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ABSTRACT

In this paper, sufficient conditions have been obtained for oscillation

and non-oscillation of solations of first order differential equations with

piecewise constant deviating arguments. These equations occur in mathematical

models of certain biomedical problems.
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1, A great deal Of work has been done and a large number of research

articles have been published on the oscillation theory of first order delay

differential equations of the form

+j>Ck)±C =0 U)

with g(t) < t and g(t) •+ » as t •* ». For details, the reader is

referred to the survey article [6] and the monograph [5]. In a recent paper [l],

A£tabizadeh and Wiener have obtained sufficient conditions for the oscillation

of all solutions of the first order linear differential equations with

piecewise constant deviating arguments of the type

+ cctj; =. o (£)

vhere p and q are real-valued continuous functions on [0,™) and [t] is

the greatest integer function. We may note that [t] ̂  t and -+•» as t -• =>.

In most of the studies related to (l), g(t) is not of the type such that

g(t) ̂  t. The equations of the type (S) are similar in structure to those

found in [2], The study of Eq.(2) is interesting because they occur in a

natural vay in mathematical models of some biological problems [ 2 ],

In this paper we consider

4 c =t O (3)

and forced equations

(k)

where p and h are real-valued continuous functions on [0,°°) and

f : R •+ R is continuous such that yf(y) > 0 for y i 0. Sufficient

conditions have been obtained for nonoscillation of (3) and {h) in the second

section. The third section deals with oscillatory properties of solutions of

(3), CO^of differential equations with several delays of the fora

,1
CtO + CL t-O) = 0, (5)

where p.(t), i = 0,1,...,m is a real-valued continuous function on [0,™),

and of logistic equations with piecewise constant deviating arguments of

the type
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(6)

where C is a real-valued continuous function on [0,«0 such that c(t) > 0.

A comparison of a differential equation with piecewise constant deviating

argument with a differential equation with constant delay has been given in the

last section. It appears that the behaviour of solutions of (2) is not

sufficiently close to that of the delay differential equations of the type (1).

In Sec. 2, ve prove that all solutions of (3) are nonoscillatory if p(t) ̂  0.

However, this is not the case for an equation of the form (l). For example, the

equation

y'tt) - 1 c t - 3-£ ) - °

admits an oscillatory solution y(t) = sint.

By a solution of (3) or {k) on [0,">) we mean a real-valued function

y(t) that satisfies the conditions: (I) y(t) is continuous on [0,«);

(ii) the derivative y'(t) exists at each point t£[0,™) with the possible

exception of the points [t]C,[0,») where the right-hand derivative exists;

(iii) Eq. (3) or (It) is satisfied on each interval [n, n+l)C[0,~) with

integral end points.

In this work we assume that Eqs. (3) or (h) admit a solution y(t) on

[N ,»), H > 0 is an integer, such that, for every I j I ,

sup{|y(t)| : t j. T} > 0. By a solution we mean a solution of this type.

A solution y(t) of (3) or (It) is said to be oscillatory if there

a sequence <t > sucli t h a t t * °° as n •+ «•
n n

is said to be nonoscillatory if it is not oscillatory.

exists a sequence <t > sucli that t * °° as n •+ «• and y(t ) = 0. y(t)

2. In this section we obtain sufficient conditions so that all solutions

of (3) or (It) are nonoscillatory

Theorem 2.1 If p(t) ^ 0, then all solutions of (3) are nonoscillatory.

Proof Let y(t) be a solution of (3) on [H ,«•), where H J- 0 is

an integer. Let y(n) = 0 for some integer n > H . So, for t£[ii, n+1) ,

y'(t) = Q and hence y(t) is constant. Consequently, if y(n) = 0 for

every integer n£[Ny,°°), then from the continuity of y(t) it follows

that y(t) = 0 on [N^,"). Since y(t) is nontrivial in any neighbourhood

-3-

of infinity, there exists an integer n j M Such that y(n ) 4 0. Let

yd^) > 0. For tfctr^, n^+l), yf{t) = -p(t)f(y(n )) J. 0. So y(t) >, y(n )

for t j n . Hence y(n +1) > 0. This in turn implies that y(n +2} > 0

and so on. Hence y{t) > 0 for t ^ n . Similarly, y(n.) < 0 implies that

y(t) < 0 for t i. n±. Hence y(t) is nonoscillatory.

This completes the proof of the theorem.

Remark The above theorem holds for

= o ;

where p and o. are real-valued continuous functions on [0,«) such that

P(t) 4 0.

In [l], it has been proved that

implies that all solutions of (g) are oscillatory. When p and q are

nonzero constants, then the condition (7) reduces to

and Eq. (2) takes the form

yet;

(8)

(9)

They have proved that the condition (8) is necessary and sufficient for all

solutions of (9) to be oscillatory. They have achieved this by showing that (9)

admits only the trivial solution when p(e -1) = q and

(10)

implies that all solutions of (9) are nonoscillatory. In the following we

prove a result which generalizes the above result for (9) to (2).

Theoresa 2.2 If p(t) 5. 0 and

then all solutions of (2) are nonoscillatory.
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Proof Let y ( t ) b e a. s o l u t i o n of ( 2 ) on [N , « ) , where N >, 0 i s

an integer. From the given condition it follows that there exists an integer
N* > H such t h a t

for n j H*. Since y(t) is nontrivi&l in any neighbourhood of infinity,

there exists an integer n i N* such that y(n ) ̂  0. Let y(n ) > 0.

Eq.(2) may be written as

ft

where x{t) = y(t) exp( tj(s)ds). Clearly x(n ) > 0, For tfe[n , n +1),

x'(t) i 0 and H

C<n, ) ~ J
£53

and hence

'^ X t n r t , ) [ 1 - J ^ ' |PCt) <«+ >o.

Consequently, x(t) > 0 for t€[n , n +1]. Proceeding as above we may show

that x(n +2) > 0. So x(n ) > 0 implies that X.(t) > 0 for t >, n , tiiat is,

y(n^ > 0) implies that y(t) > 0 for t > n . Similarly it can be shown that

yU^) < 0 implies that y(t) < 0 for t >, n . So y(t) is nonoscillatory.

Hence the proof of the theorem is completed.

Theorem 2.3 If p(t) >, 0, 0 < f(x)/x < M for x f 0 and

then all solutions of (3) are nonoscillatory.

Proof Let y(t) be a solution of (3) on [H ,»), vhere H >. 0 is

an integer. Clearly, there exists an integer n >. N and 0 < £ < l/M such

that

-5-

for n i n1> Since y(t) is nontrivial in any neighbourhood of infinity,

there exists an integer n } n such that y(n ) ̂  0. Let y(n } > 0,

Integrating (3) from n to tfi(n , n +1), we obtain

Ct) =

,3 - f

^ 0 •

Hence y(t) > 0 for t€[n , n +1], Repeating this process we can show that

y{t) > 0 for t£[n 2+l, n2+2]. Hence y(n2) > 0 implies th&t y(t) > 0 for

t j. n . Similarly^it can be proved that y(n ) < Q implies that y(t) < 0

for t >, n .

Hence the theorem.

Remark Theorem 2,3 does not include the super linear or the sub-linear

case. But the following theorem includes the super linear case.

Theorem 2.h Let p(t) j. 0. Let |x| .< K implies that f(x)/x ^ H

for x f 0. If

then all bounded solutions of (3) are nonoscillatory.

The proof of this theorem is the same as that of Theorem 2.3 and hence is

omitted.

Remark The proof of Theorem 2.3 or 2.k runs smoothly if p(t) is

locally integrable instead of being continuous. In the following ve give

two examples to illustrate these theorems.

T



C ! l t 3 K 1 + Si1*1 - ? CC l-J)

= 0 for t j. 1

From Theorem 2.3 it follows that all solutions of the equation are

nonoscillatory. In particular, y(t) = — is a nonoscillatory solution of

the equation.

Example y'(t) t " 1 0 y 3 ( [ t ] ) = 0, t 3 1 .

From Theorem 2.1+ it follows that all bounded solutions of the equation

are nonoscillatory. In particular, y(t) = t is a bounded nonoscillatory

solution of the equation.

h(t)Theorem 2.5 Let h(t) > 0 and lim , whenever it is

defined. Tnen all bounded solutions of [k) are nonoscillatory.

Proof Let y(t) be a bounded solution of (It) on [N ,») such that

|y(t)| < H for t£[H ,«), vhere H >. 0 is an integer. Since f is

continuous, there exists a constant K > 0 such that |f(u)| ,< K for

u£[-M,M], From the given hypothesis it follows that there exists a T J, N

such that h(t) J.K|p(t)| for t i l . If y{t) is oscillatory, then there

exists a sequence <t > such that y(t ) = 0 and t •+ » as m •* =°. Choose
ra m m

m1 sufficiently large so that tm > T. Now integrating {h} from t m to

- i"> [ f c i c ))

a contradiction.

Hence the theorem.

Example Consider

-7-

Clearly,
t -

€ + e

From Theorem 2,5 it follows that all bounded solutions of the equation are

nonoscillatory.

equation.

y(t) e is a bounded nonoscillatory solution of the

3. This section is concerned with oscillatory behaviour of solutions of

Eq.(3}, W , (5) and (6).

Theorem 3.1 If p(t) 0

m-fl

then all solutions of (3) are oscillatory.

Proof Let y(t) be a solution of (3) on [N ,»), where K i 0

is an integer. If possible, let y(t) be nonoseillatory. We may assume,

without any loss of generality, that y(t} > 0 for t >. N i. N . £o y'(t) ̂  0

for t>,»' and hence lim y(t) = a >, 0. Let a > 0. From the given condition

it follows that there exists an £ > 0 and a sequence <n > such that

n -»• •> and

J > M +

So, for 0 < "1 <: f(a),Since f(u) is continuous, f(y(n )) -+ f(a) as n *

J J
there exists an integer J) such that f(y(nj)) > f(a) - *j for n j. S. Nov
integrating (3) from N to N+m, where m > 0 is an integer, we obtain

NJ •= - J pCt>

_ . . . - f { vj ( N V « - U ) J

that is, y(H+ra) $ y(N) - m(f(a) - ^ ) { M + £ ) . This in turn implies that

y(N+m) < 0 for sufficiently large m, a contradiction. Suppose that a

Choosing n J. H* and integrating (3) from n to n,+l y we get

N-H

0.

-6-



H

: + '
-z- M

4, ini J «~J-

a contradiction again.

Hence the theorem.

Remark We may note that Theorem 3.1 includes sublinear case but does not

include superlinear case. Moreover, in Theorem 3.1, p(t) need not be continuous

everywhere in [0,»). It is enough if p(t) is continuous on [0,») except

possibly at integral points.

The nonhomogeneous equation corresponding to (2) is given by

where h is a real-valued continuous function on [0,-).

Theorem 3.E Let p(t) J. 0 and q(t) i 0, Suppose there exists a

function H, two constants a and b and two sequences <s > and <t >
rn m

such that H'(t) = h(t) everywhere on [0,™) except possibly at integral

p o i n t s , H(s ) = a, H(t
in. f

b , s •+ <•>, t •+
mm

and a £ H(t) £ b. If

64
J |f>tt) €14 ( J > i

then a l l solutions of (11) are osc i l l a to ry .

Proof Let y( t ) be a nonoscillatory solution of ( l l ) on [N ,™),

H i 0 i s an in teger . Let y( t ) > 0 for t } N i i , Setting x( t ) = y ( t ) - H ( t } ,

we get

for t J l . There exis t s H* > H such tha t x ( t ) + a > 0 for t >, N».

If not , we can find a large t such that x( t ) + a < 0. Since x ( t ) i s

nonincreasing, x ( t ) + a < 0 for large t . But, for a large s ,
HI

x(s ) + a = y { s ) > 0, a contradiction. Hence our claim holds. Setting

z(t) = x(t) + a, we obtain

-9-

So z'(t) + q(t)z(t) + p(t)z([t]) 5 0 admits an ultimately positive solution,

a contradiction (see [l]}.

A similar contradiction may be obtained when y(t) ia ultimately

negative.

Hence the theorem.

Theorem 3.3 Suppose that p(t) j 0

t
j

and

*\-»00
L, t t ) j ) ott > O

Then all solutions of (11) are oscillatory.

Proof Let y(t) be a nonoscillatory solution of {ll). We assume

that y(t) > 0 for t>,», The proof for the case when y(t) < 0 for t >, N

is similar. From the given condition it follows that there exists a sequence

<n > such that n, -»• ™ and
J J

•r.Setting x(t) = y(t) exp{ | q(s)ds), we may vrite (ll) as

(12)

- Vl Ctr) « X ^ C ) •

-10-
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Choose n j fl, From (12) we get
J

*; +1

j

I J ' b

a contradiction.

This completes the proof of the theorem.

Theorem 3.1) If p(t) % 0,

t

^•*,i«vk I h t i ; r f j = -oa a~<A i '^ ,
b-)(5O JO

then all solutions of (It) are oscillatory.

Proof Let y(t) he a solution of (U) on [ll ,=>) such that y(t) > 0

for t J. M i. H , where M J O is an integer. So y([t]) > 0 for t >, N+l.

Consequently, from (It) we obtain

^ c t ) «t ̂  t/>»•»-> J + J

so lim in^ y(t) < 0, a contradiction. A similar contradiction is obtained when
t-w

y(t) < 0 for t } B ,

Hence the theorem.

Theorem 3.5 Let f(u) be nondecreasing. Let p(t) i 0 be such that

I f the re ex i s t s an o s c i l l a t o r y function H such tha t H'{t) = h ( t ) everywhere

on [0,«>) except possibly a t i n t e g r a l points and lira H(t) e x i s t s , then a

solution of (1)) tends to zero as

J

(M on

t •+ » or is oscillatory.

Proof Let y(t) > 0 for t > N >, N , where y(t) is a solution of

N >» and H > 0 is an integer. Getting x(t) a y(t) - H(t),

(we obtain x'(t) = -p( t)f (y([t])) everywhere except possibly at integral points

in [0,»). Clearly, x{t) > 0 for large t. For t j, N + 1, x'(t) < 0 and

hence lim x(t} exists. Consequently, lim y(t) = Ji exists. Suppose that

X > 0 . For 0 < 6 < X, there e x i s t s an in teger n > JJ+1 such t h a t

y ( t ) > X - £ for t % n . Mow, for t >, n+1,

-11-

CX-6)

This' in turn implies that x(t) < 0 for large t, a contradictim- A

contradiction is obtained if y(t) < 0 for large t.

Hence the theorem ia proved.

Theorem 3.6 If P^t) >, 0 for i = 0,1 m and

) > (13)

then all solutions of (5) are oscillatory.

Proof Let y(t) > 0 for t i K. Choose n J. N+m. For t£ [n,n+l)

we get

Again, for t£[n+l, n+2)

' C t J - - 5: P,-ct>
t*=o

and so on. So y(t) is nonincreasing for t i n . From (5) we obtain, for

t £ [n+m, n+m+1),

- J

h-J.

a contradiction.

Hence the theorem.

-12-



Remark Theorem 3.6 can be extended to

where p.{t) >, 0, i = 0,1,2,... ,m. In this case the condition (13) is replaced

by the condition

I n 0 ^ + "* 11 +(T« '1

In the following we prove a result concerning oscillatory behaviour of

solutions of logistic Eq. (6).

Theorem 3.7 If

then all solutions of (6) are oscillatory.

Proof Let y(t) be a solution of (6) on [0,™). From the ecology

theory it follows that 1 + y(0) > 0. Integrating (6) we obtain 1 + y(t) > 0

for t >, 0.

If possible, let y(t) > 0 for t 5. W > 0. Choosing n > N+l, we

see that y'(t) <: 0 for t € [n, n+l). Integrating (6) from n to n+l, we get

-it">j s -

Hence

O

C 1 +

1 - C 1+

Consequently,

C 1 +

-13-

that is,

C Ct)dt <

a contradiction. If y(t) < 0 for t >, H > 0, then y'(t) > 0 for t >, N+l.

Hence lim y(t) = a < 0 exists. Suppose that a = 0. Choosing n >, N+l and

proceeding as above we arrive at

0 >

This in turn gives us

= 1,

a contradiction. Next suppose that a < 0. Since 1 + y(t) is positive and

increasing, lim(l + y(t)) > 0, that is, 1 + a > 0. Choosing 0 < £ < Biin{l+a,-a},

ve obtain -y([t])(l + y{t)) > 6 > 0, where 8 = -(a+£ ){X+a-€, ), for

t J t i H+2, Hence integrating (6) from t to t, we get

> y tt.) + (i Jfc

From the given condition i t follows that

\ C CbMt •= So .

Hence y(t) > 0 for large t, a contradiction.

This completes the proof of the theorem.

1*. In this section we compare a differential equation with piecewise

constant deviating argument

with the differential equation with average delay

-1U-
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t-t) - o j (15)

where p is a non-zero constant. He call (15) a differential equation with

average delay because the delay t - [t] in (llO satisfies

for all n. If p < 0, then all solutions of (lU) are nonoacillatory {Theorem 2.1),

But (15) may admit an oscillatory solution. Indeed,

admits an oscillatory solution y(t) = cos 3nt. If 0 < p < 1, then all

solutions of (lU) are nonoscillatory (Theorem 2.2). If 1 > p > 2/e, then all

solutions of (15) are oscillatory (see Ik]). For 0 < p,< 2/e, Eq.(15) admits

at least one nonoscillatory solution (see [•+]). For p = 1, Eq.(lli) does not

admit a nontrivial solution. Indeed, integrating (lU) from n to n+1, we get

y(n+l) = 0. For t£[n+l, n+2) , y'(t) = 0 and hence y{t) = 0 for

t€[n+l, n+2]. Proceeding as above we get y(t) = 0 for t 5. n+1. On the

other hand, all solutions of (15) with p = 1 are oscillatory because e > 2

(see [h]). If p > 1, then all solutions of (li*) are oscillatory (see [l])

as well as all solutions of (15) are oscillatory (see [k]).

Hence solutions of (15) are more oscillatory in nature than those of (1*4),

So it appears that the delay t - [t] cannot be replaced by its average — .
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