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ABSTRACT

In this paper, sufficient conditions have bLeen obtained For oscillation
and non-oscillation of solutions of first order differential equations with
piecewise constant deviatipng arguments. These equations occur in mathematical

models of certain biomedical problems,
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1. A great desl of work has been dene and a large number of research
articles have been published on the oscillaticn theory of first order delay
differential equations of the form

g () +pCe) F(9C3R)) =0 )

with g{t) <t and g(t) +* as t -+ =, For details, the reader is

referred to the survey article [6! and the monograph {5]. In & recent paper [1],
Aftabizadeh and Wiener have obtained sufficient conditions for the oscillation
of all sclutions of the first order lipear differential equations with

piecewise constant deviating arguments of the type
WO + ¥y + P Y (LEI) =0 (2)

where p and g are real-valued continuous funetions on [0,») and [t] is
the greatest integer function. We may note that [t) gt and + as t -+ =,
In most of the studies related to (1), g{t) is not of the type such that

g(t) € t. The equations of the type (2) are similar in structure to those
found in [2]. The study of Eq.(2) is interesting because they occur in a

naturel way in mathematical models of some biological problems [2],

In this paper we consider
yicey +peer FCgcren) =o (3)
and forced equations
Y'ee +\o(t)'+(3ch) = h e, (%)

vhere p and h are real-valued continuous functions on [C,=) end
f : R+ PR is continuous such that yf(y} > 0 for ¥y # 0. Sufficient
conditions have been obtained for nonoscillation of (3) and (4) in the second
section. The third section deals with coscillatory properties of solutions of

{3}, (b),of differential equations with several delays of the form

%'C%)+£Pt-te)jCLb-£J) =0, (5)
t=0

where pi(t), i=0,1,...,m 1is & real-valued continuous funetion on [o,=},
and of logistic equations with piecewise constant deviating arguments of

the type

-
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Y'e) + ¢ (o) Q1Y) glredd =o,

where C is a real-valued continucus function on [0,=) suech that C(t} > O.

A comparison of a differentisl equation with piecewise constant deviating
argument with a differential equation with constant delay has been given in the
last section. It mppears that the behaviour of solutions of (2) is not
sufficiently clese to that of the delay differential eguations of the type (1}.
In See, 2, we prove that all solutions of (3) are ncnoscillatory if p(t) g O.
However, this is not the case for an equation of the form {1). For example, the

equation
3 23X -
Yoy Y Le-= ) =0
admits an oscillatory sclution y(t) = sint,

By a solution of (3) er (b) on [0,®) we mean a real-valued functiocn
y(t) that satisfies the conditions: (i} y{t) is continuous on [0,=);
{ii) the derivative y'{t) exists at each point t&[0,=) with the possible
exception of the points [t]E€[0,=») where the right-hand derivative exists;
{1ii) Eq. {3) or (Y4) is satisfied on each interval [n, n+1)¢[0,=) with
integral end points.

In this work we assume that Eqs. (3} or {4} admit a solution ¥{(t} on
(N =}, Ny z 0 is an integer, such that, for every T 3 N ,
sup{|y(t)] : t 3 T} > 0. By a solution we mean a soluticn of this type.

A solution y(t) of {3) or {I) is said tc be oscillatory if there

exists a sequence <tn> such that tn +® a3z pn -+ and y(tn) =0, y(t)

is said to be nonescillatory if it is not cscillatory.

2. In this section we obtain sufficient conditions so thet all solutions

of {3) or (4) are nonoscillatory
Theorem 2,1  If p(t) g 0, then all sclutions of (3) are nonoseillstory,

Proof Let y(t) be & solution of (3) on [Ny.m). where my >0 is
an integer. Let y(n) = 0 for some integer n 3 Ny. S0, for t€{n, n+l),
y'(t) = 0 and hence y¥(t) is constant. Consequently, if y{n) = 0 for
every integer née [Ny,w), then from the continuity of y(t) it follows
that ¥(t) = 0 on [Ny,m). Since y(t) 1is nontrivial in any neighbourhood

—_3-

~srvanlillh #- S R § Bt

o

of infinity, there exists an integer LI Ny such that y(nl) £ 0., Let

y{n)) > 0, For té&ln), n+1), y') = -P(t)f(Y(nl)) 2 0. Bo y(t) z y(nl)

for t 2 n, . Hence y(nl+1) > 0, This in turn implies that y(nl+2) >0

and so on, Hence y{t) » 0 for % 3 o). Similarly, y(nl) < 0 implies that

¥{t) <0 for t zn Hence y{t) is nonoscillatory.

1
This completes the proof of the theorem,

Remark The above theorem holds for

Yy F g Y LE) £ pLE) FUYLEED)) =0,

where p and g are real-valued continuous fupctions on [0,») such that

p(t) g O.
In [1], it has been proved that
L3 E
Limm Sup J pit) exp ( J @esrds Yedb >0 ‘)
m-p oo n [

implies that mll sclutions of (2) are oscillatory. Whem p and g are

nonzero constants, then the condition {7) reduces to

PCe¥-1) /g >1 (®)

and Eq. (2) takes the form
Yo ¢ Yle) + PYLLED) =0 (9)

They have proved that the condition (8) is necessary and sufficient for all
solutions of (9) to be oscillatory. They heve achieved this by showing that (9)
admits only the trivial solution when p(eq-l} = q and

p(ev,i)/q/ <1 (10)

implies that all solutions of {9) are nonoscillatory. In the following we

prove 8 result which generalizes the above result for (9) to (2).

Theorem 2.2 If p(t) 20 and

" t
Lim Sup J HPC[—) ezp ( _jm Yesoeds Jolb

Mmooy o m

then all solutions of {2} are nonoscillatory,

L.



Proof Let ¥{t) be & sclution of (2) on [Ny,m), where Ny > 0 is
an integer. From the given condition it follows that there exists an integer

N > Ny such that

E
JMH pee) eup ( J o aesds Yk < |

m

for n » N*. Since y(t} is nontrivial in any neighbourhood of infinity,
there exists an integer n, 2 N® such that y(nl) # 0. Let y(nl) > O,
Eg.(2) may be written as

£
! CE)
X () + P exp ( JL!::I

gesres ) x (LEI) =0,

qls}ds). Clearly x(nl) > 0, For te[nl, n_+1),

%
where x{t) = y(t) EXP(J 1

M
x'"{t) £ 0 and N

£ s
ALk = % (m) ~ .\m pesy exp ( JESJ‘VCSN'G)?-CLSJJ‘“
1

i

S
occm,Jll 1 - J: pes) eap ( Jm"yfa)daJdS}

and hence
m ot

4
ACm+t) = Amy) { 1- _Jm beey exp ( Jml SEPLY: )aU:}>o.

Consequently, x{(t}) >0 for te& [nl, n +1]. Proceeding as above we may show

1
that x(nl+2) > 0. So x(nl) > 0 implies that x(t) > 0 for t 3z 5 that is,
Y(nl > 0) implies that y(t) > 0 for t 3 n;- Similarly it can be shown that
0. Se y(t) is nonoscillatory.

>

y(nl) < 0 implies that y{t) < 0 for % 3
Hence the proof of the theorem is completed.

Theorem 2.3 If p(t) 20, 0 < £f(x)/x £ M for x # 0 and

mt]
Lim sup Jm Peerdt &ty

)
then all sclutions of (3) are nonoscillatory.

Proof Let y(t) be a solution of {3) on [Ny,m), where Ny 3 0 is
an integer, Clesrly, there exists an integer n. 3z N and 0 < €& < 1/M such

1 ¥
that

_5_

LSEd i
|7 peode 4 2 -€

"

for nznmn Since y(t) is nontrivial in any neighbourhood of infinity,

1°
there exists an integer n, 2 ry such that y(na) # 0. Let y(n2} > 0,

Integrating (3) from n, to t G(n2, n2+1), we obtain

2
t
Yie) = Yimyy -+ Cgim)) Jm pesrds

m, 4]
2 YYimg) - L oyim) J * peeods
L.

3
FCgem) |
Yim) ™

¥
> om,) [ 1 - pu-n&]
o .

Hence y(t) » 0 for té[nz, n2+l]. Repeating this process we can show that
¥{t) » 0 for te[n2+l, n2+2]. Hence y(ne) > 0 implies that y(t) > 0 for
t 3 n,- 8imilarly, it can be proved that y[ne) < 0 implies that y{t) < 0O
fer t 3 n2.
Hence the theorem,

Remark Theorem 2.3 does hot include the super linear or the sub-linear

case, But the following theorem includes the super linear case.

Theorem 2.4 Let p(t) 3 0. Let |x| & K implies that f(x)/x g M
for x # 0. If

m+l

Liom j ple)dk = o
NI m
then all bounded solutions of (3) are nonoscillatory.

The proof of this theorem is the same a3 that of Theorem 2.3 and hence is

omitted.

Remark The proof of Theorem 2,3 or 2.4 runs smoothly if p(t) is
locally integreble instead of being continuous., In the following we give

two examples to 1llustrate these theorems.

—bim



Example Consider
[t YOLEI) C L+ Sem™ g (L))

ES ,’I.-J'__
£ C1+Stm f.bJ)

yleey o+

=0 for t 1

From Theorem 2.3 it follows that all sclutions of the eguation are
nonescillatory. In particular, y(&) = % is & nonoscillatory solution of

the equation.
Example  y'(t) +41t]% £ y3(e]) = 0, ¢ 3 1.

From Theorem 2.4 it follows that all bounded solutions of the equation
are nenoscillatory. In particular, y(t) = t-9 is a bounded nonoscillatory
solution of the equation.

Theorem 2.5 Let h{t} > 0 and 1im n(t) = =  yhenever it is

Tniin ok Um ot
defined. Then all bounded sclutions of (4) are nonoscillatory,

Proof Let y(t) be a bounded solution of (L) on [N ,=) such that
ly{t)] £« M for te {Ny,w). where NY 2 0 15 an integer, Siice f is
continuous, there exists a constant K > 0 such that |f(u)| < K for
ug& [-M,M], From the given hypothesis it follows that there exists & T 3 N
such that h(t) 2 K|p{t)] for t 3 T. If y{t) is oseiliatory, then therg
exists a sequence <t,> such that y(tm) =0 and t * = as m> =, Choose

m, sufficiently lerge so that tm‘ > T. Now integrating (4) from tp to
'

tm|+l’ we get
tm\l-l
o= [ heery —pte) FCYCLEI)) ok
™)
L
2 37 Lt - K tpeal D et
>o,

a contradiction,
Hence the theorem.

Example Consider

atted -6t

£ -5t
y'ie) - € b

YLy = € +e”

-7-

Clearly,
-3t
h(E) >, et+93 .

A
| pted

From Theorem 2,5 it follows thet all bounded solutions of the equation are

nonoscillatory. y(t) = - is a boundea nonoscillatory solution of the

equation,

3. This secticn is concerned with oscillatory behaviour of solutions of
Eq.{3}, (&), {5) and (6).

Thecrem 3.1 If pl(t) 3 ©
e

Lim (% fpcwr) =M< 00 amd  Limcup | peodt >M,

X0 n o da ”

then all solutions of (3) are oscillatory.

Proof Let y(t) be a solution of {3) on [Ny,W), where Ny 2 0
is an integer. If possible, let y(t) ©be nonoscillatory. We may assume,
without any loss of generality, that y{(¢} > 0 for t 2 N F Ny- Co y'{t) g ©
for t z N* and hence lim y(t) = a » 0. Let a > 0. From the given condition
it follows that there exig?s an &€ > 0 and a sequence <nj> such that
n, += and
J

n\j+|
) Pererdt > M+€

m

]

Since f{u) is continuous, f(y(n,)) » fla} as n,Z ~=, So, for 0 <~ < fla},
there exists an integer N such that f(y(nj)) > fla) - M for nJ > N. Now
integrating (3) from N +to Nem, where m > 0 is en integer, we obtain
N+ ™
Y(AN+m) - YIN) = — JN ple) + Yyeoreld) A
NYL

N
= - {-CV'N))J pLerdt -+(‘;(N+|)JJ P Lide
N N
N
. ...j,(\a(;u—m-uJ)J P teielt

Nl

that is, y{¥+m} g y(¥} - m{f(a) = "M){(¥+&). This in turn implies that
y(N+m) < 0 for sufficiently large m, a contradiction. Suppose that o = 0.

Choosing n, 3 N* and integrating {(3) from n, to nj+l , we get

J J

o



+1

"
_\j("’\j) < ‘3(#\,‘-\-\) - m;) = —~ 4 (g umy) JMJ Bleydtb

i1e]
Wk (m; )
Limsup ) Piridt & Lmsup -L!——-i—— =M,
miSe ™ mdoe o (YUm))

a contradiction again,
Hence the theorem.,

Remark We may note that Theorem 3.1 includes sublinear case but does not
include superlipear caese, Moreover, in Theorem 3,1, p{t) need not be continuous
everywhere in [0,%). It is enough if p{t) is continuous ocn [0,=) except
possibly at integral points,

The nonhomogeneous equation corresponding to (2) is given by
1
9 ) + e Yer) # PLEIYLLEI) = h (k) (11)

where h is a real-valued continuous function on [0,=}.

Thecrem 3.2 Let p(t) 20 and q(t) 2 0, BSuppose there exists a
function H, two constants & and b and twe sequences <3m> and <tm>
such that H'(t) = h(t) everywhere on [0,») except possibly at integral
points, H(sm) = a, H(tm) =b, s *e, b +*e and &g H{t) ¢ b, If

£
L supp J Pcn enp (] Yrods)de 1

- e

then all solutions of (1l1) are oscillatory.

Proof Let y(t} %be a nonoscillatory solution of (11) on [N EHN
Ny 32 0 is an integer, Let y(t) > 0 for t 3z N 3 Ny. Setting x(t) = y(t)-u(t),
we get

2 = Y —he) = -Vl gl —pleglLed) s

for t 2 N. There exists N¥* » N such that x(t}) + & > 0 for t 3 N¥,

If not, we can find & large t, such that x(tl) + 8 g 0. Since x(t) is
nonincressing, x(t) + a < 0 for large +. But, for a large 8,

x(Sm) + 8= y{sm) > 0, a contradiction. Hence our claim holds, Setting

z(t) = x(t) + o, we cbtain

27ty = ~ %t yte) ~pley JLTED)
— e} (A 4 RID) = RUEY (2 CLET) + H CTrD))
4 — GlerztE) ~PUE) 2 LCED),
Sa z'(t) + q{t)z(t) + plt)z{[t]) s 0 admits an ultimately positive solution,

a contradiction (see [1]}.
A similar contradiction may be obtained when y(t) is ultimately
negative.

Hence the theorem.

Theorem 3.3 Suppose that p(t) 3 O

E
Lo ks J pcw exp ( J wcooms ) et 31

M3 oo

£
Lim conky -‘ hcu exp ( § quous) dk <o

m =00
and

Liwm Sup J h(t—)ebp( jtq,cs)d;)ou: >o.

A =300

Then all sclutions of (1) are oscillatory.

Proof Let y(t) be a nonoscillatory sclution of {11). We assume
that y(t) » 0 for + 3 N. The proof for the case when y(t) <0 for t 3 N
is similar. From the given condition it follows that there exists a seguence

<n,» such that nJ + = and

J
et E
JM, hte) ez«f(] 9 es)ds Jolk Lo
J
t
Setting x(t) = y(t) exp{[ q{s)da}, we may write (11) as
N

x e +pee) exp ( J Ovmds) aCLED)

(12)

= hieyewp ( J: qeeat ) .
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Chocse n:l » N. From {12) we get

mirt 3
0 < x("’\j+'l) :x('ﬂj){i— Jn’\ 'PC&)'Q”(J %Cl}di)ou:j
i "
metl
J £
+ j hooe exp(jﬂq,t:ﬂr)dk

<o,

a contradiction.
This completes the proof of the theorem.

Theorem 3.4 If p(t) » 0,

t
lmink | hcssds = <en amd Lmsep | heods = e

E3eo bt o
then all solutions of (4) are oscillatory.

Procf Let y(t) be a solution of (L) on [Ny,m) such that y{t) > ©
for t 3 N 2N , where N 3 0 1is an integer, So y([t]) > 0 for 1t 3 N+l.

Conseguently, from [I) we obtain

k
hesods .
Jeer & Yenr) +

so lim ink y(t) < 0, a contradiction. A similar contradiction is cbtained when
oo

¥(t) <0 for t z N,
Hence the thecrem.
Theorem 3.5 Let f{u) be nondecreasing. Let p(t) 2 0 be such that

I Porrdt = oo

1If there exists an oscillatory function H such that H'{%{) = h{t) everywhere

on {0,%) except possibly at integral points and lim H{t) exists, then a
{0
solution of (4) tends to zero as t + © or is oscillatory,
Proof Llet y{+) > 0 for t 2 N » Ny, where y{t} is a solution of
{L) on {Ny,w) and N0 is an integer, Setting x(t) = y{t} - H(t),
we obtain x'(t) = —p{t)r(yt])) everywhere except possibly st integral points
in [0,=}). Clearly, x{t) » 0 for large t. For t zN +1, x'(t) < 0 and

hence lim x{t} exists, Consequently, lim y{t) = A exists. Suppose that
T R

A » 0., For O <€ < ), there exists an integer n > N+1 such that

¥{t) » A = € for t zmn, Now, for t 2 n+l,

=-11—

E
ALE) & xCmtl) — &Ck'E)J“HPUJd‘°

Thig in turn implies that x(t) < 0 for large t, & contradictiem.A similar

contradiction is obtained if ¥(t) < O for large t.
Hence the theorem is proved.
Theorem 3,6 If pi(t) 20 for i=20,1,...,m and

maemt+l

P;“‘”u' ) >t . (13)

L cup Ei ( J

M=y Do f=6 m A an

then all solutions of (5) are oscillatory.

Proof 1Let y(t) > 0 for t 3 N. Choose n 3 N+m. For & [n,n+l)

we get
-~
9 e =% Pte)Y(m-i) <9
=20
Again, for té& [n+l, n+2)
ot .
g'tey = - Z Pite) Y (mei-i) €0
t=0

and so on. So y(t) is nonincreasing for t 3 n. From {5) we obtain, for

t € [n+m, ntm+l),
meam + 1

0¢ Jimamil) = Ylmam) ~ ( = Pi“"ac“*’“'”)‘u

" A r=o
mymtl
L Y Umem) x_ 1'Jm+m (__E_\";(U)au-
mAemrl -
Limswp | ( 2 ho)ste &1
m =3 00 [ f=p

a contradiction.

Hence the theorem.

=10



Remark Theorem 3.6 can be extended to

= o

Yoy + Yty ¢z e glre-aa) =e,
t=p

where p.it) 3 0, 1 = 0,1,2,...,M, n is case the condition is replace
h l() 0, i = 0,1,2 In thi h ition (13} i d

by the condition

m A+t

Lamgup p C J P, tes exp ( _]’t q csids ) otk > 1.

m-rpa tE0 B Mok -

In the following we prove a result concerning oscillatory behaviour of

solutions of legistic Eq. (6).
Thecrem 3.7 If

M4l
Limm Sup JM Ceerde > 1

- bo
then all sciutions of (6) are oscillatory.

Proof Let y(t) be a solution of (6) on [0,=). TFrom the ecology
theory it follows that 1 + y(0) > 0. Integrating (6) we obtain 1 + y(t) > 0
for t z 0.

If possible, let y(t) > 0 for t = N > 0. Choosing n 2 N+l, we
see that y'(t) £ ¢ for t € [n, n+l), Integrating {6) from n to n+l, we get

Al
Y lmart) -4 lm) = =Y im) J C-C'-‘)(_i—i—‘a(l-))ﬂu:
"

m41
- gemy C 14 pinmed)) JM C k)b |

th

lience

m+ i
0 & Yim+t) & Yim) [L_‘L-— Ci+‘j(~\+i))_] CCl-Jo(L-}.
o

Consequently,

i
C4+YYimedd) | Ceerdt 2 1

~13-

that is,

m a4 i
3 Cteyde < <1
" L4 Y tmat)
il
{*,:if;* JM Cterele < { |

& contradiction. IFf y(t) <0 for t 2 N > 0, then y'(t) > 0 for 1t = N+«l.
Hence 1im y{(t) = ¢ g 0 exists. BSuppose that o = O, Choosing n 3 N+1 and

=
proceeding as above we arrive at

wmrl
0> Yim+i) =7cm>{1—ci+~3w}Jm 'Cu-sﬂll-}_

This in turn gives us

mrl " i =1
. 3 —_— - r
lmsap ), ccode € ln i

a contradiction. Next suppose that a < 0, Since 1 + y(t} is positive and
increasing, 1im(l + y(t)) » 0, thet is, 1 + a > 0, Choosing O < € < min{l+a,-al,

b
we obtain ~y([t+])(L + y{t)) » g > O, where 8 = -(a+& }{l+u-€ ), for

t 2 t_ 2 N+2, Hence integrating {6) from t_ to&t, we get

0 o

YUE) > Ytt) +p ¥ cesras
E

(-
From the given condition it follows that

)
} Clkrolt = % .
!'-o

Hence y(t) > 0 for large t, a contradiection.

This completes the proof of the theorem,

b, In this section we compare e differentiasl equation with piecewise

constant deviating argument
Y'(e) + P YLLE) =0 (14)

with the differentisl equation with average delay

PO I
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