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ABSTRACT 
By enlarging the functional space to Include nonlocal fie'ds which are 

sensitive to the spa^e-time asymptotics of the configurations we can for
mally construct the 9-sectors in the OS-Hilbert space. On two quantum 
mechanical examples and in the case of non-Abelian gauge theories we study 
the question of inequivalence of the different в-sectors. 

АННОТАЦИЯ 

Включая при расширении функционального пространства нелокальные поля, 
чувствительные к пространственно-временной асимптотике конфигураций, имеется 
возможность формально конструировать 9-секторы в пространстве OS-Гильберта. 
На двух квантовомехьнических примерах, а также в случае некоммутируюшего ка
либровочного поля изучается вопрос неэквивалентности разных 9-секторов. 

KIVONAT 
A konfigurációs téren értelmezett funkcionálokat ugy kiterjesztve, hogy 

olyan nemlokális tereket is tartalmazzon, amelyek érzékenyek a konfigurá
ciók téridő aszimptotikájára, formálisan megkonstruáljuk az OS-Hilbert tér
ben a 6-szektorokat. Két kvantummechanikai példában és nem-Abeli mértékelmé
letben tanulmányozzuk a különböző 0-szektorok inekivúlenciájának a kérdését. 



1. Introduction 

It has been well known for a long time that non-Abelian 
gauge theories in four dimensions and U(l) gauge theories in 
two dimensions have non-trivial topological structure С13. 
Several authors argued how this topological structure may 
affect the quantum theory С2Э. The expectation is that there 
exist different representations of the quantum field algebra 
corresponding to the so called 9-sectors. So far it has been 
rigorously established only in 2-dimensional Abelian gauge 
theories C33. 

The severe problem obstructing a precise treatment is 
that the most efficient method to control the ultraviolet 
behaviour of the theory, the lattice approach does not admit 
a representation of the topological structure or the lattice 
configuration space. Since we cannot solve this problem 
either we concentrate in this paper on the question how the 
presence of a topological structure in the configuration 
space modifies the OS-construction [43, the most promising 
method in constructive quantum field theory. In this way we 
can point out the conditions which lead to the existence of 
6-sectors as different representation» of the local quantum 
field algebra. For pedagogical reasons it will be useful to 
compare the cases of 1) quantum mechanics in a periodical 
potential, 2) quantum pendulum and 3) non-Abelian gauge 
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theories in 4-dimensions which will be discussed in Sections 
2,3 and 4 respectively. 

Although the results obtained for those three models 
are widely known we believe that our methodically new 
approach may be useful in the futur*» in a rigorous 
construction of the ©-sectors. 

2. 0-sector« in quantu« mechanics!periodic potential 

Consider a particle in one apace dimension moving in a 
bounded periodic potential V,that isi 

m >V(x>> 0 | x€R, (2.1a) 

V<x+d)«V(x> * x«ER. (2.1b) 

We denote the minima of the potential by xt,i<EZ; of 
course they also show the periodicity! Xi»x0+id, i€Z. Me 
assume that V(xi)«0. 

The Minkowskian Lagrangian and the physical weight in 
the path integral measure« 

U« - ^.x'-V(x), (2.2a) 

exp(iS«) - exp(iCut), (2.2b) 
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Because we want to make the OS-construction to get the 
quantum Mechanics of the model we need the Euclidean version 
of these quantities: 

L« = -i. x*+V(x), (2.3a) 

exp(-S«) = ехр(-Г|_«). (2.3b) 

We de-fine the conf igurat ion space of the c lass ica l 

paths as: 

t s U t , (2.4a) 
T<** 

С в { xtR-»R I x€C°(R)j i , j € Z i x<t>«x* , x ( - t > = X j f or 

t>T >. (2.4b) 

At first sight it may seem insufficient to consider 
this configuration space t» the paths of which all have 
finite actions S*. The main argument against it is that it 
is a zero measure set in the larger space C = C°(R> equipped 
with the pointwise convergece topology and the corresponding 
Borel (г-algebra of measurable sets. However we have two 
reasons for not using measures on t» only on \* , T<» .The 
first is a pragmatic ones everything is constructed through 
the thermodynamical limit (in our quantum mechanical example 
through the T-» « limit) therefore it is irrelevant whether 
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the limit of integrals on \s is again an integral on C» or 

defines only a state. The other reason is the more decisive. 

We want to give a definite meaning to the "winding number" 

WC*<] = x(«0/d, of a path x and to the corresponding 

"Pontrjagin number", к (•) /d - x (-«•)/d . 

Let W: Ъ "~—* R be a function yielding a kind of a winding 

number WCxl for a path к€ w . The natural requirement for 

this quantity is that it should depend only on the 

asymptotics of x at t *^ • . That is if one allows x to vary 

with the condition that xt{—«о т ] i s "fixed one has to 

recover all the possible values for WCxD, whether but finite 

value T was. Now we prove that if W is not constant then it 

cannot be Богel-measurable. Namely, in that case we can 

decompose C- into two disjoint non-empty sets 

= W-*(<-•,* 1) U W-*((w ,•)) 

for some w €R. The simple s e t s from which the Borel algebra 

i s b u i l t up have the general forms 

AS 

I T j j i t » , . . . , t „ | Ä ) • í y í Ü I £ > | y ( t t ) - x ( t * > | : i = l , . . . , n > . 

From the above requirement on the winding number W and from 

the fact that in the simple sets the configuration is re

stricted only at finite number of points it follows that any 

simple set v intersects both W*"*((-a>,w 1) and W _ 1 ( (w ,»)). 
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There-fore both sets have internal measure zero and e,;ternai 

measure one, which means that W is not measurable. 

Now we define the class of local Junctionals on C* : 

d o c s < f : t - * C | Jsens -f \<» 1 (2.5) 

Here Isens «f I denotes the Lebesgue measure o-f the set sens -f 

which is itself the "sensitivity domain" o-f the -functional 

and has the -following properties: 

i) sens - ( C D , = R, 

ii) for any OCR. if xl = У J- implies -̂ <;;> - -f (y) , 

then Q3sens -̂  . 

The functionals in \s i M being local do not know about the 

asymptotirs of a path from v» . Thus we will use a wider 

class of functionals, the dual space of С , which contains 

ponlocal functionals as well. 

С a ("f J C -*C >. <2.6) 

Now we define V̂ ,̂  , which is the subspace of thost» func

tionals which are sensitive only for positive times: 

Tl +s С -f «Í "C | sens -f С CO,») >. (2.7) 

We can divide C- and ^+. into disjoint sets from their 

asymptotic behaviour point of view: 
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С = U C»j : C»j = Í xf С I lim x(-t)=::i, 

lim x(t)=xj >, í2.Ea) 

Ĉ = О C + J ;Cjj = {"(«: C^, j вире -( = О C t J }. (2.tíb) 

The time re-flection on С and О is 

<©x)(t) =x(-t) ; xí t , <2.9a) 

(в<)СхЗ = -ft-exl ; -̂  € €» . (2.9b) 

« • * Now we define a pre-Hilbert space -from O^if there is 
a "measure" on the configuration space (more precisely a 
state on "C ) which has the property of reflection posi-
tivity, that isi 

<<в-(>-( >c > 0 ,V^€ C * . (2.10) 

The inner product on ^ + then is defined by 

< -f , Y > a <<•"( » Y > t » (2.11) 

which is positive semidefinite due to (2.10). We do not 
construct the "measure" on C» » but we will assume the fol
lowing properties of it; 

i) reflection positiv*ty, 



- 7 -

where ~\0 = u " ^ -4^, Ч'«, = U * "^ - a n d U i s t n e t r ^'"'^1 d i t i on by 

t h e p e r i o d cl o f t h e p o t e n t i a l . So p r o p e r t y n ) i s a 

r e s t r i c t e d t r a n s l a t i o n - i l i n v a r i a n c e . 

Ü: i ruj t h e inner p r o d u c t d e f i n e d by (2.11> wi can g i v e a 

semi rior in ói XL : 

Н И 2 5 H H ( 2 . 1 2 ) 

L e t us d e n o t e t h e i u h s p a c e o f t h e f u n c t i o n a l s w i t h : е ю norm 

by \N , Then we g e t t h e O S - H i l b e r t space a f t e r - f - tutor i r i n g 

v l ' + by ч^Г Mt'1 .licit ' thi=5 f a c t o r space c o m p l e t e ; 

41 = ( C + / j{ ) - ° « . P I . ( 2 . 1 3 ) 

1+ t h e ^--'.1..;. E f c t ü r í , were o r t h o g o n a l t h e n we r e m i i l a c t o r i z e 

i n eve ry ^и.Ь.'ьрасе i n d e p e n d e n t l y , and our H i l b e r t apace w o u l d 

be t h e d i r e c t <яи.я\ o f t h e s e f a c t o r s p a c e s . One • an see t h a t 

e a s i l y . I .et *] r. vN t h e n we know -from ( 2 . 8 b ) t h a t 

я -© v i v * e + ( 2 . 1 4 ) 

and t i n '.) L_i..iiitpt..r..> i í i r.jn i b n m q u e . I f t h e ь 'п . >, .ему are 

or t l '!jy(<' m i i I iei i 

<:.» - ' ^ , П , - E * ^ > \% •- t ( 2 . 1 5 ) 
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and it follows that < *l ̂ , *[i > = О, ^ ^ Л Г ; i€Z. That is 

(2.16) 

There-f or » 

us '+i/yfCi ) e e <"*» 1 . <2.17) 

However the existence of instanton or kink solutions o-f the 
classical (Euclidean) equation o-f motion suggests that the 

, +i should not be orthogonal. 
Let ^<E C-^, , Чу€ t>z and examine their inner product: 

< •{;, 4>> e <<•-(« > 4 V - P<-f#, Y.H 1"-*!*- < 2- l 8 ) 

H [i~jj - 1 there is a path being a classical solution 
which contribute to the integral. It starts -from x» at t=-e 
and reaches xj as t —* ». So in the quasiclassical approx
imation the inner product (2.18) is not zero. We assume that 
this is valid also in the exact calculations, that is the 
quantum -fluctuations do not obliterate this property. But 
due to translational and time re-flection invariances the 
inner product depends on the relative asymptotics of the 
functionals only, and we can use this property to define 
orthogonal sectors on the functional space *̂** 
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Suppose that we know the functional measure d(.P (x) on 

the configuration space >^ *ц»*. < ̂  > consisting o-f paths such 

that 

x m , t>T 

x(t> = < (2.19) 

x„ , t<-T . 

Then we can d e f i n e the i nne r product on v . by a l i m i t 

pror edure: 

A 
< * f » Ч ' - - <<e«f) У > s l i m l i m l i m — 1 — . 

1 1 * ' c т-*-о к-*-в » - • • • 7 Т 

WS» (2.20) 
к н г 

Е Е \ d p T ( x ) -f СвхЗ NA/CXH , 

where ZNK is a normalization factor which will be fixed 

. .._ _.., _ „ + will be 

t he " в - s e c t o r s " . We d e f i n e f u n c t i o n a l s - - \© - f rnm the 

f u n c t i o n a l s - «f - i n t h e C~ subspace by t h e fo rma l sum: 

- f e s E exp i iOk) U •€ . (2.21) 
* US 

The i r va lues are we l l de f i ned f o r every path i n C» because 

a l l but. one of t he terms are zerot 

• f ^ C x l в E e x p ( i e k ) (U -{»СхЗ = 

(2.22) 

* exp(i€»m> (U - { ) C x ] j x * С 
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Д 0 has t h e use fu l p r o p e r t y : 

( U ^ 0 ) C : : 3 = E e x p ( i d k ) < U 4 * * - f )Cx3 

e x p ( - i ö ) E e x p ( i e k ) ( U 4 - P ) i x l = ( 2 . 2 3 

-• ex 

Because 

<p(-i*> •{* C;<3 ; Vx<= £ . 

if в r £ ' then 

К 
dn TCx3 < -f e . 4T ei > s l im 11 i m —3— E V 

' ' T-»#* *-»«• H-*«m 7 T l t - K J 
^ M K C. | t(T) 

N 
-f eCe>:3 "%»Cx3 £ e x p ( i n < e ' - e ) ) = 

( 2 . 2 5 

= { l im l im - 4 - E \ d u T C x ] - f * c e x ] 4 V C : < 3 > 

* ee,t(TJ 
С l im - L E e x p ( i n ( 6 ' - e ) ) } = О , 

due to the limit in N. In (2.25) we factorized 1Ык as: 1Ы*. 

Z K Z N. If б = 6"we have to decide whether we want the 

functional к to have finite norm or not. 
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in the -first case we get a nonseparable space of the 
functionals because we have an uncountable orthonormal set 
in it: 

I * -f* I в<= С0,2тг) >. (2.26) 

In this case we have to choose Z N = 2N+1 - thus the limit 
value of the second bracket in (2.25) is one- and have to 
ensure by Z K the finitness o-f the limit in the -first bracket 
o-f (2.25), which we denote by < -f# , у« «̂ • 

In the second case the functional space is the direct 
integral space of the в-sectors. Namely in this case we 
choose ZM = 1 and keep < -fe , \»9 ># finite as before. Then 
from the identities 

" f * s $ ^ — • exp(-ien)--(e , (2.27a) 

»I ->• 

« \\ Й£ dS.' . eKp(-in(e-e')> 2тг а(в-в')» (2.27b) 

"f•' -f« - • " ) 4r < "̂ *' {• > # " гп 

the direct integral structure follows. 
Since the -fo functionals are "eigenf unctional s" of the 

space translation U, in the case of the periodic potential 
we do not want them to be in the physical state space 
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because no realizable translation invariant state exists in 
quantum mechanics. So we choose the second possibility, 
namely that our -functional space is a direct integral space. 
That is: 

where are .those functionals -from С + ^ which have zero 
norm with respect to the inner product < , >© . 

3f course we look for the irreducible representation of 
the canonical commutational relations, so it is not enough 
to deal with the representation space only. We have to look 
at the operators in the representation as well, whether they 

9 

can be also decomposed as a direct integral. 
We use the Weyl form of the canonical commutational 

relations that is the algebra we want to represent is 
generated by the set 

•C V(X), U(a) | %, a € R ). <2.29) 

w i t h the m u l t i p l i c a t i o n r u l e s 

V( a X t ) * V ( > a ) = V C X i + X a > , ( 2 . 3 0 a ) 

U ( a 4 ) ' U ( a a ) = U(a» + а я ) , ( 2 . 3 0 b ) 

V ( " X ) - U ( a ) « U<a>'VCX >• e x p ( - i \ a ) . ( 2 . 3 0 c ) 
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The elements V< X ), U(a) can be thought as the exponen
tiated version of the coordinate and the momentum. Because 
the momentum is the generator of the space translation we 
will have a "natural" representation of the algebra on the 
functional space С-+ : 

(VCX >•{ )Cx] = exp(-iXx(0))'-( Cx3 , (2.31a) 

(U(f)^)Cx3 = exp(-S*tx-f 3+S*Cx3)« -{ Cx-f 1 , (2.31b) 

where X £R , x€ X* , "̂  € C-+ and 

T 
-S*Cx-f3+S*Cx3 = lim f dt (-L«Cx-f]+LeCx]) . (2.32) 

0 
lim Г 

The f:R-*R has to be an even function such that x-f<E О 
should be valid whenever xi С . About the U(f) operators we 
will show the following facts: 

i) they form a group, 
ii) they are constant on the equivalence classes: ^+Jt't 

iii) they depend only on f(0) and are isometries. 
The first property is a trivial consequence of the 
definition (2.31b). To prove ii) it is enough to show that 

< -f ,U<-f>*> = О ; V«f* C * , »Svif. (2.33) 

Using the definition of the scalar product we get 
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< - ( , u m V > T s ' d|iT(ii) (e^>tx] (U(f)N>)Cx] = 

= (dC:<(t)3T exp(-S-Cx3) • <e-{ Kx3.exp(~S*tx3>. 

.exp(S+[x3) *>Cx-f3 exp(-S*Cx-f3) « CdCx(t)J T-

(2.34a) 
•exp(-S-Cx+f3)•{ e:<p(S_Cxl)-^Cex+ef] exp <-S_Cx+f 3) }• 

• exp(-S*Cx3) VCx3 - <U(-ef)-{ , V > = 0 , 

where we decomposed the measure: dp(x) T e dCx(t)3Texp(-SCx3) 

and we used for g = -Of the -following identity: 

(eU(g)-f >Cx3 = exp(S_Cx3>. -{ C9x-g3 exp (-S-Cx-вдЗ.) . 

(2.34b) 

To prove iii) we wi 11 show that if f (0) = f*(0) then 

<U(f) Y ,U(f ' )•{ > T - < *Y , -f > T ; (2.35) 

where ^ , «̂  í W^, and t h e f u n c t i o n s f , f ' have the p r o p e r t i e s 

mentioned b e f o r e . Using again t h e d e f i n i t i o n s and (2 .34b ) : 

< U ( f > Y , U ( f ' ) - ^ > T = I dCx ( t ) 3 Texp(-S_Cx3> • (6<U(f )f > C::3« 

. e^p(-S*Cx3) • (U(f ' >-f ) t::3 = I dCx <t> 3 Texp ( -S-Cx-^ f ! ) • 
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• \ | / Свх-f 3 exp ( -S - .Cx - f ] ) • -^ [ x - f ' D = fdCx ( t ) 3 T • 

(2.36) 

•exp( -S_Cx- f ]> у с в ( х - 1 ) ] ' е х р ( - 5 * [ х - Г ] > . -f C x - f ' 3 = 

; Y - f > T 

i)-iii) mean that we get the unitary representation of 
the subalgebra (2.30b) on iC with the identification a=f(0). 
Now it is a trivial task to show that (2.30c) is valid using 
(2.31a-b>. 

Let us examine whether this representation o-f the 
algebra Jo m can arise as a direct integral representation 
on the 6-sectors. The answer is trivially negative. The 6-
sectors come -from the spectral decomposition of the unitary 
operator U(d). But this operator does not commute with the 
V(\ > operators, that i^ the C^,# "subspaces" are not invari-
ant with respect to the actions of the V(X > operators. Be-
cause U = U(d), from (2.30c) 

0(> )• U = U'VCX )-exp(-i\d) (2.37) 

f o l l o w s . I t means t h a t V ( X ) t rans fo rms t h e ©-sec to rs t o t h e 

( 9 - X d ) - s e c t o r s (mod 2тт) , because us ing (2.23) t he 

U 0 ( X ) • ( • = e x p ( i X d ) « V ( \ )• U -^0 ~ e x p ( - i ( e ~ \ d ) ) -

• V ( \ ) ^ ф (2 . 38) 
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equation is valid. Because *X is arbitrary the representa
tion is not decomposable to the в-sectors. 

3. 6-sectors in quantum *«chanicsi quantum pendulum 

This problem is very similar to the case of the 
periodic potential. We consider again a particle in one 
space dimension moving in a bounded potential V, but now the 
space is not the real line but a circle. 

Yet не can use the results of the previous paragraph. 
Because R is the universal covering space of 8* we can 
spread out the configuration space of the pendulum, and so 
we arrive to the problem of the periodic potential. We can 
use the path space, the functional space, ... etc. defined 
in the previous paragraph to find the irreducible 
representations of the quantum pendulum. But there is a 
substantial difference: we have to represent another 
algebra. Because the translation by d (d is equal to the 
perimeter of the circle) is the identical transformation of 
the circle, it is required to commute with all of the other 
elements of the algebra. Of course this requirement gives 
the algebra of the quantum pendulum as a subalgebra of the 
algebra w « discussed in the previous paragraph. From 
(2.30c) with a»d we get» 
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V(X)-Uíd) = U(d)-V<X> exp(-iXd) (3.1) 

From the requirement thai U(d) be in the center of the 

algebra -follows the equality 

exp(-iX d) - 1 . (3.2) 

So t h e va lues of X are r e s t r i c t e d t o t h e s e t : 

i 2trk/d | k<iZ > . (3 .3) 

Thus the alqebra of the quantum pendulum - which we denote 

by \km - is generated by the set: 

{ U(a), V(X) | a€R, X <E ~L Z > . (3.4) 

The multiplicative rules of course are the same as in 

(2.30a-c). 

Let us examine the representations of this algebra. 

Because it is a subalgenra of <А/к, the representation of 

\A/f* defines a representation of Л « as well. Of course if 

this representation is irreducible with respect to Я . it is 

not necessarily valid for \Л^т- Let us consider the repre

sentation on the direct integral of the 6-sectors defined by 

(2.31a-b). This representation must be reducible because U « 

* U(d) being an element of the center of iA* m is not a con

stant operator: it is the multiplication by exp(-ie) on each 
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6-sector. But "jC$ is an invariant subspace because in the 
case of the quantum pendulum (2.38) reads as: 

U(V(X) {* ) = e:<p(-i<e-\d)) (V(X >•(•> = 
= e«p(-i8)« (V(\ )-fe ) (3.5) 

due to (3.2). So the representation defined by (2.3ia-b) 
with respect to <^m is reducible, it is a direct integral 
of inequivalent representations. They are trivially 
inequivalent because the values of an element of the center 
- U(d) - are different on the в-sectors, namely e;;p(-ie). 

We can see the inequivalency on the spectrum of the 
momentum, too. Because the strongly continoi-.u unitary 

A 

operators £ U(a) I a€R > form a group, there is a 
selfadjoint generator P of this group: 

U(a) = exp(iaP) . (3.7) 

Because on a в-sector we have 

exp(idP) = exp(-ie) , (3.8) 

» 
the possible eigenvalues of P can be: 

p * 22L <k~ £ . ) f k<EZ . (3.9) 

Thus they are t r i v i a l l y d i f f e r e n t in d i f f e r e n t e l e c t o r s. 
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In this way we represented the algebra \A/e on func-

tionals with different periodicity properties, but the 

measure which was used to define the inner produci. of these 

functionals was the same. Alternatively we can change the 

roles and can shift the difference from the functionals upon 

the measure. If -f € л ^ , we define -f as follows: 

\VA1 S exp(-ie>:(y)/d) • -̂ [>:3 . (3.10) 

I t i s easy t o see t h a t -f £ e - o * i n c * e P e n d e n t l y of i n 

whichever л в -f was: 

(U \ К х З = -f Cx-d] = e x p ( - i e ( x ( m ) - d ) / d > . - f [ x - d 3 = 

= e x p ( - i i > x ( m ) / d ) -^ Cx3 = -^ Cx3 . ( 3 . 1 1 ) 

Now l e t - f , ^ € "jC^ . The i n n e r product of t h e s e f u n c t i o n a l s 

can Ьь r e w r i t t e n a s : 

< J , \ l / > s l i m ( d C x < t > 3 T exp( -SCx3) ( 6 - ^ ) Cx 3 • >fCx 3 = 

T 
= l i m ( d t x ( t ) 3 T exp ( -SCx3)«exp{ i 6 / d - f dt x ( t ) >• 

• ( e « ^ ) C x ] ' ^ f c x 3 s ( •{ , - ^ ) 9 . ( 3 . 1 2 ) 



- 20 -

That is, the measures will be different when we change the в 
parameter because the physical weight of a configuration 
becomes ̂ -dependent: 

SeCx3 - SCxD - ie/d'Jdt Kit) . 
We denoted the measure dependence of the inner product ( , ) 
by the suffix в. 

4. 6-sectors in quantu« field theoryi non-Abelian gauge 
theories 

It is well known about non-Abelian gauge theories that 
they have topologically distinct sectors in the space of 
local gauge equivalence classes of the gauge field 
configurations. Thus if we want to quantize by functional 
integral we have to sum for these topologically distinct 
sectors. But we have to decide which configurations are 

allowed because the characterization of the topologically 
distinct sectors depend on the properties of the 
configurations. 

Let us denote the topological charge by V . Its defi
nition iss 

£. (A 

<X> 

(4.1) 
....F.F.. 
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This expression is valid in -four dimensional Euclidean 
space-time where the metric is 6Л» ; oc,(l = 1,2,3,4 and the 
totally antisymmetric tensor b*AvJ" i* given by £ц.»Ч "1. We 
want to restrict the con-figuration space to those gauge 
con-figurations which have the same asymptotics as of the 
classical solutions with -finite Euclidean actions. There are 
arguments (-first re-ference in С13) that ^CAD should be an 
integer if the action SEA] is -finite. But it is certainly 
true if the configuration A^(x) can be smoothly mapped onto 
the unit hypersphere in five dimensions. This is a 
consequence of the Atiyah-Singer index theorem C53. Me will 
restrict ourselves to this case. 

We can cover 8 by two patches which are homeomorphic 
to D . On the intersection of the patches the gauge field 
configurations differ only by a pure gauge. If one of the 
patches is shrinking to one point corresponding to the 
points at infinity of R , then using the relation 

>x 
9 r K r - - 5 Í 7 « - F - F ' ' , 4 - 2 ' 

where 

one obtains the topological charge as a surface integral on 
the boundary of the other patchi 

0CA3 - fd<rp К^(х) . (4.4) 
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3 In order to adopt the S of (4.4) to the i;se of the temporal 
gauge A 0 = 0, we realize it as S = D 3U D*U I x S* that is 
the boundary of a 4-cylinder with symmetry axis pointing 
towards to the time direction. We also require that the 
gauge transformation G occuring in the expression g A^ = 
= i»G ЪыБ valid on the surface of the cylinder is constant, 
let us say G = 1 on the cylinder-jacket. In this case the 
topological charge becomes the difference of the winding 
numbers: 

V CAD » lim Cd*x€Kb(T,x) - K.(-T,x)> = пСАЭ-тСАЗ. (4.5) 

It is easy to see that \>CA3 as well as mCAJ and nCAD are 

integers. 
Thus the configuration space is again a union of 

distinct sectors as in the previous paragraphs: 

C= VJ C ^ , C^- U C_(T) (4.6a) 

CjW=» Í A J gAr<x> « iG~ 9..G, i f e i ther [и [>Т or 

(4.6b) 
|K|>T У 

where G satisfies the above mentioned property. 
Because we have a "big" time independent gauge 

tr anef ormation U, as a "step operator" on winding numbers: 
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nCUA-3 = пСАЗ + 1 (A.7) 
V 

we can repeat the whole construction of the ©-sectors 

considered in the previous paragraph. Of course we use the 

invariance property of the measure for the '"big" gauge 

transformation which is provided by the invariance of the 

action. 

The difference is again in the algebra we want to 

represent. In this case this is the quasi local algebra' w y M 

of locally gauge invariant fields. It means that the 

automorphism of a local gauge transformation «(U^^ ) acts 

trivially on the algebras 

a(U C o e > ) A = A , VA«: чЛ«у м . (4.8> 

But we don't want the "bigr gauge transformation to make any 

physical difference, thus as in the case of the quantum 

pendulum we want U to be in the center of the algebra ^ Y V T 

UA » AU , VA« >А. Ч > 1 . (4.9) 

Thue the ©-sectors will be invariant and orthogonal 

subspaces in the functional space ^ + * But now the question 

of inequivalency is not so simple. Of course the values of U 

on the ö-sectors are different, but due to its non-locality 

we cannot think of U as an observable. So from the physical 
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point of view these representations will be inequivalent 
only in that case when one can -find an observable which 
gives different expectation value in the different 6-
sectors, just like the momentum gives in the case of the 
quantum pendulum. 

We can shift again the 8-dependence from the 
functionals upon the measure, that is we change the physical 
weight, the action: 

S.CA3 = SCAÜ - i6»= SCAJ - i6-2~- .[ dH x F.p* . (4. 10) 

Because the second term is not invariant under space 
reflection the breaking of this reflection symmetry makes a 
physical difference between the 6=0 and the 6 ^ 0 sectors. 
In addition to this the expectation value of F«Fe is conjec
tured to be 6-dependent because the topological suscepti
bility 

-i /- <JLL F.F*<X> > =(_9—] I d'V { <F«F*<x)-F'F*(y)X-
"69 зги* * \jttW ) • 

- <F»F*(/.)># <F»F*(y>># > (4.11) 

ÍB non-zeru in general. In this case the 6-sectors turn out 
to be inequivalcnt representations of "̂vyi« 

file:///jttW
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