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The nucleus is described as consisting out of relati-
vistic nucleons and explicit mesonic degrees-of-free-
dom which are considered to be the relativistic genera-
lisation of the Skyrme force. The meson-parameters can
be adjusted such that the model gives an excellent
description of spherical nuclear ground states. First
axially symmetric deformed calculating arelgresented.
Dynamic calculations of relativistic ~°0 - 70 scatter-
inrg are also done; they show pronounced effects of the
mesonic degrees-of-freedom.
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1, INTRODUCTION .

Classical Mean-field theories, e.g. Skyrme-Hartree-Fock,
/QF 78/, heve proven to be a useful basis for static and dy-
namic properties of nuclei. It is interesting to investigate
also a relativistic Mean-Field model where the nucleons
obey the Dirac-equation and the forces are mediated by ex-
plicit mesonic degrees-of-freedom. In fact such a relati-
vistic treatment is almost as old &s classical models
/MG72, Wa74/ and it has since been studied extensiiely; for
a recent review see /SWB5/.

In this contribution we look at the relativistic Mean-
Field model from many aspects. fFirst, we investigate the
ability of the theory to describe nuclear ground-staste
properties /PRRB6&/; this is doné systematically by means of
lesst-squares fits to experimental data, and, of course,
we restrict this study to spherical nuclei in order to re-
duce ths expenses. Second, we look &t the properties of de-
formed nuclei within the relativistic approach; these are
first exploratory caiculations for light nuclei /leg6/.
Third, we study dynamic properties for the example cf a re-
lativistic 160 - 160 collision /CRES/.

The paper is outlined as follows: In section 2 we ex-
plain the thecry. In section 3, we explain the computation
of observables. In section 4, we present the fits to
(spherical) nuclesr data. ln section 5, we show the result

of deformed calculations. And in section 6, we discuss the
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relativistic heavy-ion collision.
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2. THE RELATIVISTIC MESON-FIELD MODEL

We want to describe the nucleus as a relativistic system
consisting of nucleons which obey the Dirac equation, and of
mesons which mediate the internucleon forces. From the many
possible mesons w2 choose & few with simple internal quan-
tum numbers (spin O or 1, isospin O or 1, nc strangness)
and with low mass; these are

an isgscalar-scalar (o) meson field ¢ ,

an isascalar-vector (w) meson field \Iu ,

an isovector-vector (p) meson field Ru s

and the phaton field Au .

One misses the n-field in that list as well as the n-mesons.
These are pseudascalar mesons, and therefore they have
vanishiry evpectation value for the ground state of nuclei
and nuclear mstter (unless parity were broken which is very
unlikely). Thus pseudoscalar mesons will not contribute in
a Mean-Field approximation and we neglect them in the fol-
lowing.

We choose always the simplest coupling of the mesons,
selected above, to the nucleons. For the scalar meson field
we also include a cubic and quartic nonlinear self-coupling
in order tao give the model sufficient flexibility to de-
scribe nuclear response features /8B77/. Altogether the

model Lagrangian density reads (in units fzc=1)
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where ¥ is the nucleon field and W:w+Yo; the Yuare the usu-
al Dirac matrices /BD 64/. The first line describes the
free nucleon Lagrangian and the other lines are the meson
Lagrangians with their couplings to the nucleons (zrd the
self-couplings of the scalar meson). It is a formidable
task to determine the full quantal dynamics of thke Lagrean-
gian (1). It would have to include all many-body-effects,
namely

self consistent field,

exchange diagramms,

two body correlations (ladder diagramms),

core polarisation {bubble diagramms), etc,
and all guantum field effects, namely

vacuum polarisation,

mass renormalisation,

charge renormalisation, etc..
In fact, that is an almost impossible task; and it is use-
less as well, because we know that nucleons and mesons are
not the basic constituents of matter. The Lagrangian (1) is
to be considered as being just a phenomenalogical Lagran-
gian for a relativistic nuclear model and it makes most
sense in connection with approximations.

We employ first the

Mean-~Field approximation: &~ B, U” + v“,

R + R, 4 + a4, (2;
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i.2. all meson fields are treated as classical c-number
fields. Accordingly the nucleon currents become c-number
currents, {y + oS = <[y> etc, and the ground state expecta-
tion values <...> can be expressed by lhe nucleon single
particle weve functions 9y .0
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where Xq T+ % below the Fermi-energy and Yo T - % above

the Fermi-energy. With the Mesn-Field approximation we re-
tain from all the many-body effects only the self consistent
field and from all quantum field effects just the vacuum
palarisation. That is a most dramatic simplification of the
task.

The vacuum polarisation is hard to evaluate since it
involves a sum over a continuum of states, see the schematic
plot of the nucleon spectrum in fig. 1. The vacuum poleri-
sation is an accumulated effect from the infinity of nega-
tive-enerqgy states /CH 77/. The predominant self-consistent
field is build from the few occupied positive-energy bound
states which correspond to the tonventional nuclear shell
model states. We come down to a masnageable set of equations

by neglecting the vacuum polarisstion, i.e. we employ the

"

=
No-Sea approximation: Ly (a)
znto a

where a}l sums accumulating nuclecn densities runm over the
shell model states only.

By variation of the model Lagrangian (1) and employing
the Mean-Field approximation (4) we oblain the coupled

equatilons for the nucleon wave functions @a and for the
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Fig. ], Schematic specirum of the Dirac equetion for the nuclecrs.
The positive energy bound state exhibil a cne-10-one correspcn-
dence 10 1the uizies of a classical nuclezr che)) mode). This is
indicated by denoting these siztes with the usvel specirescopic
quantum numbers. The potential for negztive energy flztes czn
a)so support bound states 2s indicated
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meson fields ¢4, V , R and A :
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Note that an occupation weight " has been implemented in
the sums for the nucleon densities. This is to give the mod-
el the flexibility to describe also non-magic nuclei. In
practice we are using a schematic pairing within the con-

_1/2. fFor

stant gap approach with a gap &4 = 11.2 MeV A
closed shell nuclei, of course, we set L 1 throughout.
Note furthermore that proton- and neutron-wave-functions
usually do not mix; then only the t; -~ component in
tine isovector current pu exists and only the Ro,u field
component needs to be retained.

The egqs. (5) still embrace all possible applications.
For dynamical calculations, e.qg. of relativistic heavy ion
ctollisions, they are to be treated to full extend. for

static application, the egs. {5} can be simplified:
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the meson fields are independent of time, thus é%? ¢ = 0 ete
and the rucleon wave functions are stationary, thus

i;—Fpu :cuq;0 wita €y being the single partircle erergy;
furthermore the space-vector parts of meson fields ianish,
i.e. only V,,Ry,, and A, need to be treated. fFor spherical
static calculation the problem becomes eien simpler: the
fields are rotational invariant, $ (r)+® {|r{) etc, and the
nucleon wave functions separate into radial function and
spinor spherical harmonies.

Altogether the relativistic Meson-field model consists
out of the Lagrangian {1) together with the zpproximstions
(2} and (4). Thus the Lagrangian is an effective Lagrancian
for relativistic Mean-Field calculstion. This is a similar
situation as with the Skyrme force which is an effectiie
force for classical nuclear Mean-field calculations: the
structure of the Lagrangian is inspired by theoretical con-
siderations; the parameters therein, however, are consider-
ed as being free parameters of the model to be adjusted to
observable nuclear properties. The free parameters of tnre
relativistic Lagrangian (1) are the meson-masses LALN
and me and the couplings 9. gv,gR,bzand b3. The photon
coupling e 1s fixed tu the known value by requiring that
the nuclear Coulomb field hss the right asymptotics. Due
to the Mean-Field spproximation (2) there is no nucleor-

mass renormalisation and we can fix the experimentzl value

my = 938.9 Mev 6
a8s an average ol proton and neutron mass. The free model
parameters sre to be fixed by fits to observable nuclear

ground-state properties. We make the experience, that the
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masses of the w- meson and of the g-meson are rzther insen-
sitive to the data. Thus we fix them at nearly the OBEP
values /Ho 81/
m = 780. MeV ' (7)
mo = 763. HMev . (8)
and we are left with the 6 free model parameters Mer Ogs

gv. gR, b2 ard b3 to be adjusted.

3. THE GROUND-STATE QBSERVABLES

The solution of the egs. (5) delivers meson fields and nu-
cleon wave functions. From these we have to evaluate some
observables in crder to compare with experimental data. The
most obvious observable is the total energy of the system.
It can be derived from the Lagrangian (1) by standard

techniques ,/BD &5/; this yields
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For the static case one can omit again 6,0u,ﬁuand A“, and

)
let i T Y
the Mean-Field theory. If we determinme the occupation rur-

* e 0, The energy {(9) is the contritction from

bers L by pairing we have to sdd the pairing energy. Minal-
ly we hgve to sccount for a spurics centre-of-mass mction of
the nucleus in its own Mean-Field. This is done by subtrac-
ting a centre-of-mass correction to Lhe erergy

B2

3 - C.m.

c.m. 2mA

Altogether the tatsl energy is composed from three pieces as

= £ + E -t .

E MF Pair c.m.

total
1he energy is the only observable which can be derived con-
sistently from a given effective Lagrangian (and tre 1mplieg
approximations). All other observable, s e.q. formfactcrs

or transition moments, would need to know the exact trans-
formation from an "ab initjo" lagrangian to the effectiie
one, because the same transformstion should be applied to

the observable (which usually is a given "ab initic" cobject!.
This transformation includes all the neglected many bocy

and quantum field effects (see previous section;; they sre
often called correlations as it is everything beyond the
Mean-Field approximation. We do not kriow this correlzticn -
transformation since we just parametrize the effective Lag-
rangian. Thus the only solution we have is that we select
observables which can be expected to be insensitive to cor-
relations. We think that the bulk properties of the ruclesr
charge and mass distribution, as e.q. the radius, the sur-
face thickness, or the quadrupocle deformstion, are such ob-

servables.
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Radius and surface thickness are derived from the charge
formfactor of the nucleus. For the spherical calculastions,
the formfactor is obtained from the nucleon density (zero
component of the vector current) by 3 Fourier-Bessel trans-
formation

w

Fyla) = am 1!:dr rfjo(qr)ohtkr) (12)
where t = proton or t = neutron. The nuclear charge form-
factor is obtained by folding in the proton- and neutron-
formfactor /SSB0/ and unfolding the spurios centre-of-mass
motion /QF78,FRB6/. 1he radius R is then given by the first
zero of the charge formfactor

R = a.493/q') . RTIESIN (13)

and the surface thickness gis determined from the suppres-
sion of the first maximum compared to the formfactor of a

hard sphere with radius R,

2 JJI(qu)

2
¢ x5 log (Erﬁ?—TEET)
8 mC (14)

Fc(qm> = 1 Maximum

Note that the radius R is the diffraction radius and not

the r.m.s. radius. It is more related to the box-equivalent
radius and 1t has the advantage lhat the diffraction radius
1s most insensitive to correlation effects (folding does

not shift the zeroes of FC) /Fv B2, RF BS/. Both fourier
components, q(l)for R and ., for o, occur at lower q and

low q are less influenced by correlation effects than high q.

Thus we hope that R and o are appropriste observables for

11
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a Mean-Field Lheory.
The quadrupole moment is used as an observsble for de-

formed calculations. 1t is
020 =z fd}rrzYzo oo(r) / fd}roo(r) 15a)

where o is given by eq. (5c). The 020 has dimensions rmz.
The dimension less gquadrupole deformation 1s deriived from

onby

N 5 a2 _ _bn \
8 = B(l + o g°), B = ;;;7 020 VI5b)

where r is the r.m.s. radius for the nucleus.
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4. OPTIMISING GROUND STATE PROPLRIIES OF SPHERICAL HUCLEL

The salutiaon of the coupled field equations becomes fairly
simple for the ground-state (static limit! of spherical nu-
clei. With Lhe usual spherical representation /BD64/ znd
employing the imverse gradient step /RGBZ/ we have set up
a very fast program. Such that one can affort extensive and
systematic investigations of the model parameters.

As explained in Sect. 2, the model has the free para-
meters 9 bZ' b}, 9,» 9gr M,
these parameters such that the model r roduces as good as

m and Me- We want to adjust

possible measured ground state properties of nuclei: binding
energies and faormfactors. We do this by minimizing the

exp theory .2 2 .

N -0, /b On with re-

spect to the parameters of the theory. lhere the sum runs

squared deviation XZ = £ (0
n

over all chosen observables Dn. In experimental data analy-
sis the ADn is the statistical error on the data. Jn our
case, we cannot use just the experimental ertor becauss both
observabels, binding energy and formfactor, are measured
with @ much higher precision than any theory can reach, The
systemstical error is, so to say, too large. Therefore we
insert for an what we expect (o be the ability of the theory
to describe that observable Dn' This way we regulate the
relative weights of the contributions.

In table 2 we show the selection of the observables, their
experimental values and the adopted errors; their theoreti-
cal definition is outlined in s2ction 3. The selection cov-
ers a wide range 1n mass number, and some isotupic trends by
the isotopes of Ca and So In contrast to similar fits of

the Skyrme force /FRB6/ we do not include any explicit in-
formation about the spin-orbit splitting. A relativistic

theory should predict this properly without any further help.

P.-G. REINHARD ET1 AL

TABLE 1
Nurcleus Energy ( diffr, radius surface
f o [f
Cotay (Mev] R [fm] [fm]
16, - 177.8 2.977 0.839
40¢g - 3a2.1 3.865 0.978
48¢, - 416.0 3.564 0.881
oo - 506.5 4.356 0.911
S - 783.9 5.040 0.957
1o, - 988.7 5.537 0.947
]SESn -1.050.0 5.0 0.9C8
208, S1.6%6.4 6.806 0.500
sdopted 0.2% 0.5% 1.5%
error

Table 1: Selection of observables, their experimertal iazlces
and their adopted errors.

The xzjs minimized by standard techniques ,/Be69/. We ha.e
performed the xz-fils under some verying conditions, as ex-
plained below. The results for the achieved precision :n

£, R and ¢ are compiled in fig. 2. First we concentrate on
the "standsrd fit" including all data and computing all ob-
servables as explained above (dermoted by a full circle ® .
The resulting parameters sre: m_=488.176 MeV:Z.b?BDEfm‘I,

g =10.0409, b2=13.3h51fm-1, by=-39.6023, g =12.5091 ang
gD:9.6991. The model is obviously capable to adjust a \ery
good description of nuclear ground state properties, with

an error of 0.35% in o . This precision can compete with

the quality of the best adjusted Skyrme forces /BQBZ, FRE8&/.
1t is importent to note that the nonlinear scslar self-
couplings are needed to obltain this precision . A similar
fit with fixed bZ:D and b}:O yields an average errcr in [

af 2%, in R of 1.4% and in o of 22%. It is obvious that tre

surface ¢ is more critical in the fit thsn energy [ and
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Fig. 2: The relative errors in £, R and o for the eight fit
nuclel, drawn versus mass number A. The extra column & means
the direct average of the deviation and /& the mean-square
error. The various fits are denoted by different symbols as
explained in the above box.
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radius R. To estimate its effect we have performed a fit
which includes only £ and R as data, see the cpen circles
(Q) in fig. 2. This allows to fit the energy £ much better
for the radius R the effect is mixed with a slight cierall
improvement, and the surface thickness o0 1s, of course lecs
well described, Note, heowever, that the quality of - tras
only moderatly worsened (from 3.5% to 5%) and that tnere

is a systematic shift to smaller surfsces for all nucles
(see also the column & 1n fag 2. The Mesn-Field model
seems to prefer steeper surfaces than observed in esper:-
ment .

And indeed 1t 1s well known thast effects bevond the
Mean-Field apgrcximation scften the surface, in particular
the ground-state cerrelations due to nuclesr cellective i~
bratjons /RFB5/. The dominant effect on the surface th:ck-
ness g comes from the collective surface vibrations, the
low lying 2¥states. Their vibrational width and with 1t
their effect on 3 can be estimated from the B(L2) valve for
the DI + 2; transition (RFB5/. We have corrected the exper:-
mental o for that effect and performed the fit with the ccr-
rected dsta. This yields the half-full circles (@) 1n
fig. 2. lhere 1s an cverall improvement in the fit, i1n par-
ticular for the precision on 0. Note that this 1marciencent
comes mainly from the three nuclei with large surface vi-~

BBN' 116 JZASn.

Sn and Further improvemert

bration, namely
is conceivable if one also accounts for the correlations
from ciant resonances. In any case we see that the fils
exhaust the Mean-Field model to the limits where correlation
effects are inevitable.

Some other kind of correlaticns have alresdy teen sm-
plemented in the way the charge formfacter is cemposecd: we

fold in the proton and the neutror formfactor and we acd
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the contribution of the nucleoric asngmalous magnetic moment
to the Coulomb field., The laltter piece cam be counted as a
Quantum field correlation effect (meson clouds). In order to
investigate the influence of the znomalous magnetic moment
we first have left ovt this contribution ir a calculation
with the “standard fit"“, given aboive; this yields the inver-
ted triangles (¥ ) in fig. 2. Nothing changes in E, of
course. lhere is systematic shift to larger radii and larger
surfaces, In the whole, the precision of the obseru.sbles

has not suffered very much. It can be restored completely

by fitting anew without the anomalous magnetic moment, see
the triangles (&) in fig. 2. Here we have an example of a
type of correlations which is just at the boundary of the
precisian of the model.

All fits show a similar tendency. The average ercor
column 3 in fig 2, is adjusted to almost zero and thus the
mean squared error, columnfgjz lives from the fluctuation
about the average. Nevertheless there is some systematics
in these fluctuations: the energy trend along isotopic
chains cannot be fully reproduced {see here the example Ca
and Sn, more in /RRB&/), and there in an overall trend in
R with A, Both unresolved trends hint that something is
missing in the model. These will be some rorrelations; it
is yet to be found out which ores.

It is interesting to look what the model predicts for
quantities which have not been included fits. The most pro-
minent of them are the properties of symmetric nuclear
matter. We show them, together with the predictions of some
other models, in table 2. The techniques of a least-squares
fit provides us also with an estimgte of the statistical
error on the prediction; this is given, pars pro toto, for
the “standard fit" in the table 2. Note that all the wvari-

1%
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atioms of the nonlinear relativistic model give virtually
the same prediction which sgrees fairly well with tre clas-
sical models, Skyrme-Hartree-fock and liquid drop; except
for the effective mass m;‘/mN which comes out alwgys very

low in the relativistic models (including the rel. Bruek-
kner-Hartree-fock}. The linear relativistic model (DZ:O’
b3=0) deviates strongly, in particulsr for energy £ and in-
compressibility K. It is interesting to note thzt the re-
lativistic B.H.F. calculatioms /BMB6&/ agree fairly well wath
the extrapolated Mean-Field predictions; excepl fcr the bin-

ding energy which seems to be a bit small.

TABLE 2

£/n [Mev]  eclfm?] K (ev) LN
Standard fat 16.20 0.1507 177.8 0.564

=0.05 =0.0009 =B =0.004
Fit with corr. O 16.19 0.1502 190. 0.56?
Fit without © 16.17. 0.1493 209. 0 5Ef
Fit without anom. 16.20 0.1502 199, 0.584
magn. moment )
Fit with bzzo,b =0 17.04 0.1629 SBa, D.§L9
Skyrme fit ZG/FABb/ 15.81 0.1627 233. 0.763
Relativ. Brueckner 15.32 0.161 201, 3.57
H.F. /BMB6/
Liquid drop model  15.95 0.145 212. -

Table 2: The bulk properties of symmetric nuclear ratter

at equilibrium for the various fits and for sore other mocel,
£/& is binding energy per particle, Po 1s the ruclecn den-
sity, K is the compressibility, and m;/mn is the effactive
mass.
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It is not enough space here to outline other features of
the model. We summarize them shortly, more details may be
found in ref. /RRB6/., The full model predicts & Mev spin
orbit splitting of the lp-level in 160 which is exactly the
experimental value. This is the great advsntage of the rela-
tivistic model compared to the clzssical models that the
spin properties are avtomaticaily implied and that no fur-
ther terms and psrameters are needed to adjust them. Note,
however, that only the full model gives this good descrip-
tion. The Jinear model fails badly predicting 11 MeV for
the spin-orbit splitting in lé0. There are two olher fea-
lures where the classical Mean-f1eld models failed: the le-
vel density near the Fermi-energy 1s systematically to low,
and the amplitude of the shell fluctuations on the nuclear
charge density is by a factor 2-3 to large. We have looked
at this in the relativistic model and find that they fail
exactly the same way as the classical models do. These are
very probably again effects which call for an inclusion of
cor-elations.

Altogether wc see that the relativistic model is as
flexible and powerful as the classical Skyrme-Hartree-fFock
description. [t allows the same marvelous reproduction of
nuclear ground-state data, and 1t sharec many of the
failures of the classical model, which all hint at corre-
lations {beyond Mean-Field). However, it is clearly superior
in predicting spin properties. furthermere 1t provides a
good basis for amy applicalion where relativistic wave

functions asre needed.
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5. DEFQRMED STATIC CALCULATIONS

The success of the spherical applications of the model mcti-
vates to do the next step in evaluating nuclesr properties:

the evalustion of deformed ground states. Before we cen har-
vest interesting results on the relativistic effects in de-

formation properties, we have to work out some involied

numerical techniques.

1ABLE 3

Nucleus E (Hév) r {fm) B comment

12C -94.1 1.99 -0.005

160 -128.9 2.29 0.006

160 -120.6 2.31 0.003 grid 0.25 fm
160 -11%.9 2.32 - spherical coce
20Ne -142.2 2.62 -0.54

20Ne -161.5 2.45 -0.20 vErious

20Ne ~166.4 2.54 0.42 injtial

20Ne -141.3 4.21 1.51 deformations
20Ne -121.9 7.20 2.39

24Mg -208.9 2.56 -0.20

40Ca -373.8 3.06 0.002

40Ca -358.72 3.09 - spherical code
48Ca -490.4 3.18 -0.0003

48Ca -u66.7 3.21 - sphericasl code

Table 3.: Results of calculations with the linear paramelri-
sation of ref.2: q_ =10.3, 9,° =12.6, m_=550, mv-iB} and

938 tev, :nc]ualng Coulomb force. If not comment ed
?herw:se an axial grid with a spacing of 0.5Mm has bren
used. The 8 is the dimensionless quadrupole deformsticn.
The r is the r.m.s. radius.

We represent the four components of the nucleon wsie fu~c-

tion and the meson fields on mn axial space grid. In order
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to avoid the fermion doubling /BMB3/ we have used shifted
grids for the four different compounents of the wave func-
tions, employing a shift by half a mesh spacing either in
z-direction or in r-direction or in both directions, As in
simjlar classical calculations /DKE1/ we derive consistent
field equations on the grid by first discretising lhe ac-
tion on the grid and then performing the \ariation., The
energy of c(he system is computed from the (discretized) ac-
tion by standard techniques of field theory. We restrict
all further considerations tc¢ the static case where all ob-
Jjects sre time-independent and in particular where all
space-vector parts of the vector fields vanish., In order

to employ the well established iteration techniques of
classical calvulations /RC82/ we transform the Dirac equa-
tion into an effective Schroedinger egquation (having an
energy-dependent msss), and we use then the damped gradient
iterstions /RC82/ ta find the (lgcal) minima of the action.
The getsils of the numerical procedure will be published
elsewhere /lLe86/.

In tzble 3 we show the resuvlts of the relativistic
sxially deformed calculations for various light nuclei.
Here the old linear parametrisation of Walecka /Wa76/ has
been used throughout, pnd the dimensionless quadrupole de-
formstion is defined as in eg. (l5). First we note that the
“standard" spherical nuclei, namely 160, 40Ca, and 48Ca,
come out to be spherical; the remsining small deformation
indicates the precision of the numerical representation.
Fur 160 we have compared two grid spacings, the standard
grid with 0.5fm and a finer grid with 0.25fm spacing. The
residual deformation is much smaller on the firer grid. N;
see aiso a dramatic change in the binding energy. This is

similar to classical calculation. The fine grid gives
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slready an excellent discription as ore sees from the com-
perison with the spherical results. Nevertheless we prefer
to use the "coarse" grid with 0.5fm spacing for reasors of
computing time. The overall effect is mainly an energy sraft
which may ‘e estimated from comparirng spherical and de-
formed results for 160, 40Ca and 48Ca.

The interesting results are those for the defcrmea ru-
clei. 20Ne snd 24Mg show substantiel deformations and they
are comparstle to classical calculstions /QF7B/ &and to cata.
For 12C we obtain negligible deformaztion. That is nct sa
surprising because 12C is ratker a soft nucleus than s de-
formed system, and the position of the actual defcrmaticn
minima depend sensitively on the forces used. In fact, ne
know that *he spin orbit splizting tencs to restore sgheri-
city snd that the parsmetrisa:ion used in tsble 3 has a
large spin-orbit force.

for 20Ne we have explore the whole rarge cof ax:slly
deformed local minima. This nci achieved by starting the
iterstion fraom various differstly deformed initisl config-
urations. The prominent minim.m comes out &t 5 = 0.42 1n
asccordance with classical re..ts. The occurrence of =,
less favorite, oblate minimu s also quite common. The next
oblate and prolate deformtiors are a bit surprising. lhey
may be due to the fact that w compute always clcsed shell
ruclei (with proper reorderir of course); a pairing fcorce
may smoothen some of these ex. emely ceformed min.ma. lhe
most prolate solution, however, may surviie beceuse 1t re-
presents quite clearly a chain of five a-particles locsely
bound to each other. This con.guration may be an effect of
the parametrisation which pro¢ wes a rather Jarge binding

for the a-particle.
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6.DYNAMICS OF 160-160 COLLISIONS

A relstivistic Mean-Field model is a natural starting point
for a microscopi. description of energetic heavy-ion col-
lisions. We have applied the model, &s outlined in section
2, to time dependent calculations of 160-160 scattering
/CRB5/. For these first exploratory calculations we have
used a slightly simplified Lagrangian: we omit the phaton,
the p-meson and the nonlinear self-couplings of the
C-meson, i.e. we use the linear mocel of ref /Wa72/. The
parameters are given in the table caption of table 3.

A few technical explanations are necessary:
We represent the meson fields and the baryon wave functions
on a three-dimensional (24x24x24) mesh in coordinate space.
Quantities in momentum space are ohitained by means of a fast
Fourier transform method. We employ isospin-degenerate
nucleon wave functions and treat the spin degrees of freedom
in the usual four-component spinar formalism. Thus we pro-
pagate eight independent fourcomponent wave functions for
each 160 aucleus. We use the relativistic static Hartree
wave functions for each of the 16O initial states. The nu-
clei are located at a separation distarce of 10 fm from each
other on the nesh, and are Lorentz boosted to the appropri-
ate initial energy in the center-of-velocity frame. The
time evolution for the baryon wsve functions is done with
a fifth~crder predictor-corrector in momentum space and the
meson equations are solved simultsneously by Green's func-
tions techniques. With the above mesh, the momentum-space
truncation occurs at about 2 GeV/c. As a test of Lhe ac-
curacy of our numerical techniques we evaluate the total
energy ¢t each time step in the evolution, and note that

5

it is constent to better than Ix10"". We have also
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evaluated the continuity equation at each point in time to

further guaran®.e the correctness of our solutions.

1=4.61m/c

{fm)

y(fm)

FIG. 3. Countour snapshols of the coordinate-space
baryon density ps(x =0,y.2,1), in the scaltering plane for
Q{6004 MeV, b=2 fm) +'%0. The maximum density is
0.29 fm=? and is attained at 6 fm/c. The values of the den-
sity contours are as follows: solid curve, 0.26 fm~ dashed
curve, 0.10 fm™~7; dot-dashed curve, 0.04 fm~?; large-dotied
curve, 8.014 fm~3; and small-dotled curve, 0.005 fm-?.

We have studied with this approach collisions of
16D(Elab:JDD, 600, and 1200 MeV/nucleon) +160 at various
impact parameters. The time evolution is followed until the
expanding matter reaches the edges of the mesh. We show in
Fig. 3 the time evolution of the spatial baryon gensity fer
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Elab:GDO MeV/nucleon and b=2 fm. The early tim. behavior in
the approach is similar to that obtained by use of non
relativistic TDHWF. Subsequently, a compression zone and
sideward flow develop (between tz=6 and 10 fm/c), after

which the system proceeds to undergo spallation. This result
can be contrasted with TDHF calculations at medium energies
where projectilelike ar targetlike fragments emerge after
the reaction /SC80/. The sicdewsrd flow observed in the pre-
sent approach resembles the large transverse-momentum trans-
fer predicted by nuciear fluid dynamics /SMBO/ and the VUU
approach, /MS85/.

Both, the total spallatian af the nuclei and the strong
collective sidewsrd flow, are caused by the meson field be-
ing own degrees-of-freedom. We find that the c- and w-meson
fields develop strong out-of-phsse oscillations in space
and time, soon after the maximum compression noint. The nu-
cleons are deflected by these cscillations in fields. The
strong space - time ascillations destroy the nucleon-nucleon
binding and produce the spallation. The strongest meson
fields are concentrated near the crigin and that gives rise
to the sideward flow.

Altogether the recult of the relativistic Mean-fField
dynamics are half-way between classical TDHF calculations
and fluid dynamics. The mesonic degrees-of-freedom seem to
procuce effects which are usualdy expected from two-body
correlations. They do nmot produce enough to reach the fluid
dynamics limit. Probably some two-body correlations have
still to be added. But certainly the relation between two -
body effects and Hean-Field will be different in relati-
vistic and in classical madels. lhat is an interesting task

for further studies.
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7. CONCLUSION

1t has been shown that the relativistic Mean-Field theory
is as capable in reproducing the buik propertins of nucles
as the classical Skyrme-Hartree-fFock model. A .ery precise
description can be achieved with an error of 0.35% for the
energies, of 0.6% for the radii, snd of 3.9% for the sur-
face thicknesses. Studying mmdifications of the model (sur-
face vibrations, anomalous magnetic momerts) we could show
that the fit has exhausted the possibilities of a Mean-
Field model, and any step further needs to consider cor-
relations of various sorts. We want to point cut the adivan-
tage of relativistic over classical models thst all spin
properties (in particular the spin-orbit force) are implicit
in the theory without requiring extra terms and extra para-
meters.

The relativistic model produces reasonzble deformations
roughly comparable to results of classical calculations.
There are differences in detail which deserve furt-er stu-
dies of model and force dependence of the deformation-ener-
gy surfaces.

The dynamic calculetions show the most pronounced re-
lativistic effect namely that the mesons, being ncow dynami-
cal degrees-of-freedom of its own, produce part of the
effects which are usually expected from two-body collisions.
We observe complete spallation of the nuclei and pronounced

collective sideward flow.
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