⁻³ на омической стадии нагрева приведен на рис. 7. Мы

Рис. 7. Профили электронной и ионной теплопроводности на омической стадии и при ЭЦИ: $l_p = 180 \text{ кA}, B_T \approx$ = 3,0 Tл, $\tilde{n}_e = 3, 10^{1.3} \text{ см}^{-3.3}$

видим, что для режима В наблюдается очень низкое значение K_e , равное 3.10¹⁶ см⁻¹ с⁻¹ и превышающее неоклассическую величину всего лишь в несколько раз. В режиме S величина K_e более типична для токамака и почти постоянна по сечению плазменного шнура В табл. 2 просуммированы наблюденные в экспериментах [12, 15] результаты измерения коэффициентов переноса в обоих режимах. Значения коэффициентов приведены для радиусов 10 – 15 см.

T	a	б	л	И	Ц	a	2
---	---	---	---	---	---	---	---

10	-	Тип реж	има	
Компонента плазмы	Параметр	В	S	Примечание
Основные	х _і , см²/с	6.10 ³	1.104	·····
Ионы	х <mark>нк</mark> , см²/с	6.10 ³	3.10 ³	I _n = 200 кА
Ионы при-	D ₇ , см²/с	0 ÷ 1 1 0 ³	4.10 ³	$\overline{n}_{p}^{P} = 3.10^{13} \text{ cm}^{-3}$
месей	V7, см/с	60	300	C
	у ^{нео} ,см/с	60	` 50	
Электроны	$\chi_{e}, cM^2/c$	600	4.10 ³	
-	D _e , см²/с	3 ÷ 4.10 ³	700	I _n = 170 кА
	v _e , см/с	150 - 200	30	$\overline{n}_{\rho}^{P} = 3.10^{13} \text{ cm}^{-3}$
	v ^{нк} , см/с	30	20	C

は非日本にないたいというないのであります。

「ことのため」になるのであるというという。

Из табл. 2 следует, что в режиме В ионы ведут себя в соответствии с предсказаниями неоклассики. Теплопроводность протонов и скорость пинчевания ионов примесей неоклассические. Электронная теплопроводность низка, и только коэффициент диффузии и скорость пинчевания основной плазмы оказываются аномальными.

В режиме S, наоборот, именно диффузия и пинчевание электронов ближе к неоклассике, примеси же быстро уходят из плазмы и электронная теплопроводность велика.

Таким образом, незначительно изменяя радиационные потери или нарушая другим способом баланс на периферии плазменного шнура, можно существенно повлиять на характер переноса во всех компонентах плазмы и на профили распределения T_e и n_e (см. рис. 2). Возникает вопрос, что же будет, если мы уширим профиль электронной температуры в режиме B?

5. ВЛИЯНИЕ ЭЦН НА ПОВЕДЕНИЕ КОЭФФИЦИЕНТОВ ПЕРЕНОСА

Эксперименты по ЭШН были проведены при $l_p = 180$ кА и $\bar{n}_e = 3.10^{13}$ в двух вариантах [15]: когда ЭЦ-резонанс осущестр ился в центре плазмы ($r_{pe3} \approx R_0$) и при смещении положения резонанса ($r_{pe3} = R_0 + \Delta R$, $\Delta R = 12.5$ см) по направлению к внешней части тора. На рис 8 приведен временной ход энергосодержания

Рис. 8. Изменение энергосодержания во время ЭЦН (ΔW) при разных положениях ЭЦрезонанса (различные B_T) и при разных I_p . Изменение B_T на 0.1 Тл соответствует $\Delta R =$ = 5 см

плазмы, измеренный по диамагнетизму в двух режимах нагрева: на рис. 8,а условие ЭЦР выполнялось по центру камеры; на 8,6 $\Delta R =$ = 12 см. В первом случае нагрев идет с небольшим ухудшением удержания относительно режима омического нагрева в согласии со скейлингом T-11 ($\tau_E \simeq 1/\sqrt{T_e}$). Во втором случае эффект нагрева такой же в течение первых 30 – 40 мс, но по истечении этого времени энергосодержание начинает падать, а после выключения ЭЦН-импульса энергосодержание плазмы спадает до уровня, более низкого, чем до начала нагрева, и медленно, с временами порядка скиновых, релаксирует к исходному состоянию. Как было показано в [6] и проиллюстрировано на рис. 9, изменение положения ЭЦ-резонанса, а следовательно, и профиля температуры T_e в некотором достаточно широком диапазоне значений ΔR не влияет на величину τ_F . Это справедливо и для первых 30 мс режима

с $I_p = 180$ кА и для всего ЭЦН-импульса (100 мс) при более широком профиле P_{OH} , реализуемом при $I_p = 270$ кА.

Отсюда можно заключить, что именно распределения плотности тока j(r), а не $T_e(r)$ ответственны за ухудшение удержания энергии в плазме, так как стационарный профиль T_e устанавливается за 10 - 20 мс.

При нагреве по центру при $I_p \leq 100$ кА получается такой же результат, как и при нецентральном нагреве плазмы с $I_p = 180$ кА (рис. 8,в). Это, по-видимому, связано с более острым распределением $P_{OH}(r)$ по сравнению с $P_{\Im \amalg H}(r)$ для токов $I_p \leq 100$ кА. На рис. 7

приведены результаты измерения К_е до и во время ЭЦРН при центральном положении резонанса. Как и в работе [7], здесь зарегистрировано существенное увеличение К_е во внутренней части плазменного шнура при небольшом изменении его на периферии. На рис. 10,6 приведен временной ход интенсивности рентгеновского излучения при наблюдении по

、おいていていたというなどを行いたが、ためでないとなった。

Рис. 10. Осциллограммы интенсивности мягкого рентгеновского излучения, зарегистрированные вдоль различных хорд (а, 6 - различные импульсы токамака) до и в начале СВЧимпульса; в – схематическое изображение временного хода относительной интенсивности при распространении тепловой волны в условиях K_c= $= const (_____) и в эксперименте$ $(_ _ _)$

нескольким хордам. Профиль вклада ЭЦР-мощности был таков, что последняя хорда, на которой еще регистрировался заметный уровень прямого вклада ЭЦР-мощности, была около 10 см. Запаздывание сигнала на хордах 12, 14 и 16 см находится в хорошем согласии с измеренной величиной К.В. Однако крутизна фронта нарастания сигнала, увеличиваюшаяся с увеличением расстояния хорды от центра плазмы, никак не вяжется с такой величиной К, (рис. 10,в). Решение модельной задачи показало, что даже зависимость К с 🗢 Т с не может объяснить такой ход I_x(t). Для объяснения мы предположили, что вместе с фронтом нарастающей электронной температуры бежит фронт увеличенного значения теплопроводности, причем величина этой теплопроводности приблизительно стационарной ЭЦН на стадии такая, которая измерена т.е. ≥ 2.10¹⁷ см⁻¹ с⁻¹. Эта гипотеза подтверждается рис. 10,а, где приведены

осциллограммы обратной фазы пилообразных колебаний на хордах 6 и 8 см ($r_S \simeq 4$ см). Очевидная задержка между моментами появления вспышки l_x на этих хордах в омической фазе разряда соответствует измеренной теплопроводности $K_e^{st} \approx 2 \div 3 K_e^{B}$. В процессе нагрева задержка уменьшается в несколько раз уже на первых пилообразных колебаниях.

В процессе ЭЦН происходит уменьшение центральной концентрации плазмы за характерные времена ~ 6 ÷ 8 мс [16]. По-видимому, увеличение K_e и ухудшение удержания частиц есть результат одного и того же процесса. Нецентральный нагрев плазмы, так же как и центральный нагрев с низкими значениями q(a_L), гдс приобретаемая плазмой энергия быстро разносится пилообразными колебаниями по широкой области плазмы, к снижению центральной концентрации не приводит.

6. СООТНОШЕНИЕ МЕЖДУ КОЭФФИЦИЕНТАМИ ПЕРЕНОСА В ТОКАМАКЕ

Выше показано, что центральный ЭЦН резко увеличивает K_e в плазме с $I_p = 180$ кА с самого начала ЭЦН-импульса. Величина K_e остается затем постоянной в течение всего импульса нагрева и равной $(2 \div 5).10^{17}$ см⁻¹ с⁻¹, которая более привычна для токамака, чем $K_e =$ $= 3.10^{16}$ см⁻¹ с⁻¹ (в омической фазе разряда). Одновременно ухудшается удержание частиц основной плазмы, но не затрагивается величина K_i , которая сохраняется неоклассической. Этот результат несколько ограничивает выбор механизмов, приводящих к аномальности.

Обратим теперь внимание на еще один удивительный факт, содержащийся в табл, 2. Для режима типа В коэффициент диффузии оказывается в 2 – 4 раза больще коэффициента температуропроводности $\chi_e = K_e/n_e$, в то время как естественные представления о процессах диффузии и температуропроводности дают соотношение $D_e \simeq \chi_e/4$. Возникает сомнение, правильно ли называть К_е теплопроводностью. Не являются ли измеренные низкие значения Ке результатом компенсации теплопроводностных потерь тепла тепловым пинчеванием? Согласно классическим уравнениям [17] должны существовать связи между D_e, v_e, χ_e и скоростью пинчевания тепла v_т. Так как в токамаке и теплопроводность, и диффузия электронов аномальны, можно ожидать, что и другие члены, определяющие структуру потоков тепла и частиц, также аномальны. Соотношение между ними определяется кинетическими законами. Естественно, что увеличение К, при ЭЦН влечет за собой ухудшение удержания электронов и, наоборот, омический режим с большой скоростью пинчевания электронов и большой D, должен характеризоваться большим

неградиентным потоком тепла с периферии к центру. Перенос ионов примесей может быть связан с переносом электронов посредством самосогласованного электрического поля.

Такой подход к процессам переноса, казалось бы, может объяснить широкий круг описанных выше явлений. Однако из экспериментально наблюденного совпадения величин "статического" коэффициента теплопроводности K_e^B и "динамического" $K_e^{\Im UH}$ следует, что член без ∇T_e играет несущественную роль в уравнении (2). Хотя этот результат получен для режима с $I_p = 290$ кА, где $K_e \approx 2.10^{17}$ см⁻¹с⁻¹ и где нет нужды говорить о пинчевании тепла, но и в режиме с $I_p = 180$ кА мы не наблюдали существенных отличий $K_e^{\Im UH}$ от K_e^B . Правда, величина v_T тоже может быть функцией ∇T_e . Возможно, мы завыщаем величину D_e , если несправедливо предположение о равенстве стационарного и динамического значений D_e . Пока'вопрос остается открытым.

Переход из S-режима в B-режим, реализуемый на T-10, в частности, с помощью инжекции неона, наблюдался и на других установках. На ISX-B [18] изменением энергобаланса периферийной плазмы за счет применения геттерирования стенки также удавалось существенно изменять величину τ_E при инжекционном нагреве плазмы: лучшее удержание наблюдалось при бо́льших радиационных потерях на периферии.

Инжекция неона [19] приводила к увеличению $\tau_{\rm E}$ при нагреве пучком нейтралов, пикированию примесей и к другим явлениям, качественно совпадающим с описанными выше для В-режимов Т-10 (см. табл. 2).

Связь между профилями T_e и n_e и термоизоляцией плазмы наблюдалась и в экспериментах на Алкаторе [20], где в результате инжекции водородных пеллет создавался обостренный профиль n_e с высокой $n_e(0)$. Авторы [20] утверждают, что τ_E в условиях такого разряда возрастало в 1,5 – 2 раза и, что интересно, изменялась величина K_i : если до инжекции пеллеты величина K_i превышала неоклассическую в 3 – 6 раз, то после создания обостренного профиля n_e она практически совпадала с неоклассической величиной. Нам кажется, что в нашей терминологии можно говорить о переходе из режима S в режим B в этих экспериментах на Алкаторе. Можно констатировать, что различие между S- и B-режимами связано не со способом получения этих режимов, а с процессами, приводящими к аномальным потерям энергии из электронной и ионной компонент плазмы и зависящими от $\nabla j(r)$ и, возможно, от $\nabla p(r)$.

Как уже говорилось, в режиме с $l_p = 180$ кА с пикированными профилями (с точки зрения полного сечения, определяемого лимитером) есть возможность уменьшать радиус a_1 без заметного изменения харак-

теристик плазмы до тех пор, пока $q(a_L)$ не упадет с 6 до 3 – 3,5. При меньших $q(a_L)$ начинают заметно искажаться радиальные профили основных параметров. При больших a_L профили выглядят пикированными, при малых a_L профили уже не выглядят таковыми, но у них сохраняются те же градиенты основных параметрос и то же τ_E . Таким образом, в указанном циапазоне $q(a_L)$ не положение лимитера, а форма профилей определяет удержание плазмы.

Что же, исходя из полученных представлений, должны мы предпринять для того, чтобы не иметь ухудшения удержания при более широком профиле дополнительной мощности нагрева, чем РОН (r)? По-видимому, надо постараться создать такие профили параметров плазмы, когда после перераспределения профиля j(r) в результате дополнительного нагрева на границе области нагрева установятся $\nabla j(r)$ и $\nabla p(r)$, оптимальные с точки зрения переноса. Конечно, нельзя утверждать, что это будут те же градиенты, что и при омическом нагреве плазмы, так как при дополнительном нагреве сильно изменяются и абсолютные значения параметров, которые входят в критерии устойчивости и уравнения балансов. Не этот ли процесс установления необходимых градиентов имеет место в так называемых H-режимах (ASDEX, Дублет III и др.), когда удается восстановить величину энергетического удержания до уровня, свойственного омическому нагреву? Тем более, что многие черты Н-режима напоминают В-режим Т-10 (уменьшение К, аккумуляция к центру тяжелых примесей).

Суммируя сказанное, можно построить не противоречащее полученным результатам мировозэрение.

1. Все коэффициенты переноса связаны между собой жесткими кинетическими соотношениями.

2. Наличие аномальности хотя бы в одном коэффициенте должно затрагивать все кинетические коэффициенты.

3. Наблюденные в эксперименте удержания энергии и частиц есть результат баланса теплопроводностных и диффузионных потерь с пинчеванием тепла и частиц соответственно. Аномальные кинетические коэффициенты до сих пор неизвестны и нельзя пока количественно описать процессы потерь.

4. Разбалансировка потоков тепла и частиц, — вероятно, не единственная, хотя и важная причина, приводящая к изменению интегральных времен удержания, так как аномальность коэффициентов переноса говорит о существовании каких-то неустойчивостей, которые могут возникать и подавляться.

На вопрос, реализуется ли это в действительности, могут ответить только эксперименты по измерению скорости распространения тепла по радиусу шнура в разных направлениях.

7. ЗАКОНЫ ПОДОБИЯ ДЛЯ РОСТА ЭНЕРГОСОДЕРЖАНИЯ ПЛАЗМЫ ПРИ ИЗМЕНЕНИИ ПОЛНОЙ ВКЛАДЫВАЕМОЙ В ТОКАМАК МОЩНОСТИ [15]

Последние годът внимание физиков-плазменщиков неизменно привлекает проблема зависимости энергетического времени жизни от нараметров плазменного шнура, и особенно от величины вкладываемой в плазму мощности омического P_{OH} и дополнительного нагрева $P_{доп}$. В большинстве экспериментов с дополнительным инжекционным нагревом было обнаружено, что время жизни резко ухудшается, когда мощность дополнительного нагрева $P_{доп}$ начинает превышать мощность P_{OH} . Предложенные скейлинги колебались от $\tau_E \simeq P^{-0.5}$ [21] до $\tau_E \simeq P^{-0.8}$ [22]. Картина стала немного оптимистичнее, когда на ASDEX [4] был обнаружен Н-режим, в котором τ_E было почти в 2 раза выше, чем в "обычном" L-режиме. Р. Голдстон [23] предпринял попытку обобщить имеющиеся в литературе результаты в единый закон подобия, включающий как разряды с чисто омическим нагревом, так и те случаи, когда дополнительный нагрев превышает омический в несколько раз. В окончательной редакции этот закон выглядит следующим образом [24]:

$$\tau_{\rm E} = 3.6 \cdot 10^4 \, {\rm B}_{\rm T}^{0,09} \, {\rm I}_{\rm p}^{1,24} \, \overline{\rm n}_{\rm e}^{0,26} \, {\rm P}_{\rm HO,18}^{-0,58} a_{\rm L}^{-0,49} \, {\rm R}_{\rm 0}^{1,65} \,, \tag{4}$$

 $(\tau_{\rm E} - в \, {\rm Mc}, \ {\rm B}_{\rm T} - {\rm T} {\rm I}, \ {\rm I}_{\rm p} - \kappa {\rm A}, \ {\rm \overline{n}_{\rm e}} - 10^{13} \, {\rm cm}^{-3}, \ {\rm P} - \kappa {\rm B} {\rm T}, \ {\rm a} \, {\rm u} \, {\rm R} - {\rm cm}),$

где Р_{полн} — полная вложенная в плазму мощность. Эта зависимость означает, что мы можем ожидать рост энергосодержания плазмы, пропорциональный лиць Р^{0,4} — результат, малоутешительный с точки зрения термоядерного реактора.

Описанные выше эксперименты с низкими І_р были использованы для проверки такого рода соотношений и с целью выяснения внутренних механизмов, приводящих к ухудшению удержания плазмы.

Зависимость энергосодержания плазмы W, измеренного по диамагнитному эффекту, в функции полной вложенной в плазму мощности омического и ЭЦ-нагревов при расположении резонансной зоны в центре плазменного шнура представлена на рис. 11. Там же приведены величины W, ожидаемые из соотношения (4). Следует отметить, что во всех рассмотренных на рис. 11 режимах профиль вклада мощности при ЭЦН

Рис. 11. Зависимость энергосодержания от полной вложенной в плазму мощности для $I_p =$ = 180 кА (1) и 270 кА (2), центральный ЭЦН при $\bar{n}_e =$ = 3,10¹³ см⁻³. Точка Φ – зона ЭЦ-резонанса смещена на 12,5 см наружу (конец СВЧимпульса), $I_p = 180$ кА; скейлинг Голдстона для разрядов с $I_p = 180$ кА (4) и 270 кА (3)

более острый, чем при омическом нагреве. Как видно из этого рисунка, прирост ΔW с увеличением мощности ЭЦН не зависит от величины тока I_p. Энергосодержание в плазме подчиняется практически тому же закону, что и в омическом режиме нагрева (т.е. находится в удовлетворительном согласии со скейлингом T-11), если мы кроме электронных потерь учитываем и неоклассические ионные потери. Особенно хорошо прослеживается этот результат в условиях, когда I_p мал (180 кА) и P_{3UH}/P_{OH}~ \approx 3. Отсутствие зависимости ΔW от I_p, которое демонстрирует рис. 12 для широкого диапазона величин I_p (180 кА \leq I_p \leq 500 кА), заставляет задуматься, почему эти результаты находятся в противоречии со скейлингом (4), описавшим при тех же характерных параметрах плазмы богатый экспериментальный материал по дополнительному нагреву плазмы другими методами, преимущественно методом нейтральной инжекции? Можно ли при ЭЦН получить результаты, удовлетворяющие (4)?

Рис. 12. Зависимость прироста энергосодержания от тока l_p при центральном ЭЦН, $\overline{n}_e =$ = 3.10¹³ см⁻³; \bigcirc то же, что на рис. 11

18

Смещение зоны ЭЦ-резонанса к внешнему обходу тора, как было сказано выше (см. рис. 8), показало, что уширение профиля вложенной мощности $P_{ЭЦН}(r)$ приводит к ухудшению удержания плазмы вследствие уширения профиля j(r). Точка ① на рис. 11 и 12, соответствующая концу СВЧ-импульса, лежит гораздо ближе к предсказаниям скейлинга (4), чем результаты центрального ЭЦН.

Напрашивается вывод: характер удержания при дополнительном нагреве в существенной мере зависит от профиля $P_{\text{доп}}$. При инжекционном нагреве этот профиль гораздо шире, чем $P_{OH}(\mathbf{r})$, что приводит к ухудшению удержания вследствие развития какой-то неустойчивости. Специальное программирование профиля температуры на периферии позволяет в этом случае несколько увеличить $\tau_{\rm F}$ (H-режим).

Итак, на T-10 получен режим ($l_p = 180$ кA), в котором введение мощности дополнительного нагрева, в 3 раза превышающей P_{OH} , при нагреве по центру плазменного шнура не приводит к существенному изменению законов подобия, характеризующих омический режим нагрева (скейлинг T-11). Следует ли из этого, что мы можем безбоязненно использовать указанный скейлинг, прогнозируя будущие напряженные режимы? Для того чтобы понять суть происходящих в плазме изменений при введении мощности дополнительного нагрева, обратимся к табл. 3, где приведены результаты для режима $I_p = 180$ кA, $B_T = 3,0$ Tл, $\overline{n}_e = 3.10^{13}$ см⁻³. Видно, что ухудшение полного энергетического време-

Таблица 3

Параметр	ОН	эцн	
Т _е (0), кэВ	1,4	3	
т _Е , мс	70 - 75	45	
т _{Ее} , мс	120 - 140	110	
т _{еі} , мс	75	22	

ни жизни в большей мере связано с ионной компонентой, чем с электронной. Локальный энергобаланс показывает, что в процессе нагрева (рис. 13) выросла электронная температура и почти не изменилась ионная. Электронная концентрация снизилась в центре и подросла на периферии (рис. 14). Локальные коэф-

фициенты переноса приведены на рис. 7. Коэффициент ионной температуропроводности в центральной части плазмы был и остался неоклассическим. При r ≥ 20 см он значительно превышает неоклассическое значение, что, по-видимому, связано с перезарядкой и диффузией, включенными в K_i и возрастающими из-за роста концентрации нейтралов. А электронный коэффициент теплопроводности K_e, оказывается, претерпевает существенные изменения во внутренней части плазмы. От очень низкого значения 3 ÷ 5.10¹⁶ см⁻¹ с⁻¹ при омическом нагреве он поднима-

Рис. 13. Профили электронной и ионной температуры: $1 - T_e$, ЭЦН; $2 - T_e$, OH; $3 - T_i$, ЭЦН; $4 - T_i$, OH; $B_T = 3.0$ Tл, $I_p = 170$ кА, $\overline{n}_c = 3.10^{13}$ см⁻³

Рис. 14. Изменение профиля п_с в течение ЭЦН-импульса: $1 - \Delta t = 0$ (начало ЭЦН); 2 - $\Delta t = 20$ мс; 3 - $\Delta t = 80$ мс. Режим тот же, что на рис. 13

ется до 2,0,10¹⁷ см⁻¹ с⁻¹ при ЭЦН. Возникают вопросы: а) почему нс смотря на хороший тепловой контакт ($n_c(0) \simeq 5.10^{13}$ см⁻³) и неизменность ионной теплопроводности, во внутренних областях шнура температура ионов практически не возрастает в процессе ЭЦН: б) почему, нс

смотря на изменение K_e в 4 – 5 раз, потери через электронную компоненту изменяются не сильно?

Моделирование процессов переноса показало, что малое изменение T_i связано с тем, что поток тепла от электронов к ионам возрастает преимущественно на периферии плазмы (r ≥ 20 см, рис. 15), где меньше

Рис. 15. Профили мощностей, идущих от электронов к ионам, P_{ei}, и теряемых с электронной теплопроводностью, P_K, в омической фазе (а) и на стационарной стадии ЭЦН (б) (режим тот же, что на рис. 13)

разница температур и где n_e не падает, как в центре, а растет. В связи с этим тепловой поток Q_{ci} как бы минует основную часть ионов с хорощим удержанием и передается туда, где K_i большой. Обратная картина наблюдается в электронной компоненте. Удержание на периферии практически не ухудшается, увеличение же теплопроводности в центре в какой-то мере компенсируется более выгодным с точки зрения удержания тепла обостренным профилем распределения температуры ($\tau_{Ee} = r^2/A(r) \cdot \chi_e$; A(r) - уменьшается).

Таким образом, суммарное энергетическое время жизни скрывает в себе тонкий и прихотливый баланс внутренни: тепловых потоков, в существенной мере зависящих не только от профиля вклада мощности, но и изменяющихся при незначительных изменениях $n_e(r)$ и $n_e(0)$ в процессе дополнительного нагрева.

Все сказанное заставляет с большой осторожностью относиться к глобальным скейлингам, в которых при построении не закладывалась реальная физическая подоплека происходящих процессов.

Итак, на T-10 мы умеем получать как режимы, в которых удержание энергии при ЭЦН практически не ухудшается по сравнению с омическим при тех же параметрах плазмы, так и режимы, в которых удер-

жание энергии ухудшается почти так, как предсказывает скейлинг (4). Причин увеличения плопроводности по крайней мере две: при нецентральном нагреве рост K_e связан с перераспределением j(r), при центральном нагреве увеличение K_e , по-видимому, связано с возрастанием ∇T_e или $\nabla (T_e.n_e)$.

В заключение авторы благодарят Б.Б. Кадомцева за полезные обсуждения, Г.А. Бобровского за дискуссии и помощь в написании работы и весь коллектив физиков Т-10, результаты работы которых использованы в обзоре,

Список литературы

- Berry L.A., Callen J.D., Clarke J.F. et al. Plasma Confinement in the ORMAK Device. — In: Plasma Phys. and Contr. Nucl. Fusion Res. — Vienna: IAEA, 1975, vol. 1, p. 101 - 125.
- Engelhard W. Klüber O., Meisel D. et al. Accumulation of Impurities and Stability Behaviour in the High-Density Regime of Pulsator. – In: Plasma Phys. and Contr. Nucl. Fusion Res. – Vienna: IAEA, 1979, vol. 1, p. 123 – 130.
- Toi K., Itoh S., Kadota K. et al. Current Density Profile Control hy Programming of Gas Puffing and Plasma Current Waveform in the JIPP T-II Tokamak. - Nucl. Fusion, 1979, vol. 19, № 12, p. 1643 -1654.
- Wagner F., Becker G., Bearinger K. et al. Regime of Improved Confinement and High Beta in Neutral-Beam-Heating Divertor Discharges of the ASDEX Tokamak. Phys. Rev. Lett., 1982, vol. 49, № 19, p. 1408 1412.
- Wagner F., Keilhacker M., Lehnert K. et al. Importance of the Divertor Configuration for Attaining the H-regime in ASDEX. - J. Nucl. Mater. 1984, vol. 121, p. 103 - 113.
- Alikaev V.V., Arsenjev Yu.I., Bagdasarov A.A. et al. Electron Cyclotron Heating and Plasma Confinement in the T-10 Tokamak. - In: Plasma Phys. and Contr. Nucl. Fusion Res. - Vienna: IAEA. 1985, vol. 1, p. 419 - 432.
- 7. Аликаев В.В., Берлизов А.Б., Бобровский Г.А. и др. Новые результаты исследования локальной электронной теплопроводности на токамаке Т-10. — Письма в ЖЭТФ, 1982, т. 35, вып. 4, с. 136 — 139.

22

してのないないないないなってな

- Berlizov A.B., Bobrovskij G.A., Vasin N.L. et al. Measu rements of Transport Coefficients in the T-10 Device. - In: Plasma Phys. and Contr. Nucl. Fusion Res. - Vienna: IAEA, 1983, vol. 2, p. 63 - 71.
- Vasin N.L., Electron Density Profile Dependence on Plasma Parameters on T-10. – In: 12th Europ. Conf. on Contr. Fusion and Plasma Phys.– Budapest, 1985, vol. 1, p. 351 – 354.
- Васин Н.Л., Вершков В.А., Журавлев В.А. Изучение диффузии плазмы на установке Т-10 при помощи однократного импульсного напуска дейтерия и периодической модуляции потока дейтерия в плазму. – Физика плазмы, 1984, т. 10, вып. 6, с. 1125 – 1133.
- Васин Н.Л., Вершков В.А., Журавлев В.А. Изучение переноса плазмы на установке Т-10 с помощью однократного импульсного напуска дейтерия. – Физика плазмы, 1984, т. 10, вып. 5, с. 918 – 925.
- Bagdasarov A.A., Bugarya V.I., Vasin N.L. et al. Injected Impurity Transport Sludy in the T-10 Plasma by X-ray and VUV-Spectroscopy.-In: 12th Europ. Conf. on Contr. Fusion and Plasma Phys. - Budapest, 1985, vol. 1, p. 207 - 210.
- 13. T-10 Group. Study of Electron Heat Conductivity on T-10 by Propagation of a Heat Pulse from ECRH. - Ibid., p. 38 - 41.
- Bagdasarov A.A., Vasin N.L., Vershkov V.A. et al. Plasma and Impurity Transport Studies in T-10 with Low-Level Injection. In: Plasma Phys. and Contr. Nucl. Fusion Res. Vienna: IAEA, 1985, 301. 1, p. 181 192.
- T-10 Group. Energy Confinement Dependence on Plasma Current in T-10 under ECRH. - In: 12th Europ. Conf. on Contr. Fusion and Plasma Phys. - Budapest, 1985, vol. 1, p. 42 - 45.
- Vasin N.L. Electron Density Profile Behaviour under ECRH in T-10,lbid., vol. 2, p. 68 - 71.
- 17. Брагинский С.И. Явления переноса в плазме. В кн.: Вопросы теории плазмы. М.: Госатомиздат, 1963, вып. 1, с. 183 272.
- Wotton A.J., Edmonds P.H., Isler R.C. et al. Gettering in ISX-B. J. Nucl. Mater., 1982, vol. 111, p. 479 – 484.
- Lazarus E.A., Bell J.D., Bush C.E. et al. Confinement Improvement in Beam Heated ISX-B discharges with Low-Z Impurity Injection. - J. Nucl. Mater., 1984, vol. 121, p. 61 - 68.
- 20. Greenwald M., Gwinn D., Milora S. et al. Pellet Fuelling Experiments in ALCATOR-C. – In: Plasma Phys. and Contr. Nucl. Fusion Res., Vienna: IAEA, 1985, vol. 1, p. 45 – 55.

- Johnson D., Bell M., Bitter M. et al. High Beta Injection on PDX,-In: Plasma Phys. and Contr. Nucl. Fusion Res. - Vienna: IAEA, 1983, vol. 1, p. 9 - 25.
- 22. Axon K.B., Bradley I.E., Burt I. et al. Results from the DITE Experiment. Ibid., vol. 3, p. 201 210.
- Goldston R.J. Energy Confinement Scaling in Tokamaks: Some Implications of Recent Experiments with Ohmic and Strong Auxiliary Heating. -- Plasma Phys. Contr. Fusion, 1984, vol. 26, № 1A, p. 87 --103.
- 24. Kaye S.M., Goldston R.J. Global Energy Confinement Scaling for Neutral – Beam – Heated Tokamaks. – Nucl. Fusion, 1985, vol. 25, № 1, p. 65 – 69.

Редактор С.А. Руцкая Технический редактор Н.И. Мазаева Корректор М.С. Курзова

Т-03278.1.02.86. Формат 60х90/16. Уч-изд. л. 1,5 Тираж 159. Индекс 3624. Заказ 173

Отпечатано в Институте атомной энергии им. И.В. Курчатова 123182, Москва, площадь Академика Курчатова

РУБРИКАТОР ПРЕПРИНТОВ ИАЭ

にはないない。

同じ、以降に特に使い

- 1. Общая, теоретическая и математическая физика
- 2. Ядерная физика

- 3. Общие проблемы ядерной энергетики
- 4. Физика и техника ядерных реакторов
- 5. Методы и программы расчета ядерных реакторов
- 6. Теоретическая физика плазмы
- Экспериментальная физика плазмы и управляемый термоядерный синтез
- 8. Проблемы теормядерного реактора
- 9. Физика конденсированного состояния вещества
- Физика низких температур и техническая сверхпроводимость
- 11. Радиационная физика твердого тела и радиационное материаловедение
- 12. Атомная и молекулярная физика
- 13. Химия и химическая технология
- 14. Приборы и техника эксперимента

- 15. Автоматизация и методы обработки экспериментальных данных
- 16. Вычислительная математика и техника

Индекс рубрики дается через дробь после основного номера ИАЭ.

Препринт ИАЭ-4268/7. М., 1986

