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Abstract
We calculate in a semiclassical RPA anproach the nuclear charge response

lz(:. I‘OCa, and 56Fe in the quasi-elastic peak region for moderate momentu:n

of
transfers (q = 1.0 = 2.0 Em-l). Using the Gogny force and taking full
account of antisvmmetrigation effects we find with no free parvametars
good agreement with the (e,e') daca for l‘7'C. Howaver for mCa and 56I-‘e
the missing charge problem persists. Arguments that this may be due to

strong influence of 2p-2h states in the isovector chamnel ars advanced.

+ This work is parct of the Ph.D. thesis of U. Strath

Nuclear Physics



1. INTRODUCTION

Inelastic electron scattering excites in nuclei for momeatum
tranafers q > l‘ fm"l a broad bump in the cross section, the so~calied
quasi-elascic paak. The gross properties of the quasi-elastic peak
have been explained by one nucleon knock out processas and have been
reasonably wall described with simple Fermi gas mdelu"z). Protilems,
however, showed up when one tried to reproduce the now available
longitudinal and transverse responses individually. While the transverse
response can be reasonably understood with usual many body :hooryz’['),
the longitudinal response is generally overestimaced, Several attempts
have been made to improve on this situation : van Giai et al.s) find
through relativistic corractions a stronger quenching in the charge
than in the transverse response, whereas Yoble and, later, Shakin
proposedthat in medium corrvections of the nucleon form factor are

6)

responsible for additional quenching .

In this vork we again attack the m:oblém of the charge response
from the conventional many body point of view in adopting our recencly
developed semiclasgical theory for the linear respounse func:ionj?,
generalizing it to take fully account of exchange effects in the
meanfield as well as in the residual interaction (RPA). Ia fact
at the moderate momentum transfers we will consider (! Em-l <q <
2 fm-'). the residual particle-hole force still seems to play an
important role on the detailed shape and magnitude of the quasi-
elastic bump of the charge response. Since on the other hand the
vesidual interactions are quite differemt in the longitudinal and

transverse channels we feel it legitimate to concentrate in this

work on the charge responsa solely.



To that purpose we use in a conventional RPA approach comsisteatly

D

whose parameters have been adjusted to

)

the finite range Gogny force
low energy phenomena but a comparison’’ with wore fundamental G-matrix
calculations shows that this force should certainly be valid up to
momentum transfers of 1.5 £ (maybe it can be used up to almost

2 fm‘l). This conclusion is backed by several pleasant features of
the Gogny force : most importantly it very well fulfills the forward
gcattering sum rule of Landau's Fermi liquid parame:eras) 3 this

sum rule is a very stringent test on a force and since the Fermi
liquid parameters involve through the exchange terms momenta k = kF
the Gogny interaction should be quite accurate at least up to q = k?

ly,

but tentatively it could be used beyond (uo to q =« 2 fm
These satisfying properties are further subatantiated hy its realistic
compressibility coefficient (K = 228 MeV), by ita ability to describe
giant resonancesgl.and by its behavior in describing high lying nuclear
excitations as was shown recentlylo)- Hovever, we not only will uge the
Gogny force for the tesidual ph interaction but also for the construction
of the nonlocal mean field potential whose quality has been tested in
many Hartree-Fock claculations (it may however be that its nonloecality

is somewhat te short ranged”), a feature of imnortance only for higher
momentum transfers (q > kF))' We want zo emphasize that we do not make
the often employed effective mass approximation but use the no:lacal
mean field in full.

With this in mind we try to solve the RPA equations in the above
mentioned range of transferred momenta for the calculation of the
nuclear response function in the quasi-elastic peak region. Since in a
purely quantum mechanical mawner this is a formidable nymerical task
we have resort to our recently developed semiclassical RPA theoryg)

which we generalize to account for antisymmetrisation as well in the



mean field as in the vesidual interaction. This semiclassical theory

has been tested” and turned out to be extremely accurate for the nom
interacting response but preliminary studies show thac it also works

in the interacting case.

Investigations of the lougitudinal response have been performed by
several authors using various approximation schemes. Cavinato et al.lz)
studied the (e,s') regction in 12 in & quancgl continuous RPA frame
using the Skyrme force SK3. This is, however, a contact force whose
use may be doubtfyl since its momentum dependence at highar q-values is
not controlled. A mora detailed and critical account of the use of

this force in the quasi-elastic pesk regionm has been given by Dellafiore
et 11”). These latter authors investigate the charge respouse of 12¢
within the TDA theory usiung the Kurath interaction. This is a finite
range density independent force. This feature makes it less reliable

2 that

than the density dependent Gogny interaction since it is known
the rearrangement terms in the ph force coming from a density dependence
are vary imporcant (for imstant to fulfill che forward scattering sum

rule). Besides one can ask the question whether one should not use the

RPA rather than the TDA approach.

A prelinminary account of the nresent work is given

14)

elsevhere °. There also exists a recent investigation

15 using a semiclassical RPA

on the same subject by Alberico et al,
approach very similar to the preseat one but trying to reproduce,
vithin limits, the experimental data by a best fit procedure on the
residual interaction and the mean field properties. Whereas the
conclusion of the latter authors supports Nable's idea of a swollen
nucleon in a nucleus we here tend to advocate, and in fact will give
detailed arguments, that an important coupling of 2p-2h states in the

isovector part of the respouse might be at the origin of disagreement

with experiment in heavier nuclei.



This paper is organised as follows : in section 2 we give a detailed
account of our formalism and in section 3 our results together with a
careful discussion and possible interpretations are presented. In

section 4 we formulace our conclusions.

2, FORMALISM

As we said in the introduction the aim of this work is to solve the
RPA equations using the finite range Gogny force in the quasi-elastic
peak region. A fully quantal calculation would be a tremendous numerical

task in this energy region ; 90 we resort here to our semiclaggical RPA

3

3

theory developed recently ) and which turned out to be very precise.

We briefly recall the principle. In operator form the free ph Green's

function can be written in the following way :

n

0~ A | ~ep) 8(epHy)  B(epmH ), 3(Hymep)
Ol H) = — ~ - -

u-Hl + HZ + in W+ Hl - HZ + in
To lowest order in+r we replace the single narticle H.F. Hamiltonians Hi

by their classical counterpatts i

PZ
B, = b = ——+V (R, ?,) 2
i i I 10 Fi

where V(R,P) is the Wigner transform|6) of the nonlocal self consistent

meanfield potential. 1In this way we obtain the lowest order semiclassical
. o,z > == B )

expression for G (RIPI’ RZP7) expressed in the phase space variables of

the particle and the hole. Through inverse Wigner transformation this

. . . . . Q> >y >y .
expression can be obtained in configuration space : G (rlrl, '2‘2) with

coordinates as indicated in Fig. 1.



For a local excitation operator such as

- -» iar
O(f,F') = &(F -t 'Y (3
the frae nuclear polarisation propagator is given by
o 33, idF o ey wv, -idE
T (quu) = drd e G (re',re') e €4)
While the structure function is defined as the imaginary part of eq.(4) :

f@m)--é IM{fhmﬂ

4 [ara’e
m

5 80 B+1~ k(R (RI-PYS (u-h (AT +R (R, B)  (5)
(27

Because of the zero range of the excitation operator (3) exnression (&) is
in semiclassical approximation equivalent to the local momentum
approximation, i.e, equal to the nuclear matter expression where kF is

replaced by kF(R) which in turn is obtained from the imolicit equationm

¥ (r

(R}
- V(Rkp(R)) = 0 (6)
2m

"
L]

where £ is the global Fermi emergy to be determined by the narticle

number condition

3.3 2
‘ f—"—E“—fl 8 (ep 3= + VR,E)) = A )
(m "

This approximation scheme for the nom interacting response has been
firse derived with a somewhat different technique by F.osenfelderZ).
We cowplete and generalize this theory in several respects. First and

most importantly we chack the accuracy of the approximation. This check



has been nublished elsewhareg) but for the sake of a self contained
presentation we here show our result again. 1In Fig. 2 is disolayed
the comparison of a completely quantal calculation of exnression (5)
using a vhenomenological Woods Saxou potential for q = 2.15 Em-I
togethar with our gemiclasasical approximation. The quantal calculation
which has been smoothaed by a Lorentzian of 3 MeV widch for easier
representation of the resonating part at low anergy has kindly beea

17)

performed for us by van Giai In Fig. 2 we can appreciata the

global accuracy of our approach. Several remarks can however be made :

16) to glive the average part of a

the semiclassical approach is knowmn
quantal calculationm : in the continuum region where already the quantal
result is smooth both calculations agree and indeed in the low energy
part our result passes nicely through the average. Nevertheless a very
slight deviation from the quantal result can be observed also in the
continuum part whic;\ could become more important for lighter nuclei and
for surface responses of inelastic hadron scattering. Also our result
at the high energy side goes to zero sharply whereas the quantal result
vanishes asymptotically. These minor deficiencies are likely to be
cured in evaluating ﬂz corrections to our lowest order approximation.
This is most easily performed in expanding the Wigner transform of (1)
around the classical Hamiltonians :

32
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The evaluation of these correctioms is in progressm),

A further important step conmsists in introducing the residual
ph interaction into the semiclassical framework. Let us first consider

the Bethe Salpeter equation (see ref, 16) ch. 8) for the interacting

(8)



ph Green's fumction in the case of a direct spin and isospin independenc
force :
SEE) - O EI ¢ fade) e CEFVE e
- .- 9
6F,T) = 6,7,
The local Green's function G(Z,T') figuring in{4) can be considered as
a nonlocal one body overator and correspondingly eqd8) is effectively
a one body equation. We can Wigner transform (9) and remembering that
to lowest ordar in 4f the Wigner transform of a product of operators is
equal to the product of the respective Wigner transforms we obtain

from (9) :

i ~+0 °
“(R,q@) = T°(R,@ *+ T(R,Q) v(q) 7(R,q)

= °(R,q) / (1 - v(@) TR,qN (10)

(Rq) = de’S il ok + ; - % ) an

The condition for (10) to be valid is the same as for the lowest order
approximation of 6° namely gradients of the mean field appearing in the
exnansion (7) must be negligible. We therefore expect that our appmximation‘
for the interacting response is of similar accuracy. Unfortunately the .
numerical evaluation of the exact interacting resvonse at such high

energies is very involved even for the case of a direct or 3-interaction
only, so that we do not have presently any definite possibility of

checking (10) but preliminary results are available indicating that our
theory also works in the interacting case. In order to assure convergence
h’z correction can, however, also be evaluated straightforwardly in the

interacting case in going to higher orders in the threefold operator



product of (9) IG). We again remark that our lowest order solution (10)
is of cthe local denaity type what is equivalent to take the infinite

matter result and replace kF by "F(R) everywhere.

For finite range forces to be considered here we however have alsc
to take care of the exchange contribution of the forca what is a ruch
harder problem because inclusion of exchauge leads even in infinite
matter to a genuine integral equation for the response function and
therefore no analytical solution exists even in local density approxi-
mation. On the other hand it will turn out that direct and exchange
contributions are of the same orvder of magnitude and it is thus very
important to treat both on the same footing. Since in total the
influence of the interaction (direct plus exchange) is relatively
weak (v 30 Z) we here apply a continued fraction expansion of the
response function with fully antisymmetrized interaction. This
procedure has been proposed by one of the authors some time 13019)
but independently applied to the resnonse function in the TDA scheme
in ref. 13). It has been shown there that the convergence of the
continued fraction expansion is very good in the domain of the considered
momenta and that usually the firsct iteration is sufficient, We therefore
expand the interacting response to first order in the fully anti-

symmetrical interaction and to lowest order in 4f :

TR, q,0) = " (Rq,0) + 17 (R, (R,q) TO(R,q,%) + T (R,q,u) a2

with

3,

d%ld‘Z O, > = > o] a > -

Tex(®i:0) = [ ¢ R B v, 75D C@E R
™



where G° is given by :

8| Kog | -k (RYBkp(O-k)  9(]~F]~ip (RY8 thp (R

@R, K, k) = 6 — - —
(R, [F+qD) bRk} + in  wth(R, [R=3]) = (R, k)+in

and 1° ia related to G° by the following equation :

3

PRgw = [k o @R 0D (1s)
(27

The form of the interaction in (12,13) has alreadv been modelled to the

Gogny force where we have density independent direct (vD) and exchange

(v“) parts and a density dependent comtact term, which is included in vy

We now transform (12) into the lowest order continued fraction

19)

expansion and obtain for the interacting polarisation orovagator

PR (16)

3
T(q,u) = {a3r
- 1 = $(R,q,w) 1°(R,q,0)

where we introduced the effective interaction

Tex(Reds)

Tex ot an
(1° (Ryq,

:;(R,q,u) - vD(R,q) +
It is clear from our approximation scheme that direct and exchange term
are treated on an equal footing and furthermote eq.(16) has the pleasant
feature that for a contact force or in riag approximation (neglecting
exchange) it reduces to expression (10). Higher order continued fraction
terms can be straightforwardly constructed te the expense of a somewhat
greater numerical effort but as we already mentioned v will turn out to
be relatively small so that a first order Taylor series almost suffices ;
ugually however Padé approximations or continued fractions apeed up
convergency as was also noticed in ref. 13 . We thus keep eqs.(16,17)
together with (1,2) as our final expression for the response function,
remembering that we will use a nonlocal mean field constructed from the

Gogny force.

(14

)



3. APPLICATION TO THE CHARGE RESPONSE OF '2c, “Oca, anp

DISCUSSION OF THE RESULIS.

56¢e anp

Before discussing applications and results in detail still the
explanation of gome more ingredients of our calculus is in order.
As we said we use the Gogny force to build up the Wigner transform (2)
af the Hartree-Fock field and the effective ph interaction ¥ (R,q,w)
(eq.{17)) ; in doing so we howevar neglected consistently the spin
orbit term which does not have a stre ‘ence on average quantities
such as we are conaidering here ; this has been demonstrated for ground
state properties like the detailed r-dependence of tha nuclear demsity
but should equally hold for the energy domain we are considering here.
The Wigner transform of the non local meanfield

VEEDY =1t v, TE e T) e ieTnEe Ty (8

has then been cons:tl';tl::ed using for o(¥,r') the Thomas Fermi expressionle).
In (18) v(,..) stands for the antisymmetrized matrix element of the Gogny
force and together with the Thomas Fermi expression for o we arrive at

the expression (3.2) given in ref. I1). The Wigner transform is then
easily calculated what yields an explicit expression in terms of error

fuuctions and kF(E). The local Ferui momenctum k (R) is evaluated everywhere

from the expression

=  /Zm(e. — V(R

kp(R) Zn(ep - V(R) 19
where we took for V(R) the very well tested Woods Saxon like parametrisation
of ref. 20 H kl._.(R) and thus V‘H'F'(R,P) should therefore be quite re.iable

and we can proceed to our final formula which we used for comparison with

experiment. The excitation operator ¢ for the charge response is of



the form

A ety -ilT
of@ » ¢ T I (20
i=]
and thus the longirudinal charge respcnse is a sumof § = 0, I = O and
S =0, T = | ph responses ; wa hava to keep :hat in mind and perform a
proper ph spin and isospin coupling for the conscruction of our effective
residual oh interaction (17). Sowe details of the explicit evaluation
of v__ are given in the spnandix. The final quantity to be compared

ex
with expr ‘imental dsta includes the nucleon form factor and the Darwin

Foldy term to partially account for relativistic affects :

20,2
(4qy/ D) gy 0,0 0,1

= = Im [TT(qW) T (q,w) 2n
(1+q3/(2a)) v [P0 ]

R (qu) = fz(ql) T
: 2 A
The function f(qx) = (1*(q X)/(GGZ MeVY') is the nucleon form factor

2 2
and 9, = q” = w° the four momentum transfer.

We are now ready for comparisom with experiment and as a first
example we choose the nucleus lzl': for a series of .omentum transfers
1 fm'l s§q£ fm—l. These results together with the exmerimental points
are displayed in Figs. Ja~e where we see besides the individual T = 0
and T = | responses (broken lines) also the free (non interacting}

response R(?_) calculated without the residual interaction v including

however the non lacal Hartree-Fock potential.

A first look on Pigs. 3a-e shows that in view of the fact that our
theory conteins no adjustable parameter the agreement with experiment
is globally very satisfying. We see the total influence of the residual
interaction is of ~ 30 Z as announced earlier ; we also see that

individual resonances showing up in the experimental spectrum at low



12

momentun transfers (q = | Em-l s Q= 1.27 Em‘l) are reproduced on the
average and that the immersion of these resonances into the quasi-elastic
peak at around q = 1.5 Em-l is nicely followed by the theoretical curves.
In fact the only deficiency which can be seen is that our response
somewhat ovarshoots the expsrimental data on the high energy side. This
featurs is quantitatively almost independent of the five momentum
transfers considered and it looks difficult to decide from Fig. 3 to
which ingredient of our theory this deficiency is due co.

We now come to the heaviar elemens and we choose to present "°c.

and 56

Fa. Unfortunately exparimental momentum transfers start only at
q=1,52 fm'l 80 that we display in Figs. 4(a=c) in parallel the charge
responses for I'OCa and 56a for chree momentum transfers bstween

Le q<2 Em_l. A dramatic effect can be seen immediately :

1.5 fm
with exactly the same theory as in che lZC case our tresulecs are much
worse for the two heavier nuclei. So a strongly mass devendent effect
must be missing in our theory and it is precisely this missing charge
problem which lead Nobles) to the introduction of a mass dependent
nucleon size (a swelling of the nucleon with increasing A)., Let us

now inspect the total of our results more closely and let us try them to
draw some conclusions. The first observation which can be made is

that it is the strong increase of the overshooting on the high energy

. . N 12 40, 56. - <
side in going from “C to =~ Ca, ~ Fe which causes the failure of our

56Fe cases. And in turn this is caused by a

results for the I'OCa and
strong relative increase of the T = | response versus the T = O response
for the heavier nuclei. In fact closer inspection shows that the T = O
part by itself follows in its shape very wicely che evolution as a

function of momentum transfer and mass number. For instance the

plateau like structure of the response observed in the two heavier nuclei



is aiready reproduced by the isoscalar response alone whereas chis plateay
is sbsent in lzc as well experimentally as on the theoretical curves.

Let us briefly discuss where this qualitative changs of behaviour of

the isoscalar part comes from. To this purpose we present in Fig. 5 our
effective ph force V of €4.(17) (i.e. the real part, the imaginary part
being by a factor 10-20 smaller) as & function of womentum transfer

once for k‘F - 1.36 fm-l (bulk) and once for kg = 0.75 Em-l (surface),
From this figure we see : the well-known fact that che ¥°° Landau

21)

- . 7
parameter becomes strongly attractive in the surface necsisea in ¥

for quite high momentum transfers. On the other hand in the hulk v
passes from slightly negative values at low q to appreciable repulaive
values at higher q's. The surface attraction pulls strength to lower

energies (compared with the free response) and that ls the auly effect

4 56

present in 12e (due to its small sizey, In OCa and *%Fe however the

repulsion in the bulk enters into competition with the surface attraction

and pushes part of the strength to the high energy side causing the

56

plateau in our isoscalar resnonse in 4001 and "Fe. If this feature

should be the explanation of the plateau like structure observed in

all heavier nuclei measured so far (this is demonstrated in Fig. 6

1

where the nuclear structure functions at q = 1.52 ¢m  for the four

measured nuclei ‘20, 4oCa. 48Ca, 56Fe are displayed showing again chz

lZc from the rest of the nuclei)

qualitatively different behaviour of
then we remain with the question of what is happening to the isovector
part of our response which for the heavier nuclei destroys agreement
with experiment. There could in fact be one explanation which seems
quite tempting to us. There have been speculations for some time that
the 2p-2h states could be much more effective in soreading the isovector
charge response than the isoscalar anezz). That this effect can be

dramatic has recently been demonstrated by Drozdz et 81.23) where it



is shown that 2p-2h states litterally wash out the lp-lh collective
isovector response of l.oc‘ whereas the spreading widch of the isoscalar
giant resonances ia very small. Should this feature prevail up to
momentum transfers considered in this paper, this would indeed permit

a quite coherent description of the situation. In fact this would mean
that the isoscalar part of our response is only little affected by the
coupling to 2p-2h states wherecas the isovector part is satrongly

hed and broadened. This is exactly what is needed to bring dowm

the overshooting on the high energy side vf our total response, since
on top of it the coupling of 2p~2h states is strongly mass dependent as
we can see on Fl3. 7 ; therewe display the densicy of 2p~2h states for
a fixed energy as a function of mass number calculated semiclassically
with a spherical harmonic oscillator pocentiaIZA). Last but not least
this could also explain the missing charge problem since strength way
have been transported to higher energies and thus been missed by the
experimental evaluation of the integrated cross section. That such

strength exists beyond the measured points of the charge response canm,

as we think, not be dismissed from the experimental data points.

We are aware of the fact that our explanation is of course
tentative and that it cannot rule out other possible explanations such
as the increase of the nucleon form factor as long as we have not
explicitly performed the coupling to 2p-2h states. We think however
that our investigation is sufficiently raliable and the features which
emerge of so general character that our provosed exolanation of the charge

response should be considered as a serious alternative.



4. CONCLUSIONS

In this work we investigated the nuclear charge resmonse of lZC,

I'OCG. and 56!‘; in the domain ) £ §q¢2 fo! of transferred momenta.
We used a regently developed semiclassical theory for the nuclear resovonse
in the RPA frame. The mean field and the residual interaction were
constructed from the Gogny forcu7'a) and particular emphasis wae laid
on a cotrect treatment of exchange effects in both quantities. We gave
arguments that the Gogny force should be quite reliable up to momentum
cransfers of almost 2 Em-]. We found that our theory with no adjustable
parameter quite satisfactorily deseribes the lz(: data with a moderate
overshooting of the data points on the high energy side as the only
drawback. For the nucled 40c, and S’t-’l-‘e. however, suddenly a strong
discrepancy with exveriment shows up where the overshaoting on the high
energy side is dramatically incressed ; this indicates a strongly
A-dependent effect which is missing in our theory. Closer inapection
of the isoscalar and isovector parts of our response reveals that the
former is following the evolution of data points as a functiom of
momentum trangfer and mass number quite nicely in shane (of course

not in absolute magnitude) and that it is the isovector resmonse which
destroys agreement with experiment for instance for the heavier nuclei.

) where they show that at

Guided by the recent work of Drozdz et al.
low q the coupling of 2p=2h states c.a have a dramatic broadening effect

on the collective isovector vh response and only very little so on the
isoscalar giant resonances, we speculate that, if this effect versisted

at the momenta considered here, it could give a consistent picture of

the charge response. The density of 2p-2h states is stronely increasing with
mass number and if essentially omly the isovector response is affected

(i.e. broadened) this could cure the overshooting of ovt total response



on the high emergy side a feature which is, as we said, also very much
mass-dependent. In addition the broadening of the isovector bump could
give an explanation of the missing charge problem since scrength might

be shifted into an experimentally unobserved high energy region. We
think that this possibility cannot be ruled out from an analysis of the
data pointa. Though ouvr proposed explanation is only speculative we
think that so many pieces would fit together nicely on the one hand and
on the other our study seems aufficiently reliable not to put into
question the general features which emerge. We feel that our speculation
could be a serious candidate among the other explanations of the problem

5'6). In any case we are strongly

19,25)

which have been oroposed so far
motivated to imclude 2p~2h states into our theary and studies in

this direction are now under way.
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APPENDIX

We here want to specify, how the exchange contribution to the polarisation
propagator (eq, 13) has been evaluated. The exchange part of the Gogay force,

which has to be inserted into eq. 13 has the following momentum dependence ;

A, < By = £ conp((Ey - B2 v/
Vol - Bh - g - B e at

The C; contain the spin-isospin coefficients of the force (see ref. 8)),

With eq. A1 we get out of eq. 13 for the imaginary part of Tox

n_ € ) ; ‘fd:k‘dskz Orp i T 0/p ]
Iamin R,q,u}- 2 ¢ ¢/ ImiG(Rki'qk)]Re{G(Rk**E
{rex i1 Y Tamt skytk Kgtd,kp)
x tsxp((k2 + kz - 2k.k Y/ 24
1+ kg = Zkjky cos VI/u; 4) a2
The angle v between E' and Ez can be expressed by the angles of -l:! and Ez H
€os Y = cos 31 cos 92 + sin 8, sin 8, cos (.’{-‘I - 1;'2) A3

Since the Green's functions do not devend on the angles §| and ¢ 2» they can

be integrated using the substitution §_ = ’«F, - .’;2 and 3, = %“.‘1 + qz),

With che transformation X) = cos @) and x, ~ cos -32 this vields for a2 :

2 wfce o,
Im[ﬂ (R,q.w)} -z dk, kydk.k dy, dy
ex il W—J i e i} 1742

-l
In {c(“)(n, P .E,)} Re {c°(a.ﬁz+3.iz]

2 32 7
x I3 kg, foxl A=xl /2) as
X exp {- uiz(kf + k§ - Zk]klexz)’lo}

Io is the Bessel functiom.

We calculate eq.A5 numerically and get the real part out of the diswersion relacion.
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FIGURE CAPTIONS

Fig. 1 :

Fig, 2 -

Fig. 3

Coordinates of the free ph propagator : arrow to the right

(left) representing a particle (hole).

Structure function of a noninteracting nucleon gas i a Woods-

Saxon potential with the parameters {im usual notation)

173

Vo= = 50 MeV, R, = 1.2A4"7fm, a = 0.5 fm. Continuous line

exact calculation”) and "+" indicates the semiclassical results.

The charge response (eq.21) for lzC at five momentum tranafer:s :

{0)

the free response (RI. ) and the interacting one (full linesa)

are compared to data from Barreau et 51.26>. The decomposition
of the interacting response into isoscalar and isovector
contributions is given by the dashed lines.

40, 56

The charge response (eq. 21) for "~ Ca and ~ Fe at q = 1,52 Em_l H

the free response (Rio)) and the interacting one (full lines) are
compared to data from Meziani et al.”). The decomposition of
the interacting response into isoscalar and isavector contribu-—

tions is given by the dashed lines.
Same as Fig. 4a but q = 1.67.
Same ag Fig. 4a but q = 1.87.

Real part of the effective ph force (eq.l7) for the isoscalar
(lefc) and isovector (right) channel at two different densities.
The contributions from the exchange part (vex) and the direct

plus contact term (vD) are given by the dashed lines.



Fig. &

Fig. 7

The charge response (eq. 2!) divided by Z for 120 ¥,
gy 4y, “®ca () and 6Fa (&) ac q = 1,52 f".

This compilation has been taken firom Ref. 13.

2p-2h levg’ domsitiss at fixed excitation enerpy (w = 50 MeV)

as a function of mass number for a harmomic cscillator potential

24)
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