ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО ИСПОЛЬЗОВАНИЮ АТОМНОЙ ЭНЕРГИИ СССР ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

ИФВЭ 86-54 ОЭИПК (SERP-E-133)

А.Г.Томарадзе^{ж)}, В.А.Уваров, П.В.Шляпников

СИСТЕМАТИКА РАСПРЕДЕЛЕНИЙ ПО ПОПЕРЕЧНЫМ ИМПУЛЬСАМ И АЗИМУТАЛЬНЫЕ КОРРЕЛЯЦИИ В ИНКЛЮЗИВНЫХ К⁺р-РЕАКЦИЯХ ПРИ 32 ГЭВ/с

Направлено в ЯФ

Серпухов 1986

Аннотация

Томарадзе А.Г., Уваров В.А., Шлятников П.В. Систематика распределений по поперечным импульсам и азимутальные корреляции в инклозивных К⁺р-реакциях при 32 ГэВ/с: Препринт ИФВЭ 86-54, SERP-E-133.-Серпуков, 1986. - I2 с., 3 рис., библиогр.: 21 назв.

Проанализированы экспериментальные данные по полным сечениям, спектрам по поперечным импульсам и азимутальным корреляциям в одно- и двухчастичных инклюзивных К+р-реакциях при 32 ГэВ/с, проведено их сравнение с лундской кварковой моделью, обсуждаются модификации модели, необходимые для описания экспериментальных данных.

Abstract

Chliapnikov P.V., Tomaradze A.G., Uvarov V.A. Systematics in the Transverse Momentum Distributions and Azimuthal Correlations in the Inclusive K⁺p Reactions at 32 GeV/c: IHEP Preprint 86-54, -SERP-E-133. - Serpukhov, 1986. - p. 12, figs. 3, refs.: 21.

Experimental data on total cross-sections, transverse momentum spectra and azimuthal correlations are presented and compared with the Lund quark model. Modifications in the model required for the description of the experimental data are discussed.

(С) - Институт физики высоких энергий, 1986.

При анализе данных по инклизивным реакциям, полученных в ходе проведения высокостатистического K⁺p-эксперимента при 32 ГэВ/с на камере "Мирабель", было показано^{/1-9/}, что лундская кварк-фрагментационная модель^{/10/} очень неплохо описывает большую совокупность экспериментальных результатов. При этом в программу Лунд-Монте-Карло (ЛМК) потребовалось внести только два существенных изменения по сравнению с опубликованной версией^{/11/} запретить процесс рекомбинации обоих валентных кварков первичного K⁺ в K^{X+}(890) (эта проблема подробно обсуждалась в работах^{/2-4/}) и модифицировать распределения по поперечным импульсам (см., например, работн^{/1-5/}, а также^{/12/}).

Проблема с распределениями по поперечным импульсам состоит в том, что экспериментальные распределения оказались существенно более пологими, чем это следует из оригинальной версии ЛМК, в которой предполагается гауссовское распределение морских кварков по p_T со среднеквадратичным отклонением $d_p = 0.44 \ \Gamma \Rightarrow B/c^{/II}$. Для улучшения согласия модели с экспериментальными данными были предложены две следующие модернизации. Первая из них / I.2.4/ состояла в простом увеличении d_p в ЛМК до значения $d_p = 0.62 \ \Gamma \Rightarrow B/c$. Вторая 5-9,12/ заключалась во введении случайного поворота K⁺-мезонной (протонной) струны относительно направления сталкивающихся частиц в с.ц.и. на угол, задаваемый распределением $d(dp_T^2 \sim exp(-ap_T^2),$ где p_T - суммарный поперечный импульс струны, а а - параметр.Соответствующие две версии ЛМК назовем здесь ЛМКІ и ЛМК2. В ЛМК2, использованном в работах 5-9,12, параметр $d_p = 0.44 \ \Gamma \Rightarrow B/c$, а параметр а = 4 ($\Gamma \Rightarrow B/c$)⁻².

В настоящей статье мы вновь возвращаемся к анализу инклизивных распределений по поперечным импульсам и их сравнению с ЛМК в

Ι

свете всех полученных в К⁺р-эксперименте данных, а также впервые представляем данные по азимутальным корреляциям.

Чувствительность эксперимента, в котором получено и обработано I млн снимков, составляет около 27 событий/мкб. С подробностями его проведения и методикой обработки данных можно ознакомиться в работе/I/.

Полное число сгенерированных по ЛМК событий (200 тыс.) отнормировано на измеренное в эксперименте полное неупругое сечение недифракционных событий (I3,3I±0,26 мб)/I3,I4/. В рассматриваемой здесь версии ЛМК2 в отличие от работ $^{5-9}$,I2/ мы зафиксировали параметр бр при значении 0,48 ГэВ/с, что соответствует последним экспериментальным результатам, полученным при проверке КХД в e⁺e⁻аннитиляции / I5/, а параметр а на основании анализа всех данных в этом эксперименте выбрали равным 3 (ГэВ/с)⁻².

В обеих версиях ЛМКІ и ЛМК2 запрещен процесс рекомойнации обоих валентных кварков K⁺ в K^{X+}(890), а параметр подавления моря странных кварков взят равным 0,27. Заметим здесь, что версия ЛМК2 базируется на предположении об универсальности процессов адронизации в мягких и жестких соударениях (одинаковые δ_p). Что же касается увеличения $< p_T^2 >$ у вторичных частиц в адрон-адронных взаимодействиях по сравнению с e^+e^- -аннигиляцией, то оно введено в ЛМК2 таким способом, что его естественно связать с рассеянием первичных партонов при небольших Q^2 , которое и приводит к разделению цвета и натягиванию цветных струн между валентными кварками сталкивающихся частиц. Естественность такой концепции делает версию ЛМК2 более предпочтительной в феноменологическом плане по сравнению с ЛМК1.

В табл. І скомпилированы измеренные в эксперименте полные инклизивные сечения ряда реакций, которые сравниваются с предсказываемыми значениями в ЛМКІ и ЛМК2. Как уже отмечалось нами ранее^{/I/}, глобальный успех модели, описывающей сечения, меняющиеся на четыре порядка от десятков миллибарн для пионов до нескольких микробарн для Ξ^- , не вызывает сомнения. Изменения в характере зависимостей от поперечного импульса оказывают очень небольшое влияние на значения предсказываемых полных инклюзивных сечений: в ЛМКІ и ЛМК2 они заметно отличаются только для антибарионов^{ж)}.

^{*)}Это же справедливо и в отношении инклюзивных спектров частиц по продольным переменным, которые несильно отличаются в ЛМКІ и ЛМК2.

Такие же выводы, за отдельными исключеннями, следуют из сопоставления модели с измеренными полными сечениями двухчастичных инклюзивных реакций (4,6-9/, включая те из них, в которых под одной или даже под обеими частицами понимается резонанс (4,8/.

В табл. 2а скомпилированы параметры экспоненциальных наклонов, полученные в результате анпроксимации измеренных в эксперименте инклизивных спектров частиц по квадрату поперечного импульса ad/ap2 одной экспонентой аехр(-bpm) или сумной двух экспо $aexp(-bp_{\pi}^2) + cexp(-dp_{\pi}^2)$. В ней же приведени результати та-HOHT кой же аппроксимании спектров do/dp2, сгенерированных по ЛМКІ и ЛМК2. В табл. 26 такие же результаты приведены для двухчастичных инклизивных реакций. Как видно, обе версия модели в основном удовлетворительно описывают экспериментальные спектры do/dp2 и ни одна из них не является определенно предпочтительнее другой. Это же иллюстрируют и рис. І и 2, на которых приведены инклюзивные спектры dG/dp_T^2 резонансов K^{*+} , g° и ϕ и спектры g° и K^{n} в реакциях $K^+p \rightarrow K^n + g^{\circ} + X$ и K^n в реакциях $K^+p \rightarrow K^n + g^{\circ}$ + К*+(890) + Х в сопоставлении с предсказаниями ЛМКІ и ЛМК2.

Рис. I. Спектры dб/dp²_T K^{#+} (a), р^{0(б)} и φ^(B) в реакциях К⁺р→К^{#+}+Х, К⁺р→ρ⁰ + Х и К⁺р→φ + Х при 32 ГэВ/с. Сплошная и пунктирная кривые – предсказания ЛМК2 и ЛМКІ соответственно.

Рис. 2. Спектри d**б**/d p_T² $\rho^{o}(a)$ и Kⁿ (б) в реакциях K⁺p-Kⁿ + ρ^{o} +X и Kⁿ (в) в реакции K⁺p-Kⁿ + K^{X+}₈₉₀ + X при 32 ГэВ/с. Сплошная и пунктирная кривне – предсказания ЛМК2 и ЛМКІ соответственно.

Итак, совокупность результатов по полным сечениям и спектрам частиц в одно- и двухчастичных инклюзивных K^+ р-реакциях при 32 ГэВ/с не позволяет отдать предпочтение одной из версий ЛМК. В этой ситуации мы предприняли попытку проанализировать и сравнить с предсказаниями ЛМК азимутальные корреляции в двухчастичных инклюзивных реакциях, вычисляя азимутальный угол $\phi = \arccos((\vec{p}_{T1} \cdot \vec{p}_{T2})/|\vec{p}_{T1} \cdot \vec{p}_{T2}))$ между векторами поперечных импульсов вторичных частиц и вводя параметр асимметрии

$$\mathbf{A}_{\phi} = \left(\int_{\pi/2}^{\pi} \frac{\mathrm{d}\sigma}{\mathrm{d}\phi} \,\mathrm{d}\phi - \int_{\sigma}^{\pi/2} \frac{\mathrm{d}\sigma}{\mathrm{d}\phi} \,\mathrm{d}\phi \right) / \int_{\sigma}^{\pi} \frac{\mathrm{d}\sigma}{\mathrm{d}\phi} \,\mathrm{d}\phi.$$

4

Наибольший интерес с точки эрения сравнения с предсказаниями ЛК представляют экспериментальные данные по азимутальным корреляциям для таких двухчастичных реакций, как

$$K^{\dagger}p \rightarrow K^{n} + p + X, \qquad (1)$$

$$-K_{890}^{\pi+} + p + X,$$
 (2)

$$-\bar{\Lambda} + p + X, \qquad (3)$$

в которых обе частицы являются лидирующими^{*)}. Это связано с тем, что зведение в ЛМК2 случайного поворота К⁺-мезонной (протонной) струны относительно направления сталкивающихся частиц в с.ц.и. должно приводить к большей асимметрии распределений по ϕ , чем в оригинальной версии ЛМК или в ЛМКІ, так как простое увеличение G_p в распределения морских кварков по p_{-} не может повлиять на азимутальные корреляции. Разница между ЛМКІ и ЛМК2 может проявиться прежде всего в реакциях с двумя лидирующими частицами, так как именно эти частицы в первую очередь определяют направления струн.

Распределения по ϕ в реакциях (I) и (2) показаны на рис. 3. Они, как видно, сильно асимметричны и хорошо совпадают с предсказаниями ЛМК2 (сплошные кривые), но не с предсказаниями ЛМКI (пунктирные кривые). Соответствующие параметры асимметрии A_{ϕ} в роакциях (I)-(3) (см. табл. 3) совпадают в пределах ощибок с предсказываемыми в ЛМК2, но заметно выше, чем в ЛМКI, особенно в реакциях (I) и (2).

В табл. З также приведены параметры асимметрии для реакции

$$K^{+}p \rightarrow K^{0} + \phi + X \tag{4}$$

и для реакций с двумя странными частицами. Реакция (4) интересна тем, что K^{0} и ϕ в подавляющем больжинстве случаев образуются на s-. и Б-яварках из одной и той же пары еб морских кварков. Високое значение параметра A_{ϕ} означает, что поперечные импульсы sи Б-яварков из моря направлены в основном в противоположные стороны. Интересно, что в реакциях $K^{+}p \rightarrow \tilde{A} + \Lambda + X$ при $x(\tilde{\Lambda}) > 0$ и

^{*)}Как и во всех реакциях с вторичным протоном, его импульс ограничен условием $p_{\rm ЛАО} < I,2$ ГэВ/с. Чтобы исключить влияние дифракционных каналов в реакциях (I) и (2), использовались только события с числом заряженных частиц n > 4; кроме этого, на реакции (I) и (2) соответственно накладывались условия $x(K^n) > 0,2$ и $x(K^{m+1}) > 0,2$. Точно такие же ограничения накладывались и на собития, сгенерированные по ЛМК.

 $x(\Lambda) > 0$, т.е. в тех случаях, когда $\bar{\Lambda}$ и Λ в основном образуртся на паре антидикварк-дикварк ($\bar{u}\bar{d}$) – (ud) из моря K⁺-мезона^{/7/}, значение параметра асимметрии также возрастает до $\Lambda_{\phi} = 0.5\pm0.1$. В остальных реакциях, перечисленных в табл. З, значение параметра асимметрии заметно ниже. Это, очевидно, связано с влиянием процессов, в которых одна из инклюзивных частиц образуется в результате фрагментации валентного \bar{a} -кварка K⁺-мезона, а вторая использует один кварк (антикварк) из пары аб из моря.

Рис. 3. Распределения по азимутальному углу ϕ в реакциях $K^+p \rightarrow -K^n + p + X$ (а) и $K^+p - K^{3++}_{890} + p + X$ (б) при 32 ГэВ/с (см. текст). Сплошная и пунктирная кривые – предсказания ЛМК2 и ЛМК1 соответственно.

Таким образом, изучение азимутальных корреляций показало наличие локальной компенсации поперечных импульсов для частиц, образующихся из одной и той же морской пары кварк-антикварк. Ни орягинальная версия ЛМК, ни ее модифицированная версия ЛМКІ, в которой для лучшего описания спектров частиц по поперечному импульсу была увеличена ширина гауссовского распределения морских кварков по поперечному импульсу, не описывают характера азимутальных корреляций в реакциях с двумя лидирующими частицами. Последние хорошо воспроизводятся версией ЛМК2. Неплохое согласие этой версии со всеми приведенными данными по полным сечениям, спектрам частиц по поперечным импульсам и азимутальным корреляциям можно интерпретировать как указание на такой механизм взаимодействия адронов, при котором вначале происходит рассеяние первичных партонов, приводящее к разделению цвета и натягиванию струн между валентными кварками сталкивающихся частиц.

В заключение нам приятно поблагодарить персонал просмотрово-измерительных и вычислительных центров наших институтов за их вклад в обработку снимков, а персонал камеры "Мирабель" и ускорителя ИФЕЭ за успешное проведение сеансов облучения камеры. Мы благодарим всех коллег по сотрудничеству СССР-ЦЕРН и СССР-Франция, внеспих неоценимый вклад в получение использованных в этой работе экспериментальных данных.

Реакция	Сечение (мб)					
	Эксперимент	Ссылқа	JIMKI	JIMK2		
К ⁺ р→Л ⁺ + Х	34,9 ± 0,9	I3	26,4	26,9		
11 - + X	2I,5 <u>+</u> 0,3	I 3	17,8	I8,5		
$-\pi^{\circ} + X$	29 <u>+</u> 3	16	28	28		
\rightarrow K ⁺ ₂ + X	IO,0 <u>+</u> 0,4	13	9,8	9,7		
$\rightarrow K^{n} + X^{a}$	7,76 <u>+</u> 0,18	I	7,10	7,00		
- Kprompt + X	5,2 <u>+</u> 0,5	4	6,66	6,66		
$\rightarrow K_{\text{prompt}}^{0} + X$	2,9 <u>+</u> 0,3	4	2,56	2,52		
$\rightarrow \Lambda + X$	0,770 <u>+</u> 0,025	I	0,673	0,69I		
$\rightarrow \overline{\Lambda} + X$	0,422 <u>+</u> 0,018	I	0,366	0,60I		
$\rightarrow p + X^{0}$	5,9 <u>+</u> 0,I	17	4,37	4,50		
- = = + X	0,0065 <u>+</u> 0,003	18	0,0080	0,0086		
→ Ŝ⁺+ X	0,036 <u>+</u> 0,009	I 8	0,018	0,030		
→ K ^{¥+} (890) + X	3,37 <u>+</u> 0,10	2	3,20	3,08		
→ K ^{¥0} (890) + X	3,2 <u>+</u> 0,4	19	2,43	2,40		
$\rightarrow \overline{K}^{*-}(890) + X$	0,21 <u>+</u> 0,06	2	0,33	0,36		
$\rightarrow K^{\pm+}(1430) + X^{B})$	0,89 <u>+</u> 0,14	2	-	-		
$\rightarrow K^{\pm 0}$ (1430) + X^{B})	0,72 <u>+</u> 0,20	20	-	-		
$\rightarrow \rho^{0} + X$	3,4 <u>+</u> 0,3	21	4,76	4,99		
$\rightarrow f + X^{B}$	0,88 <u>+</u> 0,16	20	-	-		
$\rightarrow \phi + \chi^{\Gamma}$	0,308 <u>+</u> 0,019	4	0,351	0,329		
$\rightarrow \Delta^{++}(1232) + X$	2 ,25<u>+</u>0,30	5	I,39	I,4I		
$\rightarrow \Sigma^{\text{X+}}(1385) + X$	0,119 <u>+</u> 0,014	5	0,128	0,132		
$\rightarrow \Sigma^{\underline{x}}$ (I385) + X	0,049 <u>+</u> 0,0II	5	0,034	0,038		
$\rightarrow \overline{\Sigma}^{\mathbf{X}+}$ (I385) + X	0,038 <u>+</u> 0,0IO	5	0,018	0,037		
-→∑ [#] -(I385) + X	0,035 <u>+</u> 0,008	5	0,025	0,042		

<u>Таблица I.</u> Полные инклюзивные сечения частиц и резонансов в К⁺р-взаимодействиях при 32 ГэВ/с в сопоставлении с пред-сказаниями лундской модели

а) Под символом К^и понимается смесь К⁰- и К⁰-мезонов.

б) При ограничении на лаб. импульс протона р_{лаб} ≤1,2 ГэВ/с.
 в) Лундская модель не учитывает образование тензорных мезонов.

г) При ограничении на масштабную переменную $x(\phi) > 0,2$.

<u>Таблица 2a.</u> Параметры наклонов, полученные в результате аппроксимации одной экспонентой аехр(-вр²) или суммой двух экспонент аехр(-вр²) + сехр(-dp²) спектров частии по квадрату поперечного импульса d⁶/dp², измеренных в инклизивных К⁺р-реакциях при 32 ГаВ/с или сгенерировенных по ЛМСІ и ЛМС2.

	-					_								_		٦.
d (JMK2) (TaB/c)-2			8.65+0.22				3.84+0.I6	J								фицирован-
b (JIMR2) (T9B/c)-2	2.96+0.04	2.83+0.06	3, I2+0, 03	3,25+0,04	3,30+0.04	3,32 <u>+</u> 0,18	2,03+0,28	3,20+0,03	3,30 <u>+</u> 0,0I	3,08+0,04	3, I6 <u>+</u> 0, 02	3.04+0.07	2.I6+0.I0	3.06+0.I5	3,29 <u>+</u> 0,14	роме кденти
d (JMKI) (T3B/c) ⁻²			7,44 <u>+</u> 0,20				7,36 <u>+</u> 1,9				4,36 <u>+</u> 0,50	ł				нх частиц, к
b (JKMI) (T9B/c)-2	2,56+0,03	2,28+0,05	$2,41\pm0.03$	2,91±0,04	2 , 58±0,05	2,45±0,20	2,42±0,04	2,40+0,02	2,50±0,01	2,52 <u>+</u> 0,04	2,08 <u>+</u> 0,25	2,74 <u>+</u> 0,09	I,83+0,I2	2,61 <u>+0</u> ,24	2,42 <u>+</u> 0,18	но заряженн
d(akcn.) (TaB/c)-2			6,75±0,28				4,9 <u>1</u> ,1				10 1 3					положитель
<u>р</u> (аксп.) (ГаВ/с) ⁻²	2,62+0,05	2,9 <u>+</u> 0,I	2,74±0,08	3, I8 <u>+</u> 0, 05	3,13 <u>+</u> 0,08	I,3 ±0,4	I,9 <u>±</u> 0,4	2,54 <u>*</u> 0,I5	2,64±0,I2	2,73 <u>+</u> 0,I2	2,4 ±I,3	2,8 <u>+</u> 0,4	I,7±0,5	4,2 ±1,3	3 , 3 ±0,9	MBETCR CMECI ? TaB/c.
р ² -интервал (ГэВ/с) ²	I,0-2,0	I,0 - 2,0	0 - 3,0	0 - I,5	0 - I,5	0 - 2,6	0 - 2,2	0,2 - 2,2	0 - I,8	0 - 2,6	0 - I,8	0 - I,8	0 - 2,0	0 - I,5	0 – I,6	IMBOJIOM C ⁺ IIOHH OB C P _{TRA} C < I.S
पुत्रदायाव	cta)	<u>, </u>	К	<-	<		K*** (890)	K ^m (890)	المريد م	5	Δ	Σ(I385)	Σ ** (I385)	Σ * * (I385)	∑* [−] (1385)	а) _{Под сг} ных протон

:

 0 Πρи ограничении $x(\phi) > 0,2$.

9

<u>Таблица 26.</u> То же, что и в табл. 2а, но для спектров аб/ар² частиц в двухчастичных внилозавных peakingsr.

- .

Реакция	Час-	р ² -хнтервал (ГэВ/с) ²	b(akcn.) (TaB/c)-2	d(skcu.) (TaB/c)-2	b (INKI) (TaB/c)-2	$d(IMKI) b(IMK2) (TaB/c)^2$	d(INKC) (TaB/c)2
K ⁺ p-K ⁿ +p+X ⁸)	R ^{II}	0-2,5	3,2±0,2	7,3±0,6	2,66+0,06	8.04+0.43 3.46+0.06	I0.040.5
	¢,	0-1-0	6,9340,07		6,45±0,04	6,0±20,03	
K ⁺ p-K ^{*+} ₈₉₀ +p+X ^a)	K#t	0-2,2	3,940,2		2,71+0,34	3.47+0.04	T
	đ	0 - 1-0	6,5 <u>+</u> 0,3		6,35±0,07	5,57 <u>+0</u> ,06	
K ⁺ p⊸Λ +p+X ^{a)}	Ŷ	0-I.5	3,240,2		2,83 <u>40,10</u>	3,38+0,07	
	P.	0-0,8	7,0±0,3		6,36 <u>4</u> 0,19	5,59±0,11	
]K⁺p-^ +⊼ +X	4	0~I,4	2,6±0,4		2,39±0,14	$3, I7_{\pm}0, I0$	T
	<	0-2,2	3,0±0,4		2,46±0,II	3,27±0,10	
]K ⁺ p →K ⁺ +Λ +X	цЯ	9'2-0	2,2±0,5	5,5 <u>+</u> 0,9	2,45 <u>+</u> 0,II	7,04+0,65 3,I6+0.II	9.06+0.8I
	۷	0-2,2	3,20 <u>+</u> 0,12		2,90 <u>+</u> 0,04	3,37+0,04	
$K^+p \rightarrow K^n + \Lambda + X$	и Ж	0-2,2	3,6±0,4		3,55 <u>+</u> 0,I8	4.68+0. 15	
	<	0-I,8	3,0 <u>+</u> 0,5		2,22±0,12	3,35±0,10	
K^{T} $p \rightarrow K^{T} + p^{0+X}$	<u>م</u>	0-2,2	3,8±0,3		3,60±0,03	4,4I <u>+</u> 0,03	
	2	0-I,8	2,9±0,2		2,55±0,02	3,38+0,02	
KTp-K"+ \$ +X "	°.	0,1-0	4,9 <u>4</u> 1,1		4,I2 <u>+</u> 0,I2	4,93 <u>+</u> 0,I2	
	θ	0-I,4	3,2 <u>+</u> 0,5		2,69±0,08	3,23±0,08	
KTp-K" +K890+X	2. 1	0-2,2	4,8±0,7		3,65±0,04	4,68+0,04	
7	068,	0-2,2	3,1 <u>+</u> 0,4		2,53±0,03	3,45±0.03	
K ^T p-K ["] +K ⁿ +X	"H	0-I,5	3,6 <u>+</u> 0,3	9,0 <u>+</u> 3,2	2,36 <u>+</u> 0,08	7,54±0,45 3,21±0,06	9,75±0,49
а) _П ри огранич. о)При х(ф) ≽0,	ании на 2.	лаб. импульс 1	протона р _{лаб}	<1,2 TaB/6	ė		

:

10

<u>Таблица 3.</u> Экспериментальные значения параметра асимметрии А_ф в двухчастичных инклюзивных К⁺р-реакциях при 32 ГэВ/с вместе с предсказываемыми значениями в ЛМКІ и ЛМК2

Реакция	Аф(эксп.)	A_{ϕ} (JMKI)	$A_{\phi}(IMK2)$
$ \begin{array}{c} \mathbf{K}^{+}\mathbf{p} \rightarrow \mathbf{K}^{n} + \mathbf{p} + \mathbf{X} \\ \rightarrow \mathbf{K}^{m+1}_{890} + \mathbf{p} + \mathbf{X} \end{array} $	0,17 <u>+</u> 0,02	0,05 <u>+</u> 0,0I	0,20 <u>+</u> 0,0I
	0,22 <u>+</u> 0,06	0,06 <u>+</u> 0,0I	0,25 <u>+</u> 0,0I
$ \overrightarrow{\Lambda} + p + X \overrightarrow{K}^{0} + \phi + X \overrightarrow{\Lambda} + \Lambda + X \overrightarrow{K}^{n} + K_{890}^{*+} + X $	0,I9 <u>+</u> 0,04	0,I3 <u>+</u> 0,03	0,23 <u>+</u> 0,02
	0,6 <u>+</u> 0,2	0,43 <u>+</u> 0,02	0,35 <u>+</u> 0,02
	0,3 <u>+</u> 0,I	0,45 <u>+</u> 0,04	0,38 <u>+</u> 0,02
	0,2 <u>+</u> 0,I	0,27 <u>+</u> 0,0I	0,24 <u>+</u> 0,0I
$ \begin{array}{c} \neg \mathbf{K}^{\mathbf{n}} + \bar{\mathbf{\Lambda}} + \mathbf{X} \\ \neg \mathbf{K}^{\mathbf{n}} + \mathbf{\Lambda} + \mathbf{X} \\ \neg \mathbf{K}^{\mathbf{n}} + \mathbf{K}^{\mathbf{n}} + \mathbf{X} \end{array} $	0,2 <u>+</u> 0,I	0,18 <u>+</u> 0,04	0,16 <u>+</u> 0,03
	0,23 <u>+</u> 0,03	0,29 <u>+</u> 0,01	0,28 <u>+</u> 0,01
	0,I8 <u>+</u> 0,04	0,28 <u>+</u> 0,01	0,24 <u>+</u> 0,01

ЛИТЕРАТУРА

- Ajinenko I.V. et al. Z. Phys. C. Particles and Fields, 1984, v.23, p.307.
- Ajinenko I.V. et al. Z. Phys. C Particles and Fields, 1954, v.25, p.103.
- 3. Chliapnikov P.V. et al. Phys. Lett., 1983, v.130B, p.432.
- 4. Ажиненко И.В. и др. ЯФ, 1984, т.39, с.1448.
- 5. Князев В.В. и др. ЯФ, 1984, т.40, с.1460.
- 6. Ажиненко И.В. и др. ЯФ, 1985, C.41, с.338.
- 7. Ажиненко И.В. и др. ЯФ, 1985, т.41, с.925.
- 8. Князев В.В. и др. Препринт ИФВЭ 85-90, Серпухов, 1985.
- 9. Ажиненко И.В. и др. Препринт ИФВЭ 85-108, Серпухов, 1985.
- 10. Andersson B. et al. Nucl. Phys., 1981, v.B178, p.242;

- Phys. Rep., 1983, v.C97, p.31.

- 11. Sjöstrand T. Comp. Phys. Comm., 1982, v. 27, p. 243.
- 12. De Wolf E.A. et al. Nucl. Phys., 1984, v.B246, p.431.
- Ajinenko I.V. et al. Z. Phys. C Particles and Fields, 1980, v.4, p.285.
- 14. Saudraix J. et al. Z. Phys. C Particles and Fields, 1980, v.5, p.105.
- Althoff M. et al. Z. Phys. C Particles and Fields, 1984, v.26, p.157.

- 16. Ajinenko I.V. et al. Nucl. Phys., 1980, v.B162, p.61.
- 17. Laurent J. et al. Nucl. Phys., 1979, v.B149, p.189.
- 13. Ajinenko I.V. et al. Nucl. Phys., 1980, v.B176, p.51.
- Ajinenko I.V. et al. Z. Phys. C Particles and Fields, 1980, v.5, p.177.
- 20. Chliapnikov P.V. et al. Z. Phys. C Particles and Fields, 1982, v.12, p.113.
- 21. Chliapnikov P.V. et al. Nucl. Phys., 1980, v.B176, p.303.

Рукопись поступила 27 декабря 1985 г.

А.Г.Томарадзе и др.

Систематика распределений по поперечным импульсам и азимутальные корреляции в инклюзивных К⁺р-реакциях при 32 ГэВ/с.

Редактор Н.В.Ежела. Технический редактор Л.П.Тимкина. Корректор Т.Д.Галкина.

Подписано к печати 14.03.1986 г. Т-08627. Формат 60х90/16. Офсетная печать. Печ.л. 0,75. Уч.-изд.л. 0,70. Тираж 260. Заказ 465. Индекс 3624. Цена II коп.

Институт физики высоких энергий, 142284, Серпухов Московской обл. Цена II коп.

Индекс 3624

Tanker.

' e

ПРЕПРИНТ 86-54, ИФВЭ, 1986