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Abatract 

We calculate in a semiclassical RPA anproach che nuclear charge response 

of C, Ca, and Fe in the quasi-elastic oeak region for moderate momentum 

transfers (q • 1.0 - 2.0 fm ) . Using the Gogny force and taking full 

account of aneisyranecrisation effects we find with no free parameters 

good agreement with Che (e,e*) daca for *C. However for Ca and Fe 

che missing charge problem persists. Arguments that chis say be due to 

strong influence of 2p-2h states in the iso vector channel are advanced. 
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1. INTRODUCTION 

Inelastic eieccron scattering excites in nuclei for momentum 
* -1 

transfers q > 1 fm a broad bump in the cross section, the so-called 

quasi-elastic peak. The gross properties of the quasi-elastic peak 

have been explained by one nuclson knock out processes and have Been 

reasonably well described with simple Fermi gas models * . Problems, 

however» showed up when one tried to reproduce the now available 

longitudinal and transverse responses individually. While the transverse 
3 4} response can be reasonably understood with usual many body theory ' , 

the longitudinal response is generally overestimated. Several attempts 

have been made to improve on this situation : van Giai et al.J find 

through relativistic corrections a stronger quenching in the charge 

than in the transverse response, whereas Noble and, later, Shakin 

proposedthac in medium corrections of the nucléon form factor are 

responsible for additional quenching . 

In this work we again attack the nroblem of the charge response 

from the conventional many body point of view in adopting our recently 

developed semiclaisical theory for the linear response function -, 

generalizing it to take fully account of exchange effects in the 

meanfield as well as in the residual interaction (RFA). In fact 

at the moderate momentum transfers we will consider (I fm < q < 

2 fo" ), the residual particle-hale force still seems to play an 

important role on the detailed shape and magnitude of the quasi-

elastic bump of the charge response. Since on the other hand the 

residual interactions are quite different in the longitudinal and 

transverse channels wc feel it legitimate to concentrate in this 

work on the charge response solely. 
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To that purpose we use in a conventional RPA approach cons i s t en t ly 

the f i n i t e range Gogny force whose parameters have been adjusted to 

low energy phenomena but a comparison with more fundamental G-raatrix 

ca l cu la t ions shows that t h i s force should cer ta in ly be v a l i d up to 

momentum transfers of l .S fm (maybe i t can be used up to almost 

2 fm~ ) . This conclusion i s backed by several pleasant features of 

the Gogny force : most importantly i t very we l l f u l f i l l s the forward 

sca t t er ing sum rule of Landau's Fermi l iqu id parameters ' ; t h i s 

sum rule i s a very s t r ingent t e s t on a force and s ince the Fermi 

l iquid parameters involve through the exchange terms momenta fc a k_ 

the Gogny in terac t ion should be qui te accurate at l e a s t up to q » k_ 

but t e n t a t i v e l y i t could be used beyond (UD to q - 2 fm" ) . 

These s a t i s f y i n g propert ies are further substant iated by i t s r e a l i s t i c 

compress ib i l i ty c o e f f i c i e n t (K • 228 MeV), by i t s a b i l i t y to describe 

giant resonances , .and by i t s behavior in describing high ly ing nuclear 

exc i ta t ions as was shown recent ly . However, we not only w i l l use the 

Gogny force for the res idual ph. in teract ion but a l so for the construction 

of the nonlocal mean f i e l d potent ia l whose qual i ty has been tes ted in 

many Hartree-Fock c lacu la t ions ( i t may however be that i t s nonlocal i ty 

i s somewhat to short ranged , a feature of importance only for higher 

momentum transfers (q > kp>). We want :o emphasize that we do not make 

the often employed e f f e c t i v e mass approximation but use the n o i l o c a l 

mean f i e l d i n f u l l . 

With th i s i n mind we try to so lve the RFA equations i n the above 

mentioned range of transferred momenta for the c a l c u l a t i o n of the 

nuclear response function in the q u a s i - e l a s t i c peak region. Since i n a 

purely quantum mechanical manner th i s i s a formidable numerical task 

3) we have resort to our recent ly developed s e m i c l a s s i c a l RFA theory ' 

which we general ize to account for antisymmetrisation as we l l i n the 



mean field as in the residual interaction, this seed classical theory 

has been tested ' and turned out to be extremely accurate for the non 

interacting response but preliminary studies show that it also works 

in the interacting case. 

Investigations of the longitudinal response have been performed by 

several authors using various approximation schemes. Cavinato et al. 
12 studied the (e,e') reaction in C in a quintal continuous RFA frame 

using the Skyrme force SK.3. This is, however, a contact force whose 

use may be doubtful since its momentum dependence at higher q-valu*s is 

not controlled. A mora detailed and critical account of the use of 

this force in the quasi-elastic peak region has been given by Dellafiore 

et al . These latter authors investigate the charge response of C 

within the IDA theory using the Kurath interaction. This is a finite 

range density independent force. This feature makes it less reliable 

than the density dependent Gogny interaction since it is known that 

the rearrangement terms in the ph force coming from a density dependence 

are very important (for instant to fulfill the forward scattering sum 

rule). Besides one can ask the question whether one should not use the 

RFA rather than the TDA approach. 

A preliminary account of the present work is given 
14) . 

elsewhere . There also exists a recent investigation 

on the same subject by Alberico et ai. using a seniclassical RFA 

approach very similar to the present one but trying to reproduce, 

within limits, the experimental data by a best fit procedure on the 

residual interaction and the mean field properties. Whereas the 

conclusion of the latter authors supports Noble's idea of a swollen 

nucléon in a nucleus we here tend to advocate, and in fact will give 

detailed arguments, that an important coupling of 2p-2h states in the 

isovector part of the response might be at the origin of disagreement 

with experiment in heavier nuclei. 



This paper is organised as follows : in section 2 we give a detailed 

account of our formalism and in section 3 our results together with a 

careful discussion and possible interpretations are presented. In 

section 4 we formulate our conclusions. 

2. FORMALISM 

As we s a i d in the i n t r o d u c t i o n the aim of t h i s work i s to solve the 

RPA equat ions using the f i n i t e range Gogny force i n the q u a s i - e l a s t i c 

peak r eg ion . A f u l l y q u a n t a l c a l c u l a t i o n would be a tremendous numerical 

cask in t h i s energy region ; so we r e s o r t here to our s e m i c l a s s i c a l RPA 

theory developed r e c e n t l y and which turned out to be very p r e c i s e . 

We b r i e f l y r e c a l l the p r i n c i p l e . In oDerator form the f ree ph Green ' s 

funct ion can be w r i t t e n in the fol lowing way : 

G lHj,H 2> » : ~ - - (1) 
LJ-HJ + H 7 + in u + Hj - H 2 + in 

To lowest o rder in-îf we reo lace the s i n g l e ^ a r t i c l e H.F. Harailtonians H. 

bv t h e i r c l a s s i c a l c o u n t e r o a r t s : 

(2) 

where V(R,P) is the Wigner transform of the nonlocal self consistent 

meanfieId potential. In this way we obtain the lowest order semiclassical 

expression for G (R.P., R̂ P-j) expressed in the ohase space variables of 

the particle and the hole. Through inverse Wigner transformation this 

expression can be obtained in configuration space : G (r.rî, ^2 rP w ^ t n 

coordinates as indicated in Fig. 1. 
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For a local excitation operator such as 

."•V <><?,?') - Sit - P ) « " " (3) 

the free nuclear polarisation propagator is given by 

T° (q,..) - / V r d W 5 * G° (« ' . rT ' ) e " 1 ^ ' (4) 

While the structure function is defined as the imaginary part of eq.(4ï : 

S°(q, U) - - - i I B {»°<q.u>} 

/"" 3 3 
• " ê / ^ 4 S<lP*qi- kF(R»9(kp(R)-P)6(u-h(iyD+qi)*h(R,?)) 

77 / (2ir) 3 F F 

Because of the zero range of the excitation operator (3) exnression (4t is 

in semiclassical approximation equivalent to the local momentum 

approximation, i . e . equal to the nuclear natter expression where k_ La 

replaced by kp(R) which in turn is obtained from the imolicit equation 

-:F - — V(R,k?(R)> - 0 (6) 
2rn 

where E_ is the global Fermi energy to be determined by the oarticie 

number condition 

/ • ' ' 1$~ 9 <CF " = + V(R'P)) " A <7) 

This approximation scheme for the non interacting response has been 

2) 
first derived with a somewhat different technique by RoaenfeLder . 

We complete and generalize this theory in several respects. First and 

most importantly we check the accuracy of the approximation. This check 
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presentation we here show our result again, tn Fig. 2 is disolayed 

the comparison of a completely quantal calculation of expression (5) 

using a phenomenological Hoods Saxon potential for q • 2.15 fm 

together with our semiclassical approximation. The quantal calculation 

which has been smooched by a Lorentzian of 3 MeV width for easier 

representation of the resonating Dart at low energy has kindly been 

performed for us by van Ciai - In Fig. 2 we can appreciate the 

global accuracy of our approach. Several remarks can however be made : 

the semiclassical approach is known to give the average part of a 

quantal calculation : in the continuum region where already the quantal 

result is smooth both calculations agree and indeed in the low energy 

part our result passes nicely through the average. Nevertheless a very 

slight deviation from the quanta! result can be observed also in the 

continuum part which could become more important for lighter nuclei and 

for surface responses of inelastic hadron scattering. Also our result 

at the high energy side goes to zero sharoly whereas the quantal result 

vanishes asymptotically. These minor deficiencies are likely to be 
2 cured in evaluating -ft" corrections to our lowest order approximation. 

This is most easily performed in expanding the signer transform of (1) 

around the classical Hamiltonians ; 

a2 
— c°(h?h=)|(H.-h^)(H.-h^: 

<8> 

G 0(H 1 FH 2)|- G°(h' h*> + T S — - Î - — C0(hW)[(H,-hJ)(Hrh^)l 
1 W ' ~ i Fj 3h? 3h. J J 3 ~«J 

The evaluation of these corrections is in progress 

A further important step consists in introducing the residual 

ph interaction into the semiclassical framework. Let us first consider 

the Bethe Salpeter equation (see ref. 16) ch. 8) for the interacting 
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ph Green's function in the case of a direct spin and isospin independent 

force : 

G(r.r') - G ( o ) (? , r ' ) * /d 3 r, d 3ri G°(r\r1)v<r\-r";)G(r'jr"') 

G(r,r"*) - G(r ,r \r \r ' ) 

The local Green's function G(r,r") figuring in(4) can be considered as 

a nonlocal one body operator and correspondingly eql8) is effectively 

a one body equation. He can Uigner transform (9) and remembering that 

to lowest order in -h" the Uigner transform of a product of operators is 

equal to the product of the respective Wigner transforms we obtain 

from (9) t 

•n - o 
^(R.q) - A M ) * *°<R,q) v(q) T(Ktq) 

- -°(R,q> / (1 - v(q) T°(R,q)) (10) 

with 

T(R,q) - /d3S e " 1 ^ C(R + |, Î E - | ) (11) 

The condition for (10) to be valid is the same as for the lowest order 

approximation of G° namely gradients of the mean field appearing in the 

expansion (7) must be negligible. We therefore expect that our approximation 

for the interacting response is of similar accuracy. Unfortunately the 

numerical evaluation of the exact interacting resoonse at such high 

energies is very involved even for the case of a direct or 5-interaction 

only, so that we do not have presently any definite possibility of 

checking (10) but preliminary results are available indicating that our 

theory also works in the interacting case. In order to assure convergence 

4T correction can, however, also be evaluated straightforwardly in the 

interacting case in going to higher orders in the threefold operator 



product of (9) . He again remark that our lowest order solution (10) 

is of the local density type what is equivalent to take the infinite 

matter result and replace k F by kj,(R) everywhere. 

For finite range forces to be considered here we however have also 

to take care of the exchange contribution of the force what is a much 

harder problem because inclusion of exchange leads even in infinite 

matter to a genuine integral equation for the response function and 

therefore no analytical solution exists even in local density approxi

mation. On the other hand it will turn out that direct and exchange 

contributions are of the same order of magnitude and it is thus very 

important to treat both on the same footing. Since in total the 

influence of the interaction (direct plus exchange) is relatively 

weak (i 30 7.) we here apply a continued fraction expansion of the 

response function with fully antisyntmetrized interaction. This 

19) 
procedure has been proposed by one of the authors some time ago 

but independently applied to the resnonse function in the TDA scheme 

in ref. 13). It has been shown there that the convergence of the 

continued fraction expansion is very good in the domain of the considered 

momenta and that usually the first iteration is sufficient. We therefore 

expand the interacting response to first order in the fully anti-

symmetrical interaction and to lowest order in -ft : 

ff(M,w) - A M . u ) • AR fq f«)v 0<R,q) Aa.q.a) + *ex(R,q,w) (12) 

with 

i — ^ - G°(R»kj,k 1+î>v e x(l^ î-k 2' > G
0(R,Ê2,Ê2+Ô;) (13) 



vhere G° i s given by : 

e(|i?*q I -kF(R))e(kr(R)-k) 9(|ir-q|-k r(aJe(it?(R)-k) 

orh(fl, |k*ql)*h<R,k) + in uiHiCR, |k"-£ | ) - h<R,k)+in 
G"(R (k,k+q) "'I1 

and it i s r e la t ed to G by the fol lowing equation 

A M . " ) - f^-^t G° (R.Ê.Ê+Î) 
J (2ïï)J 

(IS) 

The form of the interaction in (12,13) haa already been modelled to the 

Gogny force where we have density independent direct (vQ) and exchange 

(v ) parts and a density dependent contact term, which is included in v . 

We now transform (12) into the lowest order continued fraction 

expansion and obtain for the interacting polarisation oropagator 

T(q,u) - fA +<*«'* (16) 
1 - v(R,q,w)TT (R,q,u) 

where we introduced the effective interaction 

" (R.q.u) 
v(R,q,w) - vn(R,q) + -S2 - (17) 

It is clear from our approximation scheme that direct and exchange term 

are treated on an equal footing and furthermore eq.(16) has the pleasant 

feature that for a contact force or in ring approximation (neglecting 

exchange) it reduces to expression (10). Higher order continued fraction 

terms can be straightforwardly constructed to the expense of a somewhat 

greater numerical effort but as we already mentioned v will turn out to 

ba relatively small so that a first order Taylor series almost suffices ; 

usually however Pad€ approximations or continued fractions speed up 

13) convergency as was also noticed in ref* . We thus keen eqs.(16,17) 

together with (1,2) as our final expression for the response function, 

remembering that we will use a nonlocal mean field constructed from the 

Gogny force. 



3 . APPLICATION TO THE CHARGE RESPONSE OF 1 2 C , 4 0 C a , AND 5 6 F e AND 

DISCUSSION OF THE RESULTS. 

Before d i scuss ing appl icat ions and resu l t s i n d e t a i l s t i l l the 

explanation of some more ingredients of our calculus i s in order. 

As we sa id we use the Gogny force to bui ld up the Wigner transform (2) 

of the Hartree-Fock f i e It1 and the e f f e c t i v e ph in terac t ion v (R,q,u) 

( e q . ( l 7 ) ) ; in doing so we however neglected c o n s i s t e n t l y the spin 

orbit term which does not have a s t rr lence on average quant i t i e s 

such as we are considering here ; th i s has been demonstrated for ground 

s t a t e properties l i k e the de ta i l ed r-dependence of the nuclear density 

but should equally hold for the energy domain we are considering here . 

The Wigner t ransform of the non loca l meanfield 

V ( r \ r ' ) =-1 I vCÏ .a .T. rJ .OjTj . r 'T .CjCTjTj) PÏrjQjTj , r j f f , i :p (18) 
C 7 

a l T l * ^ 16) 

has then been c o n s t r u c t e d us ing for c ( r , r ) the Thomas Fermi expression 

In (18) v ( , . . ) s tands for the antisytnmetrized matrix element of the Gogny 

force and t oge the r wi th the Thomas Fermi express ion for o we arrive at 

the express ion (3 .2 ) given i n ré f . 11). The Wigner transform i s then 

e a s i l y c a l c u l a t e d what y i e l d s an e x p l i c i t exp res s ion in terms of error 

functions and k p ( R ) . The loca l Feruii momentum k T (R) i s evaluated everywhere 

from che express ion 

V(R)) (19) 

where we took for V(R) the very well tested Woods Saxon like parametriiation 

20) _H F 

of ref. ; kp(R) and thus V^* *(R,P> should therefore be quite rt*iable 

and we can proceed to our final formula which we used for comparison with 

experiment. The excitation operator C for the charge response is of 
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the form 

O(q) - l i t 2 i •T1'*1 (20) 
i-1 2 

and thus the longitudinal charge response is a sun of S - 0, I' » 0 and 

S - 0 t T - I ph responses j we have to keep ;hat in mind and perforin a 

proper ph spin and isospin coupling for the construction of our effective 

residual oh interaction (17). Son» details of the explicit evaluation 

of v are given in the appendix. The final quantity to be compared 

with exp' 'intentai data includes the nucléon Cora factor and the Darwin 

Foldy term to partially account for relativist ic effects : 

The function f(qx> « ( l + ( q 2

x ) / ( 8 « HeV?) i s the nucléon form factor 
t i ind q. « q - u~ the four momentum transfer. 

He are now ready for comparison with experiment and as a first 
12 example we dioose the nucleus C for a series of .̂ omentum transfers 

) fm~ 4 q 4 •< fm . These results together with the exnerimental points 

are displayed in Figs. 3a-e where we see besides the individual T * 0 

and T » 1 responses (broken lines) also the free (non interacting) 

response R ? c a l c uLated without the residual interaction v including 

however the non local Hartree-Fock potential. 

A f irst look on Figs. 3a-e shows that in view of the fact that our 

theory contains no_ adjustable parameter the agreement with experiment 

is globally very satisfying* He see the total influence of the residual 

Interaction is of t* 30 % as announced earlier ; we also see that 

individual resonances showing up in the experimental spectrum at low 
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momentum transfers (q - I fa ; q • t-27 fm ) are reproduced on the 

average and that the immersion 0£ these resonances into the quasi-elastic 

peak at around o * 1.5 fm is nicely followed by the theoretical curves. 

In fact the only deficiency which can be seen is that our response 

somewhat overshoot* the experimental data on the high energy side. This 

feature is quantitatively almost independent of the five momentum 

transfers considered and it looks difficult to decide from Fig. 3 to 

which ingredient of our theory this deficiency is due co. 

and Fe* Unfortunately experimental momentum transfers start only at 

q - 1,52 fm so that we display in Figs. 4(a-c) in parallel the charge 

responses for Ca and Fe for three momentum transfera between 

1.5 fm" < q < 2 fm . A dramatic effect can be seen immediately : 

with exactly the same theory as in the C case our results are much 

worse for the two heavier nuclei. So a strongly mass dependent effect 

must be missing in our theory and it is precisely this missing charge 

problem which lead Nob Le to the introduction of a mass dependent 

nucléon sÎ2e (a swelling of the nucléon with increasing A). Let us 

now inspect the total of our results mare closely and let us try then to 

draw some conclusions. The first observation which can be made is 

Chat it is the strong increase of the overshooting on the high energy 

side in going from C to Ca, Fe which causes the failure of our 

results for the AQCa. and 5 6Fe cases. And in turn this is caused by a 

strong relative increase of the T - 1 response versus the T • 0 resuonse 

for the heavier nuclei. In fact closer inspection shows that the T - 0 

part by itself follows in its shape very nicely the evolution as a 

function of momentum transfer and mass number. For instance the 

plateau like structure of the response observed in the two heavier nuclei 
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is already reproduced by the iaoscalar response alone whereas this plateau 
12 . 

is absent in C as wsll experimentally as on the theoretical curves. 

Let m briefly discuss where this qualitative change of behaviour of 

the isoscalar part cones from. To this purpose we present in Fig. 5 our 

effective ph force v of eq.(!7) (i.e. the real part, the imaginary part 

being by s factor 10-20 smeller) «s a function of momentum transfer 

once for k- - 1.36 fra" (bulk) and once for k f - 0.75 fm" (surface). 

From this figure we sec : the well-known fact that the F 0 0 Landau 

parameter becomes strongly attractive in the surface nersists in v 

for quite high momentum transfers. On the other hand in the hulk v 

passes from slightly negative values at low q to appreciable repulsive 

values at higher q's. The surface attraction culls strength to lower 

energies (compared with the free response) and that is the only effect 

present in C (due to its small size). In Ca and Fe however the 

repulsion in the bulk enters into competition with the surface attraction 

and pushes part of the strength to the high energy side causing the 

should be the explanation of the plateau like structure observed in 

all heavier nuclei measured so far (this is demonstrated in Fig. 6 

where the nuclear structure functions at q - 1.52 fra for the four 

measured nuclei C, Ca, Ca, Fe are displayed showing again tha 
12 qualitatively different behaviour of C from the rest of the nuclei) 

then we remain with the question of what is happening to the isovector 

part of our response which for the heavier nuclei destroys agreement 

with experiment. There could in fact be one explanation which seems 

quite tempting to us. There have been speculations for some time that 

the 2p-2h states could be much more effective in 3Dreading the isovector 
22) 

charge response than the iaoscalar one . That this effect can be 
23) dramatic has recently been demonstrated by Drozdz et al. where it 
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is shown that 2p-2h states l i tterally wash out the Ip-lh collective 

isovector response of Ca whereas the spreading width of the isoscalar 

giant resonances is very snail. Should this feature prevail up to 

momentum transfers considered in this paper, this would indeed permit 

a quite coherent description of the situation. In fact this would mean 

that the isoscalar part of our response is only l i t t l e affected by the 

coupling to 2p-2h states whereas the isovector part is strongly 

quenched and broadened. This is exactly what is needed to bring down 

the overshooting on the high energy side <>f our total response, since 

on top of i t the coupling of 2p-2h states is strongly mass dependent as 

we can see on Fis- 1 i there we display the density of 2p-2h states for 

a fixed energy as a function of mass number calculated semiclassically 
241 with a spherical harmonic oscillator potential . Last but not least 

this could also explain the missing charge problem since strength may 

have been transported to higher energies and thus been missed by the 

experimental evaluation of the integrated cross section. That such 

strength exists beyond the measured points of the charge response can, 

as we think, not be dismissed from the experimental data points. 

We are aware of the fact that our explanation is of course 

tentative and tn»t" i t cannot rule out other possible explanations such 

as the increase of the nucléon form factor as long as we have not 

explicitly performed the coupling to 2p-2h states. We think however 

that our investigation is sufficiently reliable and the features which 

emerge of so general character that our prooosed exolanation of the charge 

response should be considered as a serious alternative. 
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4. CONCLUSIONS 

In this work we investigated the nuclear charge resoonse of C, 

Ca, and Fe in the domain 1 fm £ q £ 2 fm of transferred momenta. 

We used a recently developed send classical theory for the nuclear resoonse 

in the RPA frame. The mean field and the residual interaction were 
7 8) constructed from the Gogny forcu ' and particular emphasis was laid 

on a correct treatment of exchange effects in both quantities. We gave 

arguments that the Gogny force should be quite reliable up to momentum 

transfers of almost 2 Em . We found that our theory with no adjustable 
12 parameter quite satisfactorily describes the C data with a moderate 

overshooting of the data points on the high energy side as the only 

drawback. For the nuclei Ca and Fe, however, suddenly a strong 

discrepancy with exoeriment shows up where the overshooting on the high 

energy side is dramatically increased ; this indicates a strongly 

A-dependent effect which is missing in our theory. Closer insoection 

of the isoscalar and isovector parts of our response reveals that the 

former is following the evolution of data points as a function of 

momentum transfer and mass number quite nicely in shape (of course 

not in absolute magnitude) and that it is the isovector resoonse which 

destroys agreement with experiment for instance for the heavier nuclei. 

Guided by the recent work of Drozdz et al. ' where they show that at 

low q the coupling of 2p-2h states cil have a dramatic broadening effect 

on the collective isovector oh response and only very little so on the 

isoscalar giant resonances, we speculate that, if this effect oersisted 

at Che momenta considered here, i*: could give a consistent picture of 

the charge response. The density of 2p-2h states Is strongly increasing with 

mass number and if essentially only the isovector response is affected 

(i.e. broadened) this could cure the overshooting of oi'ir total resoonse 
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on the high energy s ide a feature which i s , as we s a i d , a l so very much 

mass-dependent. In addit ion the broadening of the i sovector bump could 

give an explanation of the missing charge problem s ince strength might 

be s h i f t e d in to an experimentally unobserved high energy region. We 

think that th i s p o s s i b i l i t y cannot be ruled out from an ana lys i s of the 

data p o i n t s . Though our proposed explanation i s only speculat ive we 

think that so many pieces would f i t together n i c e ly on the one hand and 

on the other our study seems s u f f i c i e n t l y r e l i a b l e not to put into 

question the general features which emerge. Ue f ee l that our speculat ion 

could be a ser ious candidate among the other explanations of the problem 

which have been oroposed so fa r ' . In any caae we are s trongly 
19 251 motivated to inc lude 2p~-2h s t a t e s i n t o our theory ' J and s tudies in 

t h i s d i r e c t i o n a r e now under way. 
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APPENDIX 

He here want to spec i fy , how the exchange c o n t r i b u t i o n Co che p o l a r i s a t i o n 

propagator (eq, 13) has been e v a l u a t e d . The exchange pa r t of the Gogny fo rce , 

which has t o be i n s e r t e d i n t o eq . 13 has the fol lowing momentum dependence ; 

, - 2 - - . 2 2 
« w ( l k , - k 2 l ) - _Z CjexptOc, - k 2 ) ' uj7*> At 

The C. c o n t a i n t he s p i n - i s o s p i n c o e f f i c i e n t s of the force ( see r e f . 8 ) ) . 

With eq. A1 ue get out of eq. 13 for the imaginary p a r t of - : 

1 2 ( i \ i \ , s c • 
Imj 1 r e x (S,q,<o)j - 2 _E CL J j - tm J G 0 ( R , k , + q . k , ) 1 Re G°<R,îc 2 *q, î 2 ) ( 

x exp((k* * k j - 2 k , k 2 cos Y) /u? 4 ) A 2 

The angle Y between k and k ? can be expressed by the ang le s of k. and k- : 

cos Y » cos 6, cos e 2 + s i n 6j s i n 9 2 cos (Cfj - f 2 ) A3 

Since t he Green 's func t ions do not depend on the angles If. and if 2 , they can 

be i n t e g r a t e d us ing the s u b s t i t u t i o n $_ • tf. - j . and $ » _L((f • V , ) . 

With the t r ans formation Xi " c o s a i and x 2 * c o s ^7 t h " y i e l d s for A2 : 

r 1 z 8 7 r Z c i ' 2 2 ' 
Im|, e x(R,,,U)J - £ — l - y k ^ d k . k * dX|d;<, 

ImJG(o)(R, k,+q" ,k,) | Re j G°<R,k2+q,k2 I 

x I 0 ( u ? k , k 2 A-x] / l ^ t | " / 2 ) AS 

I i a the Besse l f u n c t i o n , 
o 

We c a l c u l a t e eq.A5 numerically and get the real part ou t of the d i spers ion r e l a t i o n . 
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FIGURE CAPTIONS 

Fig. I : Coordinates of the free ph propagator : arrow to the right 

(left) representing a particle (hole). 

Fig. 2 • Structure function of a noninteraction nucléon gas LU a Woods-

Saxon potential with the parameters (in usual notation) 

V - - 50 MeV, R - 1.2 A 1' 3^, a - 0.5 fa- Continuous line 

Fig. 3 : The charge response (eq.21) for C at five momentum transfer? : 

the free response (RJ ) and the interacting one (full lines) 
26) are compared to data from Barreau et al. . The decomposition 

of the interacting response into isoscalar and isovector 

contributions Ls given by the dashed lines. 

Fig. 4a: The charge response (eq. 21) for Ca and Fe at q • 1.52 fm : 

the free response (R ) and the interacting one (full lines) are 

compared CO data from Meziani et al, . The decomposition of 

the interacting response into isoscalar and isovector contribu

tions is given by the dashed lines. 

Fig. 4b; Same as Fig. 4a but q = 1.67. 

Fig. 4c; Same as Fig. 4a but q - 1.87. 

Fig. 5 : Real part of the effective ph force (eq.17) for the isoscalar 

(left) and isovector (right) channel at two different densities. 

The contributions from the exchange part (v ) and the direct 

plus contact term (v ) are given by the dajhed lines. 



Fig. 6 : The charge response (eq. 21) divided by Z for C ( | ) f 

4 0 Ca ($), 4 8Ca (+) and 5 6 Fo (A) at q - 1.52 fm"1. 

This compilation has been taken from Rpf. 1 J . 

Fig. 7 t 2p-2h levoV densities at fixed excitation energy (u - 50 MeV) 

as a fonction of mass number for a harmonic oscil lator potential 
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