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ABSTRACT

By enlarging the functional space to include nonlocal fie'ds which are
sensitive to the space~time asymptotics of the configurations we can for-
mally construct the 0-gsectors in the OS-Hilbert space. On two quantum
mechanical examples and in the case of non-Abelian gauge theories we study
the question of inequivalence of the different 8-sectors.

AHHOTALMNA

BxJmovans npH PacWiMpeHHH QYHKIHOHAMBHOTO MPCCTPAHCTBA HeJIOKANbHHE TNONA,
YyBCTBHTEMbHNE K NPOCTPAHCTBCHHO-BPEMEHHOR ACHMNTOTHKE XOHOHTYpalLHA, HMeeTCs
BO3MOXHOCTDL $OPMANIBHO KOHCTPYHMPOBATD 0-CeXTOpH B NpoCTpaHcTBe OS-PuinGepra.
Ha OBYyX KBaHTOBOMEXaHMYSCKHX NPHMEPaxX, a Taxxe B CAyYae HeKXOMMYTHpywmero kKa-
JUGPOBOYHOrO MONMA HM3YHYAEeTCR BONPOC HE3KBHBAMIEHTHOCTH PaA3HHX 0~CeKTOPOB.

KIVONAT

A konfiguricifs téren értelmezett funkcion&lokat ugy kiterjesztve, hogy
olyan nemlokilis tereket is tartalmazzon, amelyek érzékenyek a konfiguré-
cibk téridd aszimptotikajéra, formilisan megkonstrudljuk az OS-Hilbert tér-
ben a 0-szektorokat. Két kvantummechanikai példdban és nem-Abeli mértékelmé-
letben tanulminyozzuk a kiil¥nb¥z8 6-szektorok inekivalenci&jénak a kérdését.



1. Introduction

It has been well known for a long time that non-Abelian
gauge theories in four dimensions and U(1) gauge theories in
two dimensions have non-trivial topological structure [11].
Several authors arqued how this topological structure may
affect the quantum theory [2]. The expectation is that there
exist different representations of the quantum field algebra
corresponding to the so called ©-sectors. So far it has been
rigorously established only in 2-dimensional Abelian gauge
theories (3].

The severe problem obstructing a precise treatment is
that the most efficient method to control the ultraviolet
behaviour of the theory, the lattice approach does not admit
a representation of the topological structure or. the lattice
configuration space. Since we cannot solve ¢this problem
either we concentrate in this paper on the question how the
presence of a topological structure in the configuration
space modifies the 08-construction (41, ihe most promising
mathod in constructive quantum field theory. In this way we
can point out the conditions which lead to the existence o+f
O-gectors as different representations of the local quantum
field algebra. For pedagogical reasons it will be useful to
compare the cases of 1) quantum mechanics in a periodical

potential, 2) quantum pendulum and 3I) non-Abelian gauge



theories in 4-dimensions which will be discussed in Sections
2,3 and 4 respectively.

Although the results obtained for those three models
are widely known we believe that our methodically new
approach may be useful in the futur2 in a rigorous

construction of the 0-sectors.

2. 6-sectors in quantum sechanicssperiodic potential

Consider a particle in one space dimension moving in a

bounded periodic potential V,that isgs
m2Vix)2 0 3 x€ER, (2.1a)
Vix+d)=V(x) 53 x€R. (2.1
We denote the minima of the potential by x.,1i€2; of
course they also show the periodicitys x,=xo+id, i€2Z. We
assume that V(x,)=0.
The Minkowskian Lagrangian and the physical weight in
the path integral measure:

Ly = i--)'(‘-V(x), (2.2a)

exp (iSm) = nxp(iSLn). (2.2b)



Because we want to make the OS—construction to get the
quantum sechanics of the model we need the Euclidean version

of these quantities:
La =%. x2+V(x), (Z.3a)
exp(—-Sg) = exp(-SL.). (2.3b)

We define the confiquration space of the classical

paths as:

c=VY |, (2.4a)

T<ow

T
T'= ¢ xsR®R | x€CO(RIp  i,3€Z 3 x(th=xy, x(-t)=x, for
2T ). (2. 4b)

At first sight it may seem insufficient to consider
this confiquration space T the paths of which all have
finite actions 8Sg. The main argqument against it is that it
is a zero measure set in the larger space ii=~C°(R) equipped
with the pointwise convergece topology and the corresponding
Borel oc—algebra of measurable gsets. However we have two
reasons for not using measures on ii only on Iir, T<o . The
firat is a pragmatic one: everything is constructed through
the thermodynamical limit (in our guantum mechanical example

through the T-=s o 1limit) therefore it is irrelevant whether



~

the limit of integrals on tir is again an integral on ti or
defines only a state. The other reason is the more decisive.
We want to give a definite meaning to the "winding number”
Wix] = x(w)/d, o©of a path % and to the corresponding
*Pontrijagin number”, x(®)/d - z(-=)/d .

Let W: ii - R be a function yielding a kind of a winding
number Wlx] for a path x¢ ii . The natural requirement for
this quantity is that it should depend only on the
asymptotics of x at t 2o ., That is if one allows x ta vary
with the condition that X{(~e0, T3] is fixed one has tao
recover all the possible values for WLx1, whether but finite
value T was. Now we prave that if W is not constant then it

cannot be Borel-measurable., Namely, 1in that case we can

decompose ii into two disjoint non-empty sets
2 Wr(l-o,w U W-r0(w ,o))

for some w €R. The sim.le sets from which the Borel algebra

is built up have the general form:
~r
Vitta,eostn]®) = tye € &)yt o—xit| 5 i=1,...,n2,

From the above requirement on the winding number W and from
the fact that in the simple sets the confiquration is re-
stricted only at finite number of points it follows that any

simple set 1J‘ intersects both W2 ((-o,w 1) and W= ((w ,@)).



Therefore both sete have internal measure -ero and e:terna:
seasure one, which means that W is not measurable.

Now we define the class of local functionals on c :
™
CInc = (f: € -OC' ‘sens f '.,_-. H (2.5)

Here |sens'{ ‘ denotes the Lebesgue measure aof the set sens-{
which is itself the "sensitivity domain" of the functional
and has the following properties:
i) sens { C Dy, = R,
1i) for any OCR, if x|, = y|q implies £ o = -((y).
then G2sens < .
»
The functionals in C, 10c being local do not Lnow about the
asymptotirs of a path from 1: - Thus we will use a wider
class of <functionals, the dual space of | « which contains

nonlocal functionals as well.
»
C=c4:C€2cH. (2.6)

»
Now we define t;+ » wWhich is the subspace of those func-

tionals which are sensitive only for positive times:
w»_ i % . -
C,= ¢ €« €| sens { (o, 3. (2.7)

' . n . - .
We can divide ti and t:,.xnto disioint sets from their

asymptotic behaviour point of view:



C = .\‘} CAJ H Cl.’

ije X

¢ x€ € | 1lim x-tr=x,,
lim x(O)=x3 3, (2.€a)

C::? C‘;, 3 :_, = (< C:! supc < =\2C,_, }. (2.8b)

-
The time reflection on ‘z and C. is

(@) (t) =x(-+) 3 x¢ C , (2.9a)
”
;s {e € . (2.90)

]
Now we define a pre-Hilbert space from C’if there is
a "measure” on the configuration space (more precisely a
- .
state on ti' }) which has the property of reflection posi-

tivity, that iss;
041435 20 ,¥0e €% . (2.10)

»
The inner product on fz,,then is defined by

<,y > =<0 Y O (2.11)

which is positive semidefinite due to (2.10). We do not
construct the “"measure’” on t: s but we will assume the fol-~
luwing properties of ite

1) reflection positivity,



TR G Tk (1) N1 [ET PR A Sy
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f’,":c:’ﬁé . .
where ‘<o= u " '(-L'Y‘ = U—’Y;, and U is the tr anslation by
the period o ot th= potenti1al. S0 property, 11 1s a
restrict=d translational i1nvariance.
driray the anner product defined by (C.11) we can give a

n
Semlinor i t + H

I { == €.€ - (2,12

Let us denote the subspace of the functionals with Zero norm
by N . Then we get the O0S5-Hilbert space after  factorizing

»
€L, by J( it mab e this tactor space compliete;
»
= / o 1 2 RS
¢ « &, 1) deemer (2,17

]
I+ the: Cl*i cec tore were orthogonal then we (ool tactorize
in ever, subspace 1ndependently, and our Hilbert space would
be the direct sum of these factor spaces. One  an see that

easily. | et rta Jr then we bnow from (2.8h) that

1T =9 N PoMacs C:; ’ (2.14)

1

and thi %IRRT TN TR IR I I DR I N U A D N TRUZO I+ the = ohows  are

arbbogoie b e

(2.1%5)

~
<
o
3
Y
3
*



and it follows that < ;. Mi > = 0, qi€ W' i€2. That is
W= 90 W;. (2.16)
A

Therefor =
c <
K = ( @ g.;/\’(:.' ) comor (2.17)

However the existence of instanton or kink solutions of the

classical (Euclidean) equation of motion suggests that the
»

subspaces C,; should not be orthogonal.

» .
tet ;¢ C,;, Wi € C‘i and examine their inner product:

<-(;,~y§>=<<o-(‘)\y;,> = F(,s o3 |i-3]). (2.18)

1+ [i‘J' =1 there is a path being a classical solution
which contribute to the integral. It starts from %X, at t=-o
and reaches x4, as t —» o, So in the quasiclassical approx-
imation the inner product (2.18) is not zero. We assume that
this is valid also in the exact calculations, that is the
guantum fluctuations do not obliterate this property. But
due to translational and time reflection invariances the
inner product depends on the relative asymprotics of the
functionals only, and we can use ¢this property ¢to define

»
orthognnal sectors on the functional space t:*.



Suppose that we know the functional measure dp” (x) on

the configuration space t,” (T) consisting of paths such

that

x(t) = (2.19)

Ky tE-T .

»
Then we can define the inner product on C_., by a limit

proc edure:

tf, Y =@y = lim lim lim 4_'_ .

T9e0 Xve0 N—H
N

(2.20)
. E L dp¥(x) o) Cx1 ,
L=2-K me-N \r

Cn.uk(-r)

T
where Zuw 15 a normalization factor which will be fixed

: »
later. We expect that the orthogonal sectors in C-,., will be

the "6-sectors”". We define +functionals - '(9 - $rom the
»
functionals - -( - in the ¢+° subspace by the formal sum:
) &
‘feg L exp(i6k) U -( . (2.21)
keZ

Their values are well defined for every path in C because

all but one of the terms are zeros

Lo %]

L exp(idk) (Uh-{)[xl =
L ,
(2.22)

2x%p (i ém) (Uh{)[x] s xéc“u.



_10_

'(. has the useful property:

A
(U{e )Ix1 = % exp(iek) w* £ ix1 =
Y

= exp(~i®) exp(iBk) (W £ )10x] = (2.27%)

L
L

= exp(~i®) o x1 ; VxelU.

Becauvse
(W™ Lo 1ix1 = £ (U™ %1 = exp(-i6n)+ L x1, (2.24)
if ® # 8 then
4 ¥
4 -(e,\ron‘) = lim 1 im - gdu”[x]'

T X-2e® N-pow Z:‘tum

Co.k‘-‘.)

N
{0011 glx] L explin(e’-6)) =
ns=N :

(2.25)

. .4 % g
= { lim 1im ——— L dpTlx] {el[Ox1] W] 3
T Yoo z: Le-K { \‘/0
to.ﬁ(T’

N
{ lim -L L exp(in(e’-8)) } = 0,
N-reo ZN“"“
. . . T
due to the limit in N, In (2.29) we factorized Zmnx a5 Zaw =
v In. 1IF 8 = 6" we have to decide whether we want the

functionals to have finite norm or not.
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In the first case we get a nonseparable space of the

functionals because we have an uncountable orthonormal set

in it:
PR {o | 0¢ [0,2m 3. (2.26)
li{e i
In this case we have to choose Zn = 2N+1 - thus the limit

value of the second bracket in (2.25) is one- and have to
ensure by Z, the finitness of the limit in the first bracket
of (2.25), which we denote by < {¢, Ye e - |

In the second case the functional space is the direct
integral space of the o©&-sectors, Namely in this case we
choose Zm = 1 and keep < {g , o’ finite as before. Then

from the identities

(40 .
-f..-g-a- cexp(-iom - {o , (2.27a)

AR R =S§d§ d& Bxp(~in(8-0")) < Lo, Lo > =

= w

)
= g&i?. 89 | exp(-in(B-07)) 2m §(6-6") (2.27b)
2% 1m

< for g0 0 ~{ 43 <o g0

the direct integral structure follows.
Since the -{0'functionals are "eigenfunctionals" of the
space translation U, in the case of the periodic potential

we do not want them to be in the physical state space



because no realizable translation invariant state exists in
quantum mechanics. So we choose the second possibility,
namely that our functional space is a direct integral space.
That is:

1£=§é2(c:°/ )w= 49 %, (2.28)

® 2 ﬂﬂp 2 ' i '

where We are those functionals from C:O which have zero
norm with respect to the inner product < , >g .

3f course we look for the irreducible representation o+
the canonical commutational relations, so it is not enough
to deal with the representation space only. We have to look
at the operators in the representation as well, whether they
can be also decomposed as a direct integral. ’

We use the Weyl Fform of the canonical commutational

relations that is the algebra \k. we want to represent is

generated by the set
{V(A), Ua) | N, a € R, (2.29)
with the multiplication rules
VIR V(A2 = VA, +Aa) , ' (2.30a)
Utag)-Ulaz) = Ulas + az) , (2,300

V(R )-Ua) = UCa)' V(A )-exp(-iNa) . (2.30c)
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The elements V(A ), U(a) can be thought as the exponen-
tiated version of the coordinate and the momentum. Because
the momentum 1is the generator of the space translation we
will have a "natural” representation of the algebra on the

»
functional space t:,:
(VI )-(nxl = exp(-i»x (0 L (x1 , (2.31a)
»
(W) -( Ix1 = exp(~S.lx-F1+8.Lx1)> € (x-f1 , (2.31b)
”»
where A¢R , x¢ T, {¢ T, and

T
~Se[x—F145,[x] = 1lim ( dt (-Lelx-fl+Lglx]1). (2.32)
T

The f:R =R has to be an even function such that x—f¢ C
should be valid whenever x¢ L . About the G(f) operators we
will show the following facts:

i) they form a group,

ii) they are constant on the equivalence classes:-(+\ﬂ}

iii) they depend only on f(0) and are isometries.

The +first property is a trivial consequence of the

definition (2.31b). To prove ii) it is enough to show that
N ,
4OV =0y V€L, veWN. (2.33)

Using the definition of the scalar product we get
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LY (Y
< -( JUIV T o= g dp™ (x) (9{)tx1 WF)VIIx] =

= S dixz(t) 1y exp(-S_[x1)- (0'( YOk 1. exp (~S.x])-

cexp(S.lx1) VIx—-F1 exp(—-S.Ix—f1) = gd[x(t)JT'

(2.34a)

cexp(—S_Cx+£]) = { exp(S_Ix])-([0x+0fJ exp (-S_[x+f1) 3.
. .
rexp(-8.0x%1) VIxl = <U(—on-( yV> =0,

where we decomposed the measure: dp(x)T = dix(t)Iyexp (-Six1)

and we used for g ~0f the following identity:

r.3
0 (@) )rIx1 = exp(S_Lx1) { téx-g1 exp(-S_[x-6g1).

(2.34b)
To prove iii) we will show that if f(0) = §’(0) then
- ~
WHY ,uEL T = <y, f >T 3 (2.325)

"
where fé f—‘ and the functions f,f’ have the properties

mentioned before. Using again the definitions and (2.34b):
L] L] L]
U Y ,U(f’)-( T = (d[x(t)]-.-exp(—S-[y.J)- (O(FHY e

L]
.ewp(“S4EK])'(U(f’){ Yl = gd[x(t)lvexp(—s-[x~04]P
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'\ [8x=F1 exp (~S.lx—F" 1) { rx-F11 = fd[x ()14 -

"
i
o

vexp (-S-[x—f1) Y [O(x—F) I exp(-S.Ix—F" 1) -f[.\(—f’] =

=<:Y,{:>T.

i)-iii) mean that we get the unitary representation of
the'subalgebra (2.30b) on { with the identification a=f(0).
Now it is a trivial task to show that (2.30c) is valid using
(2.31a-b).

Let us examine whether this representation of the
algebra K n can arise as a direct integral representation
on the ®&-sectors. The answer is trivially negative. The 6~
sectors come from the spectral decomposition of the unitary
operator G(d). But this operator does not commute with the
G()-) operators, that is the C:."subspaces” are not invari-

~
ant with respect to the actions of the V(A ) operators. Be-

cause U = U(d), from (2.30c)
~ L)
VA U = UV(R) rexpl—iXd) (2.37)

follows. It means that G().) transforms the 9-sectors to the

(8- Ad)-sectors (mod 2w), because using (2.23) the
] L]
UVAr Lo = expind) VX)) UL = exp(-i(6-nd))e

viar e (2.78)
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equation is valid. Because P arbitrary the representa-

tion is not decomposable to the 8-sectors.

3. 0-sectors in quantum sechanics: quantua pendulum

This problem is very similar to the case of the
periodic potential. We consider again a particle in one
space dimension moving in a bounded potential V, but now the
space is not the real line but a circle.

Yet we can use ¢the results of the previous paragraph.
Because R is the universal covering space of 8* we can
spread out the configuration space of the pendulum, and so
we arrive to the problem of the periodic potential. We can
use the path space, the functional space, ... etc. defined
in the previous paragraph to find the irreducible
representations of the quantum pendulum. But there is a
substantial difference: we have to represent another
algebra. Because the translation by d (d is equal to the
perimeter of the circle) is the identical transformation of
the circle, it is required to commute with all of the other
elements of the algebra. Of course this renquirement gives
the algebra of the quantum pendulum as a subalgebra of the
algebra \*;n discussed in the previous paragraph. From

(2.30c) with a=d we get:
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VA ) UWd) = U(d)-ViA) expl(-iX d) Z.1)

From the requirement that U(d) be in the center of the

algebra follows the equality

exp(-idd) =1 . (3.2)

80 the values of A are restricted to the set:

{ 2nk/d | kEZ 3 . (3.3)

Thus the alaebra of the gquantum pendulum - which we denote

by Ka - is generated by the set:

W

1Y, (3.4
d

€ Uta), V(X)) | a€R, A€
The multiplicative rules of course are the same as in
(2.,30a-c).

iLet us examine the representations of this algebra.
Because it is a subalgebra of uL., the representation of
qk,. defines a representation of ok w a5 well, Of course if
this represertation is irreducible v.ith respect to uk. it is
not necessarily valid for K e Let us consider the repre-
sentation on the direct integral of the 6-sectors defined by
(2.31a-t). This representation must be reducible because U =
= U(d) being an element of the center of .A,. is not a con-

stant operator: it is the multiplication by exp(—-if) on each
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9-sector. But 1(9 is an invariant subspace because in the

case of the guantum pendulum (2.3B) reads as:

o “
UWVIA) fo) = expl-i(a-Ad)) (VX )4{g) =

i

a -
exp(-i®) . (VX )-(.) (Z.5)

due to (3.2). Sa the representation defined by (2.2ia-b)
with respect to \*v. is reducible, it is a direct integral
of 1inequivalent representations. They are trivially
inequivalent because the values of an element of the center
- U(d) ~ are different on the 9-sectors. namely exp(-if).

We can see the inequivalency on the spectrum of the
momentum, too. Because the strongly continouv. unitary
operataors ( G(a) | AR * form a gqgrouwp, there 1is =2

selfadioint generator 3 of this group:

» “

Uta) = expl(iafF) . (Z.7)
Because on a #-sector we have

~
exp(idP) = exp(-i®) , (Z.9)
~

the possible eigenvalues of F can be:

P = == (k- =) 3 k57T . (Z.

Thus they are trivially different 1n difterent o-sectors.
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In this Way we represented the algebra \*/- on func—-
tionals with different periodicity properties, but the
measure which was used to define the inner product of these
functionals was the same. Alternatively we can change the
roles and can shift the difference from the functionals upon

~

the measure. If {454(9 , we define A as follows:
~
L 021 = exp-idn(p)r/d)s {021 . (3.10)

It is easy to see that '( 6‘4(°=° y independently of in

whichever “9 -( was:

~

WA rix1 = £ [x-d1 = exp(-iBGx(@)-d)/d) . €Ix-d] =

]

exp (-iox () /d) {tx] = —( (x1 . (3.11)

Ncw let -{, Y€ 4(9 . The inner product of these functionals

can be rewritten as:

<4 ,¥>= lin Sd[x(t)]v exp(-S[x1) (OL)[x]-Wix] =

T~» o0

T
= 1lim (dlx ()]s exp(-S[x1)-exp{ i6/d- gdt X (L) 3
T =» o0 1

~ ~
-0f)Ix1Yyix) = ( € W . (3.12)
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That is, the measures will be different when we change the ©
parameter because the physical weight of a configuration
becomes O8-dependent:

4
Selx1 = SCx1 - ie6/d:fdt %(t) .

-
We denoted the measure dependence of the inner product ( , )

by the suffix 6.

4, O-gectors in quantum field theory: non-Abelian gauge

theories

It i well known about non-Abelian gauge theories that
they have topologically distinct sectors in the space of
local gauge equivalence classes of the gauge field
configurations. Thus if we want tb quantize by functional
integral we have to sum for these topologically distinct
sectors. But we have to decide which configurations are
allowed because the characterization of the topologically
distinct sectors depend on the ©properties of the
configurations.

Let us denote the topological charge by V . Its defi-

nition is:

L
. Vah% F* e =
VAT 2 E'EF Eapys ga x Fap (0 Fyg 00
{(4.1)

3
= -L Sdkx F-F. .

32
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This expression is valid in four dimensional Euclidean
space-time where the metric is 6‘5 s o, = 1,2,3,4 and the
totally antisymmetric tensor Eapyd is given by &4, =1. We
want to restrict the ‘configuratinn space to those gauge
configurations which have the same asymptotics as of the
classical solutions with finite Euclidean actions. There are
arguments (first reference in ([1]) that VI[A] should be an
integer if the action S[A] is finite. But it is certainly

true if the configuration Af(x) can be smoothly mapped onto

r
the unit hypersphere in five dimensiong. This  is a
consequence of the Atiyah-Singer index theorem [S5]., We will
restrrict ourselves to this case.

We car cover 8“ by two patches which are homeomorphic
to D' . On the intersection of the patches the gauge field
configurations differ only by a pure gauge. If one of the

patches is shrinking to one point corresponding to the

points at infinity of R , then using the relation

&
9'_’( = . E.F*

. ) (4.2)
r 32 ’

where
%
K = abe

T U UL A ey
r '3—3',:;' er‘P" A* ‘FP,' 3 ’f A' Ar) (4. 3)

one obtains the topological charge as a surface integral on

the boundary of the other patchs

V(A] = der Kr(x) . (4.4)
‘3
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In order to adopt the S3 of (4.4) to the use of the tempor al
gauge Ag = O, we realize it as 8% = DPuDPU 1 x 8" that is
the boundary of a 4-cylinder with symmetry axis pointing
towards to the time direction. We also reguire that the
gauge transformation G occuring in the expression g Ar =
= i~5-4?r5 valid on the surface of the cylinder is constant,
let us say 6 =1 on the cylinder-—iacket. In this case the
topological charge becomes the difference of the winding

numbers: ’

VA = 1lim gd’x{Ko(T,x) = Kol-Tex)> = nlAl-ml[Al. (4.7)
T4

It is easy to see that VIAl as well as m{Al) and nlA] are
integers.
Thus the configuration space is8 again a union of

distinct sectors as in the previous paragraphs:

C=VY €., €. =V C..(M (4.5a)

npncz T<wo

c M=« Ap gAp) = i67'9,.6, if erther [x |:T or

r
(4.60)
lleT 3
vwhere G setisfies the above mentiovned property.
Because we have a "big" time 1ndependent gauge

tr ansformation U, as a "step operator” on winding number s:
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n[UAél = nfAl + 1 (4.7)

we can repeat the whole construction of the 6-sectors
considered in the previous paragraph. Of course we use the
invariance property of the measure +for the "“big" gauqge
transformation which 1is provided by the invariance of the
action.

The dif+terence is again in the algebra we want to
represent., In this case this is the quasilaocal algebra'dbyH
of 1locally gauge invariant fields. It means that the
automorphism of a local gauge transformation «(U,, ) acts

trivially on the algebra:
alUeg,? A=A, YVac hy, . (4.8)

But we don’t want the "big" gauge transformation to make any
physical difference, thus as in the case of the quantum“

'pendulum we want U to be in the center of the algebra ben:
uA = AU, vae Ky - (4.9)

Thus the O~sectors will be invariant and orthogonal
subspaces in the functional space t::. But now the question
of inequivalency is not so zimple. Of course the values of U
on the 6-sectors are different, but due to its non-locality

we cannot think of U as an observakle. So from the physical



- 24 -

point of view these representations will be inequivalent
oﬁly in that case when aone can find an observable which
gives different expectation value in the different ©-
sectors, Jjust 'ike the momentum gives in the case of the
quantum pendulum.

We can shift again the #6-dependence from the
functionals upon the measure, that is we change the physical

weight, the action:

L S
SglA1 = S[AT - 18V = S[AJ - i —2— .| d" F.o= | (4.10)

E Y

32n
Because the sa2cond term is not invariant under space
reflection the breaking af this reflection symmetry makes a
physical difference between the #=0 and the ® ¢§ O sectors.
In addition to this the expectation value of F‘F®* is coniec-
tured to be 6-dependent because the topological suscepti-

bility

b 8
2 .2 ; _9‘) [N ,,
-1 2~ ¢ FoFo(x) sa=(—9—] ldly ¢ <F-Fo GO FrEm(y) i

20 " Famr ‘e (mw 4 vie

— AFeF®(x) g <F'FRlyisg ¥ t4.11)

i non-zerw in general. In this case the é6-sectors turn out

to be inequivalent representations of deH'
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