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Abstract

The time evolution of the distribution function of the beam injected par-

ticles in the presence of ICRH in a two component plasma is determined.

Consideration is restricted to the time development during two coapletemen-

tary time periods: (i) the early time period, i.e. 0 < t « T , and (ii)

the quasi-steady-state, i.e. t > t , where i Is the slowing-down time for

beam ion-electron collisions. Explicit analytical solutions are obtained

for anisotropic as well as isotropic beam injection.



Introduction

In order to achieve non-negligible fusion reaction rates in a thermonuclear

plasma, an average ion temperature of 10 keV must be obtained. In a Toka-

malc, the inherent ohmic heating is not sufficient to rise the plasma tem-

perature to the required level, and auxiliary heating method must be used.

Several heating have been examined both theoretically and experimentally.

Two of the leading methods are neutral beam injection (NBI) heating and ion

cyclotron resonance heating (ICRH).

NBI has been applied successfully, e.g. a plasma of several keV has been

obtained in the PLT device, [l]. An advantage with NBI is that, in addi-

tion to providing bulk plasma heating, it supplies a non-Maxwellian high

energy ion tail, which may decisively contribute to the fusion rate. This

is especially so since the neutral beam injection energy typically falls at

the energies at which the fusion reaction rate peaks.

On the other hand, ICRH has recently made remarkable experimental progress,

[2-5], and is becoming a promising candidate for efficient heating of

plasma ions. The inherent advantage of the high energy tail in NBI heating

is parallelled in ICRH by selectively heating a minority of the plasma ions

or by heating at the cyclotron harmonic, where preferentially the high

energy ions absorb the wave energy, [6].

Recently, there has been considerable Interest in the possibility of heat-

ing a Tokamak with a combination of ICRH and NBI, [7-10J. This scenario

will be of particular importance in the near future, since it is expected



that several Tokamaks, including JET, will operate with both heating

methods simultaneously. It has been shown theoretically, [8], that the

advantages of both heating schemes can be combined by tuning the ICRH to

the ion cyclotron frequency of the neutral beam injected ions, thus causing

a significant enhancement of the high energy tail.

Much effort has been devoted to analytical as well as numerical investiga-

tions of the influence of RF-heating on the stationary distribution func-

tion of the beam ions and to the calculation of the resulting fusion power

multiplication factor, cf

Since a detailed knowledge of the distribution function is essential to

theoretical as well as experimental investigation of the heating process,

the purpose of this work is to determine the time evolution of the distri-

bution function of the beam injected particles in the presence of ICRH in a

two component plasma. The analysis is based on the time dependent Fokker-

Planck equation Including a quasilinear RF-diffusion operator. Considera-

tion is restricted to the time development of the beam distribution func-

tion during two complementary time periods: (1) the early time period, i.e.

0 < t « T , and (ii) the quasi-steady state, i.e. t > ? where T is the

slowing-down time for beam ion-electron collisions. At early times the

development of the distribution function is dominated by particle-wave

interactions. This stage should be of interest in connection with problems

like RF-induced enhanced sawteeth-activity, [ll], or excitation of velocity

space microinstabilitles during the heating process, [l2J.

In quasi-steady state the evolution of the distribution function is domi-

nated by collisional effects. It is shown that in this stage a group of



thermalized beam i^ns with a Maxwellian distribution appears. The number

of particles in this group will increase in time until steady-state is

reached. Another group of beam ions, those that have not thermalized forms

a time independent non-Maxwellian "tail" in the distribution function.

Explicit analytical solutions for the beam distribution function are ob-

tained for two complementary beam injection scenarios: anisotropic and

isotropic injection of the beam ions.

II. Fokker-Planck equation

We shall concentrate on neutral beam injected ions in a two-component

plasma which are directly heated by ICBH tuned to the ion cyclotron fre-

quency of the injected ions. The Fokker-Planck equation for the distribu-

tion function, f, of these ions can be written as

| | - C(f) + Q(f) - ~ f + S (1)
ex

where C(f) is the collision operator, Q(f) is the quasi-linear RF-diffusion

operator, -c is the charge-exchange loss time, and S is the source of the
ex

injected particles. We assume th.it the neutral injection does not affect

the equilibrium of the plasma. This requires n. « n, where n and n are

the density of beam ions and plasma ions, respectively. Hence, we consider

the plasma distribution to be Maxwellian and disregard collisions between

beam particles themselves.

In order to describe the influence of the ICRH on the distribution function

we consider only the fundament»1 ion cyclotron resonance of a small min-



orlty ion component in a thermal background plasma and use the quasi-linear

diffusion operator derived in Ref. [l3J. Assuming the limit of small

Larmor-radius and, for simplicity, neglecting particle trapping effects

when averaging over toroidal surfaces the explicit forms of the collision

and RF-diffusion operators are:

c(f) -•*,
v'

o få (2)
and

where v is the velocity and \x • v./v is the cosine of the pitch angle. The

collision coefficients a, p, and y describe dynamical friction on the back-

ground species, energy diffusion and pitch angle scattering, respectively.

The constant K is proportional to the rf power absorbed per unit volume.

For further details concerning notations see Refs. [6,14].

The source, S, of injected particles is assumed to supply almost energetic



particles with velocity v . This means that S(v,u) can be written as

S
S(v,u) - - ^ 6(v-v )K(u) (4)

2KV2 °
o

where S i s the number of part ic les injected per second and cm and the

function K(^) which represents the angular spread s a t i s f i e s

1
J K(u)du - 1 (5)
-1

Finally, the charge-exchange time, x , appearing in eq. (1) is taken to be

independent of energy (which is a good approximation for energies in the

range 1-30 keV).

An approach, which has been widely used in analytic studies of the effects

of ICRH on the velocity distribution function, [6,14], is to expand solu-

tions of the Fokker-Planck equation in Lagendre polynomials and to keep

only the lowest order term, viz.

i- / f(v,n)du (6)
1 -1

The approach is justified of the distribution function is only weakly ani-

sotropic. Consequently, this approach is a legitimate one for the low

energy part of the distribution function and deteriorates in the high en-



ergy tail region, which becomes strongly anisotropic in the presence of

significant RF power absorption.

In the present analysis we will apply a modified approach, cf [l5] to de-

rive the pitch angle averaged ion distribution in the presence of ICRH.

The method provides a consistent description of the gradual transition from

the almost isotropic low energy part of the distribution to the anisotropic

high energy tail distribution. Furthermore, it does not depend on

truncating an expansion and is consequently not restricted to almost iso-

tropic situations.

In order to derive an equation for <f> we integrate the Fokker-Planck equa-

tion (1) over u. In the collision operator, the pitch angle scattering

term vanishes, and we obtain

1_
2

v

v<(l-3u2)f>] - 1 — <f> + ̂ 2 _ 6(v-vo) (7)
CX 0

Eq. (7) couples the zero (u°) and second (u ) order moments of f. By suc-

cessively multiplying the Fokker-Planck equation with u and integrating

we can obtain an infinite coupled system of equations determining the mo-

ments <u n>. However, this is not an analytically tractable approach»
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Instead, we follow Ref. [ 15J and decouple the zero order moment from the

second order moment by introducing

<H2f> = n2ff(v)<f> (8)

2
The main role of \L ff(v) is to describe the anisotropy of the distribution

function. According to Ref. [l5] an appropriate model for u ff(v) should

satisfy the conditions

2 / f t. _ 1
\lt(0) = 3

0. (9)

2
This means that \i f,(v) should consistently reproduce the low and high

2 1energy asymptotic v d u e s , i . e . \i , - -r for an isotroplc distribution and
2

\i -f • 0 for a strongly anisotropic distribution»

2
Considering |i f f (v ) as a known function of v and introducing F = <f> we can

write eq. (7) as

3 , , . 2

3 ,. » 2 eff.
2 eff ov

- | — F + - 5 - 6<v-v ) (10)
Tex 2 °



Eq. (10) requires a statement of Initial condition. If we consider that

the beam is Injected at t-0, then F(v,t-0)«0 and eq. (10) describes the

subsequent evolution in time of the beam distribution function. According-

ly the beam density, TL - 2u J v Fdv, varies with time as

n. Tb ex^ « ̂  [l-exp(-t/xex)] « 1 (11)
b

where T. - n/S is the production time of beam ions. It follows fromb o

eq. (11) that the steady-state value of the beam density i s given by

nb (" ) /Q-%x /Tb*

III. Initial evolution of the beam distribution function

During the init ial stage of the beam injection, when 0 < t « x , where x
^ s s

is the slowing-down time for beam ion-electron collisions, the evolution of

the distribution function is determined predominantly by the source term

and the RF diffusion. Neglecting the collision terms and the charge ex-

change loss term, eq. (1) reduces to, cf [l6],

It £ ( W l > -TKv7lv7tvi|^f(vi,v|,t)]+S(vi,v1) (12)

where v. and v. are the ion velocity components perpendicular and parallel

to the magnetic field, respectively. The solution of eq. (12) is given by
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, t - vf+52 v.?
f(vi,vrt) - ̂ / Ä / dwscs.v,).^!- 4g-)i o (3^) (13)

o o

where I (x) is the modified Bessel function of order zero,
o

Assuming now an almost perpendicular beam injection, the source function

can be written in the form

io

which substituted into (13) gives

S t v2+v2

,|it).^ö(V/Ho

Averaging the distribution (15) over the pitch angle \i we obtain for v > 0

2 2
S t . v +v w

å 1 ? é
S

<f>" s å r / 1 •'•>(-sår
0

which is exactly the result if we solve eq. (10) in the absence of co l l i -
2

slons and charge exchange loss and by assuming u f f " 0 - Since we are

interested in the short time limit we assume

t « min(w (3K; (v2+v2)/6K) (17)

and use the asymptotic expansion of 1 (x) to obtain
o
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1/2 (v - v ) 2

) ([ fe)
fm Kv vo

) *

« x -
where «>(x) • 4— J exp(-t )dt and the signs "+" and "-" correspond to the

11 o

solutions in regions v > v and 0 < v < v , respectively. It can be seen
— o — o

from eq. (18) that the ions injected at the velocity v - v are, due to the
o

RF-induced velocity space diffusion, spread toward lower as well as higher

energies. We note that particles will appear at thermal energies on the

time scale t__ - v /6K, which implies an anomalous "slowing down" in situa-
KF O

tions when x__ < x .
Kr S

IV. Quasi-steady state of the beam distribution function

When t < x , the collision terms in eq. (10) will become important and when

t > x , it will be possible to distinguish a group of beam ions with a

Maxwellian distribution. The number of particles In this group will in-

crease in time until steady-state is reached due to the charge-exchange

losses. On the other hand, the plasma will contain non-thermalized beam

ions whose distribution function at t > x does not depend on time but is

determined by the balance between the systematic arrival of beam ions at

the point v - v and the diffusion flow toward»» low energy as a result ofo

the RF diffusion and the collisions between the beam ions and the plasma

electrons and ions. Thus, it is natural to call this state at t > x a



12

quasi-steady state and the solution of eq. (10) can be written in the fol-

lowing form, cf. [l7],

( e ) A ] g ( ) (19)
b

where the tern proportional to h(v) describes the distribution of the ther-

mallzed particles and g(v) is the stationary non-thernallzed part of the

beam distribution. Integrating eq. (19) over velocity space and using the

relation (11) the constant A is found to be

/ g(v)v dv

A - 2 (20)

/ h(v)v2dv

We substitute (19) into eq. (10) and separate with respect to the time

variation. This yields the following two equations for g(v) and h(v):

7 K<^.ff * ' & +t"-2+ 7

| ^ f f | | h - 0 (21)

and
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• T W-.&,* 2 # + t-»2+ T17

i- - JL)
b ex

(22)

In order to solve eqs. (21) and (22) It Is necessary to define an approxi-

2
mate model for \i ff(v>) which allows us to treat the problem analytically.

It has previously been mentioned that the anlsotropy of the RF-dlstorted

distribution vanishes In the low energy limit where colllslonal effects, In

particular pitch angle scattering, Is strong enough to keep the distribu-

tion lsotroplc Since the function h(v) represents the low energy part of
2

the distribution, i.e. for v < v , we assume u ., - 1/3 when determining

h(v). On the other hand the degree of anlsotropy of the non-Uaxwellian

high-energy part of the distribution function, is strongly dependent on the

beam injection angle relative to the toroidal axis. In particular, two

complementary situations may be considered: (1) perpendicular beam injec-

tion, i.e. the cosine of the injection angle is \i " 0 , and (ii) isotropic

beam Injection, i.e. the beam source function is effectively isotropic.
2

Correspondingly, we assume the following models for u ,,(v), which deter-

mine the behaviour of g(v):

(i) anisotropic injection

(23)
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(ii) isotropic injection

1/3 ; v < v— o

•Cff m] (24)

0 ; v > v

A formal integration of eq. (21) yields

v
h(v) - h(O)exp[- / u R(u)du] (25)

o

where h(0) is an integration constant determined by the condition

/ v
o

2h(v)dv - 1 (26)
o

and

Using the low energy expansions for the collision coefficients a and 0, and
2

taking n e f f - 1/3 we obtain

V 2 2
h(v) - h(0)exp[- 2 k T ( ° + 2 K / p ) 3 = h(O)exp(- ̂ ) (28)
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where D represents the low energy limit of 3 and T^ is the "collective1*

temperature of the background particles, cf [l4]. From eq. (26) together

with (11) and (28) we also find that

h(0) - (*" vx) (29)

We note that the expression (28) is the correct low energy limit according

to weakly anisotropic theory, cf. [14].

In order to determine the non-Maxwellian part of the distribution function,

g(v) we neglect the charge-exchange loss term and the contribution from

h(v) to eq. (22) for velocities v > v . Then eq. (22) can be integrated

once to yield

eff dv

H(v -v) T

o_[^(1.^AMv/Vi)+1] (30)
b ex

4 *, 2 2
where H(x) is the step function and n(x) • T~ J t exp(~t )dt. The approxi-

/n o

mate solution of eq. (30) is given by
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g(v) - gl(v) = ̂ - [G(v) - -i—Mli][i-e Xp(-/ uR(u)du)] (31). -R(v) ^.
o o

for v < v , and
•* o

v
8(v) " g,(v) • g.(v )exp[- / uRt'u)du] (32)

vo

for v > v , where
— o

\ (1- i j
G(v) £2 i _ (33)

and R(v) is given by eq. (27). Since g(v) represents the stationary high-

energy part of the beam distribution function the expressions (31) and (32)

have to be evaluated by using the high-energy expansions of a and |3 and by
2

assuming the appropriate models for n «f(
v) as given by eqs. (23) and (24).

Thus, the solutions may be written in the following form:

(i) Anisotropic Injection

s

b (v +v +*

(34)
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aud

„ 2
^ v * » m. 2 v

(ii) Isotroplc injection

and

Here, Th(v) is defined by

K F l ^ + 3 3 2 * ] » V * Vo 'b (v3-hr3) (v 3+v 3) Z °a cc

(36)

- < " '

and further notations are as follows: K - kT /m. , ^ - 3m.Kx /(2kT ), T is
e e b b s e e

the electron temperature, t is the slowing-down time given by

2kT 3/2 in m.

hr̂  -TT-
 (39>ne Z7 n e lb e
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and the characteristic velocities v and v are defined by, cf [6],
a p

o 4 *• m ' n i m '

(40)

2 ^1/2 2kTe 1/2 n± 2 2kT1

Using now eqs. (20), (28) and (29) we find that the number of particles

contained in the non-Maxwellian part of the distribution function is equal

to

/ g(v)v2dv - A (41)

which by seans of the relations (34)-(38) can be approximated as

cx

where

v2 K I 3K2(1+£2)
Y - yW - ln(l+ -f + -S-) + f-r (42)

vo "o "oWaWo*

for the anisotropic injection, and
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VV
(43)

for isotropic injection. The solutions (34)-(35) and (36)-(37) describe

the deviation of F(v,t)/n from the Maxwellian distribution and are import-

2
ant for velocities v » 2kT.(1+2K/D)/». , when the Maxwellian part of

* b

F(v,t)/n is exponentially small. Note from eqs. (34)-(35) and (36)-(37)

that a stationary non-Maxwellian tail in the distribution function may be

formed if the charge-exchange loss time, T , is such that 0 < -c /x < 3.

ex s ex

V. Conclusions

Analytical solutions have been obtained for the time evolution of the vel-

ocity distribution of neutral injected ions heated by ICRH in a two compo-

nent plasma. In particular, two time periods of the development have been

considered: early times (0 < t « x ) when the development is dominated by

RF-induced velocity diffusion, and the quasi-steady-state (t > T ) when the

beam ion distribution consiste of a time dependent Maxwellian part and a

time independent non-Maxwellian "tall". It should be noted that the toroi-

dal effects on the beam ion distribution function have been neglected.

However, in a device such as JET these effects will be of importance, since

1/2
they scale as e , where e is the inverse aspect-ratio. Thus the analysis

in this paper needs to be extended.
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