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The nucleus i s described as consist ing out of r e l a t i -
v i s t i c nucleons and e x p l i c i t mesonic degrees-of-free-
dom which are considered to be the r e l a t i v i s t i c genera-
l i sa t i on of the Skyrme force. The meson-parameters can
be adjusted such that the model gives an excellent
descript ion of spherical nuclear ground states. F i rs t
ax ia l l y symmetric deformed calcu lat ions are.presented.
Dynamic calculat ions of r e l a t i v i s t i c 0 - 0 scat ter -
ing are also done; they show pronounced ef fects of the
mesonic degrees-of-freedom.

Classical Mean-Field theories, e.g. Sk)rme-Hartree-Fock,

/0F78/, hen. proven to be a useful basis for s ta t i c and dy-

namic properties of nuc le i . I t i s i n te res t i ng to in ies t iga te

also a r e l a t i v i s t i c Mean-Field model where the nucleons

obey the Dirac-equation and the forces are mediated by ex-

p l i c i t mesonic degrees-of-freedom. In fact such a r e l a t i -

v i s t i c treatment is almost as old as c lass ica l models

/MG72, Wa7V and i t has since been studied extensively; for

a recent review see /SW85/.

In this contr ibut ion we look at the r e l a t i v i s t i c Mean-

F ie ld model from many aspects. F i r s t , we invest igate the

a b i l i t y of the theory to describe nuclear ground-state

propert ies /RR86/; th is is done systematical ly by means of

least-squares f i t s to experimental data, and, of course,

we r e s t r i c t th is study to spherical nuclei i n order to re-

duce tha expenses. Second, we look at the propert ies of de-

formed nuclei w i th in the r e l a t i v i s t i c approach; these are

f i r s t exploratory calculat ions for l i gh t nuclei / l.eS6/.

Third, we study dynamic propert ies for the example cf a re-

l a t i v i s t i c 160 - J 60 c o l l i s i o n /CR85/.

The paper i s out l ined as fol lows: In sect ion 2 we ex-

p la in the theory. In section 3, we explain the computation

of observables. In section it, we present the f i t s to

(spherical) nuclear data. In section 5, we show the resul t

of deformed ca lcu la t ions. And in section 6, we discuss the

relativistic heavy-ion collision.
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2. THE RELATIVISTIC MESON-FIELD MODEL

We want to describe the nucleus as a r e l a t i v i s t i c system

cons is t ing of nucleons which obey the Dirac equat ion, and of

tnesons which mediate the in ternuc leon forces. From the many

possib le mesons we choose b few w i th sample i n t e r n a l quan-

tum numbers (sp in 0 or 1 , isosp in 0 or 1 , nc strangness)

and wi th low mass; these are

an i sosca la r - sca la r (o) meson f i e l d t ,

an i s o s c a l a r - v e c t o r (u) meson f i e l d \l ,

an i sovec to r -vec to r (p) meson f i e l d R ,

and the photon f i e l d A

One misses the n - f i e l d i n that l i s t as we l l as the i-|-mesons.

These are pseudoscalar mesons, and therefore they have

van ish i rg expectat ion value for the ground s ta te of nuc le i

and nuclear matter 'un less p a r i t y were broken which i s very

u n l i k e l y ) . Thus pseudoscalar mesons w i l l not con t r i bu te i n

a Mean-Field approximation and vie neglect them i n the f o l -

lowing.

We choose always the simplest coupl ing of the mesons,

selected above, to the nucleons. For the scalar meson f i e l d

we also include a cubic and quar t i c nonl inear s e l f - c o u p l i n g

i n order to give the model s u f f i c i e n t f l e x i b i l i t y to de-

scr ibe nuclear response features /6B77/ . A l together the

model Lsgrangian dens i ty reads ( i n u n i t s f i=c=l)

X

\ [O £3 * m

2 l v
-3 \l

n u v
- g

yv
( 1 )
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( 1 )

where <|) i s the nucleon f i e l d and ?'=i|i+"roi the y are the usu-

a l Dirac matrices /BD 64/'. The f i r s t l i n e describes the

f ree nucleon Lagrangian and the other l i n e s are the meson

Lagrangians wi th t h e i r coupl ings to the nucleons (and the

se l f - coup l i ngs of the scalar meson). I t i s 3 formidable

task to determine the f u l l quantal djnamics o f the Lagran-

gian ( 1 ) . I t would have to inc lude a l l many-body-ef fects,

namely

self consistent f i e l d ,

exchange diagramms,

two body correlations (ladder diagramr.s),

core polar isat ion (bubble diagrsmms), etc,

and a l l quantum f i e l d e f fects , namely

vacuum polar isat ion,

mass renormaiisation,

charge renormaiisation, e tc . .

In fact , that is an almost impossible task; and i t is use-

less as wel l , because we know that nucleons and mesons are

not the basic constituents of matter. The Lagrangian (1) is

to be considered as being just a phenomenological Lagrsn-

gian for a r e l a t i v i s t i c nuclear model and i t makes most

sense in connection with approximations.

We employ first the
Mean-Field approx imat ion: $> -- $, 'J • 1/ ,

R * R , A - A , ( 2 ;
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i .s . a l l meson f ields are treated as classical c-number

f:elds. Accordingly the nuclron currents become c-number

currents, etc, and the ground state expecta-
s

tion values <...> can be expressed by the nucjeon single
particle wave functions if , e.g.

(3)

where v = + -= below the Fermi-energy and v = - 4 aD°ve

the Fermi-energy. With the Mean-Held approximation we re-

tain from a l l the many-body effects only the self consistent

f ie ld and from a l l quantum f ie ld effects just the vacuum

polarisation. That is a most dramatic simpl i f icat ion of the

task.

The vacuum polarisation is hard to evaluate since i t

involves a sum over a continuum of states, see the schematic

plot of the nucleon spectrum in f i g . 1, The vacuum polar i -

sation is an accumulated effect from the i n f i n i t y of nega-

tive-energy states /CH 111. The predominant self-consistent

f ie ld is bui ld from the few occupied positive-energy bound

states which correspond to the conventional nuclear shell

model states. We come down to a manageable set of equations

by neglecting the vacuum polarisgt ion, i .e. we employ the

No-Sea approximation:
A

a=l"

where all sums accumulating nucleon densities run over the

shell model states only.

By variation of the model Lagrangian (1) and employing

the Mean-Field approximation (4) we obtain the coupled

equations for the nucleon wave functions a and for the
a
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Fig. J. Schematic fptcirum of the Dirac cquaiicn fcr ihe nuclccr.s.
The positive energy bound sisic exhibit a onc-io-one co:re<pcr,-
dence lo ihe sisies cf a classical nuclear shell model. Th:s is
indicaied by denoiing lhese slates wiih the usual specitcsccpic
quantum numbers. The potential for negative energy 'tales an
also suppon bound states as indicated
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meson f i e l d s J , M , R and A :

1+T (5a)

m

2 i

(5c)

Note that an occupation weight w has been implemented in

the sums for the nucleon densities. This is to give the mod-

el the flexibility to describe also non-magic nuclei. In

practice we are using a schematic pairing within the con-

stant gap approach with a gap A = 11.2 HeV A . For

closed shell nuclei, of course, we set w = 1 throughout.

Note furthermore that proton- and neutron-wave-functions

usually do not mix; then only the T3 - component in

the isovector current p exists and only the R field
|i e 111

component needs to be retained.

The eqs. (5) still embrace all possible applications.

Tor dynamical calculations, e.g. of relatitis tic heavy ion

collisions, they are to be treated to full extend. For

static application, the eqs. (5) can be simplified:

P.-G. REINHARD ET AL

the rieson fields are independent of time, thus \'> c = 0 etc
et*

and trtfc rucleon wave functions are stationary, thus
i *—rw =e u) iiiii c being the single particle enemy,
g tTa a a a

furthermore the space-vector parts of meson fields vanish,

i.e. only Vo,Ro,0 and Ao need to be treated. For spherical

static calculation the problem becomes even simpler: the

fields are rotational invariant, $ (r) -H)> (| r j) etc, and the

nucleon wave functions separate into radial function and

spinor spherical harmonies.

Altogether the relativistic Meson-Field model consists

out of the Lagrangian il) together with the approximations

(2) and (4). Thus the Lagrangian is an effective Lagrangian

for relativistic Mean-Field calculation. This is a similar

situation as with the Skyrme force which is an effective

force for classical nuclear Mean-Field calculations: the

structure of the Lagrangian is inspired by theoretical con-

siderations; the parameters therein, however, are consider-

ed as being free parameters of the model to be adjusted to

observable nuclear properties. The free parameters of tne

relativistic Lagrangian (1) are the meson-masses m m

and mR and the couplings g , g ,gR,b?and b_. The photon

coupling e is fixed tu the known value by requiring that

the nuclear Eoulomb field has the right asymptotics. Due

to the Mean-Field approximation (2) thtre is no nucleon-

mass renormalisation and «e can fix the experimental value

= 938.9 MeV •.6;

as an ave rage o f p r o t o n and n e u t r o n mass. The f r e e model

p a r a m e t e r s a r e t o be f i x e d by f i t s t o o b s e r v a b l e n u c l e a r

g r o u n d - s t a t e p r o p e r t i e s . We make t h e e x p e r i e n c e , t h a t t he
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masses of the L.1- meson and of the c-meson are rather insen-

sitive to the data. Thus ive fi» them at nearly the OBEP

values /Ho 81/

m = 7B0. Mel'

mR z 763. MeV

(7)

(8)

and we are left with the 6 free model parameters m , o .
v s y s ',, b, and b, to be adjusted.

3. THE GR0UM1-STATF. QBSERV'ABLES

The solution of the eqs. (5) delivers meson fields and nu-

cleon w3\je functions. From these we have to evaluate some

observables in order to compare with experimental data. The

most obvious observable is the total energy of the system.

It can be derived from the Lagrsngian (1) by standard

techniques ,'BD hbl\ this yields

(9)

n v

2[ A
2 l |i

R u.
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For the static case one can omit aqain ,R and A , and

l e t i —.- ip •* c f> • The ene rgy ( 9 ) i s t h e c o n t r i b u t i o n f r om
c t Q 0. a

the Mean-Field theory. I f we determine the occupation num-

bers w by p a i r i n g we have to add the p a i r i n g eners \ . f i n a l -

l y we have to account for a spurios centre-of-mass motion of

the nucleus in i t s own Mean-Field. This i s done by subt rac-

t i ng a centre-of-mass co r rec t ion to the energy

<P2 >
cm.ZmA

Altogether the total energy is composed from three pieces as

Etotal r CHF EPair "" Ec.m.

lhe energy is the only observable which can be denied con-

sistently from a given effective Lagrangian (and the implied

approximations). All other observable, ss e.g. forr.factcrs

or transition moments, mould need to know the e>act trans-

formation from an "ab initio" Lagrangian to the effective

one, because the same transformation should be applied to

the observable (which usually is a given "ab initio" object).

This transformation includes all the neglected many bod>

and quantum field effects (see previous section}; they are

often called correlations 93 it is everything beyond the

Mean-Field approximation. We do not know this correl-ticn -

transformation since we just parametrize the effective Lag-

rangian. Thus the only solution we have is that we select

observables which can be expected to be insensitive to cor-

relations. We think that the bulk properties of the nuclear

charge and mass distribution, as e.g. the radius, the sur-

face thickness, or the quadrupole deformation, are such ob-

servables.
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Radius and surface thickness are derived from the charge

formfactor of the nucleus. Tor the spherical calculations,

the formfactor is obtained from the nucleon density (zero

component of the vector current) by a Fourier-Bessel trans-

formation

F. (q) = 4n fdr r j (qr)p ,lr ! (12)

where t = proton or t = neutron. The nuclear charge form-

factor is obtained by folding in the proton- and neutron-

formfactor /SS8G7 and unfolding the spurios centre-of-mass

motion /QF78,FR86/. lhe radius R is then given by the first

zero of the charge formfactor

R = 4.493/qu: , < ^ == 0 (13)

and the surface thickness ois determined from the suppres-

sion of the first maximum compared to the formfactor of a

hard sphere with radius R,

2 2 3 j l ( q m R )

o Z -- 4 log (- ' m- *

F ( = 1 Maximumc (\> =

Sote that the radius R is the diffraction radius and not

the r.m.s. radius. It is more related to the box-equivalent

radius and it has the advantage that the diffraction radius

is most insensitive to correlation effects (folding does

not shift the zeroes of F-) /FU 62, RF 85/. Both fourier
(1)components, q for R and q for 0, occur at lower q and

low q are less influenced by correlation effects than high q.

Thus we hope that R and o are appropriate observables for

P.-G. REIN'HARD ET AL

a Mean-Field theory.

The quadrupole moment is used as an observable for de-

formed calculations. It is

= Jd3rrZV2Q Dfl(r) / /d
3rpn(r) ,15a)

, 2where D Q '
S given by eq. (5c). The 0 ? n has dimensions fm .

The dimension less quadrupole deformation is deriied from

Q2Oby

>1 5b)

where r is the r.m.s. radius for the nucleus.



R E L A T I V 1 S T I C M E A N ' - F J E L D T H E O R I E S . . .

4 . OPTIMISING GROUMO STATE PPOPERUES OF SPHERICAL HUCLE1

The solution of the coupled field equations becomes fairly

simple for the ground-state (static limit) of spherical nu-

clei. With the usual spherical representation /BD64/ snd

emplojing the inverse gradient step /RG82/ we have set up

a very fast program. Such that one can afforl extensive and

systematic investigations of the model parameters.

As explained in Sect. 2, the model has the free para-

meters g , b,, b,, g , gD, m ,m and mo. We want to adjust
5 z J v n 5 V K

these parameters such that the model r reduces as good as

possible measured ground state properties of nuclei: binding

energies and formfactors. We do this by minimizing the
squared deviation y2 = Z {0e*p - n l h e o r>') 2 /

n n

Q 2
 n j l n re_

n n n n

spect to the parameters of the theory. There the sum runs

over all chosen observables 0 . In experimental data analy-

sis the A0 n is the statistical error on the data. In our

case, we cannot use just the experimental error because both

observabels, binding energy and formfactor, are measured

with a much higher precision than any theory can reach. The

systematical error is, so to sa>, too large. Therefore we

insert for jOn what we expect to be the ability of the theory

to describe that observable 0 . This way we regulate the

relative weights of the contributions.

In table 2 we show the selection of the observables, their

experimental values and the adopted errors; their theoreti-

cal definition is outlined in section 3. The selection cov-

ers a wide range in mass number, and some isotopic trends by

the isotopes of Ca and Sn In contrast to similar fits of

the Skyrme force /FR86/ we do not include any explicit in-

formation about the spin-orbit splitting. A relativistic

theory should predict this properly without any further help.

P . - G . RE1NHARD ET AL

TABLE 1

Mur-leus

160
* Ca
Ca
Ni
ZT

124 5 n

, n HSn
208 p b

adopted
error

Energy
EL . , fHev]
total • '

- 127.6
- 342.1
- 4J6.0
- 506.5
- 7B3.9
- 988.7
-1.050.0
-1.636.4

0.25

diffr. radius
R [fm]

2.777
3.845
3.964
4.356
5.040
5.537
5.640
6.806

0.5?;

surface
O [fm]

0.839
0.978
0.B81
0.911
0.957
0.947
0.9DB
0.900

1.5?;

Table 1: Selection of observ-ables, their experimental values
and their adopted errors.

The X is minimized by standard techniques /Be69/. We have

performed the x -fits under some varying conditions, as ex-

plained below. The results for the achieved precision in

t, R and O are compiled in fig. 2. First me concentrate on

the "standard fit" including all data and computing all ob-

servables as explained above (denoted by a full circle • '.

The resulting parameters are: m =488.176 MeV=2.47805fm ,

s = 10.0409, .6023,

g =9.6991. The model is obviously capable to adjust a very

good description of nuclear ground state properties, »ith

an error of O.355o in o . Ihis precision can compete wi'h

the quality Df the best adjusted Skyrme forces /BQE2, rp-Bfc/.

It is important to note that the nonlinear scalar self-

couplings are needed to obtain this precision . A similar

fit with fixed b-=0 and b, = 0 yields an average error in E

of 2S, in R of 1.4S and in 0 of 23S. It is obvious that the

surface 0 is more critical in the fit than energy E and
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Fig. 2: The relative errors in E, R and a Tor the eight fit
nuclei, drawn versus mass number A. lhe extra column o means
the direct average of the deviation andf'i* the mean-square
error. Ihe various fits are denoted by different symbols as
explained in the above box.
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radius R. To estimate its effect we have performed a fit

which includes only E and R as data, see the open circles

( O ) in fig. 2. This allows to fit the energy E much better;

for the radius R the effect is mixed with a slight overall

improvement, and the surface thickness o is, of course less

well described, Note, however, that the quality of ;• has

only moderatly worsened (from }. 5% to i'i) and that there

is a systematic shift to smaller surfaces for all nuclei

(see also the column 5 in fig 2 } . The Mean-field model

seems to prefer steeper surfaces than observed in experi-

ment .

And indeed it is well known that effects be;ond the

Mean-Field approximation soften the surface, in particular

the ground-state correlations due to nuclear collective vi-

brations /RF85/. The dominant effect on the surface thick-

ness o comes from the collective burface vibrations, the

low l>ing 2 states. Iheir vibrational width and with it

their effect on o can be estimated from the B(E2) value for

the ot -» 2t transition /RF85/. We have corrected the experi-

mental o for that effect and performed the fit with the ccr-

rected data. This jields the half-full circles ! © ) in

fig. 2. There is an overall improvement in the fit, in par-

ticular for the precision on a. Note that this i nprcv ê .c-nt

comes mainly from the three nuclei with large surface vi-

bration, namely N, Sn and Sn. Further improvement

is conceivable if one also accounts for the correlations

from ciant resonances. In any case we see that the fits

exhaust the Mean-Field model to the limits where correlation

effects are inevitable.

Some other kind of correlations have already been j IT-

plemented in the way the charge formfactor is cc-posed: we

fold in the proton and the neutron formfactor and we 5L!J
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the contribution of the nucleonic anomalous magnetic moment

to the Coulomb field. The latter piece can be counted as a

quantum field correlation effect (meson clouds). In order to

investigate the influence of the anomalous magnetic moment

we first have left oi't this contribution i>- a calculation

with the "standard fit", given above; thjs yields the inver-

ted triangles ( T ) in fig. 2. Nothing changes in E, of

course. There is systematic shift to larger radii and larger

surfaces. In the whole, the precision of the observables

has not suffered very much. It can be restored completely

by fitting anew without the anomalous magnetic moment, see

the triangles (A) in fig. 2. Here we have an example of a

type of correlations which is just at the boundary of the

precision of the model.

All fits show a similar tendency. The average error

column 5 in fig 2, is adjusted to almost zero and thus the

mean squared error, column!? , lives from the fluctuation

about the average. Nevertheless there is some systematics

in these fluctuations: the energy trend along isotopic

chains cannot be fully reproduced (see here the example Ca

and Sn, more in /RRS6/), and there in an overall trend in

R with A. Both unresolved trends hint that something is

missing in the model. These will be some correlations; it

is )et to be found out which ones.

It is interesting to look what the model predicts for

quantities which have not been included fits. The most pro-

minent of them are the properties of iymmetric nuclear

matter. We show them, together with the predictions of some

other models, in table 2. The techniques of a least-squares

fit provides us also with an estimate of the statistical

error on the prediction; this is given, pars pro toto, for

the "standard fit" in the table 2. Note that all the vari-

P.-G. REINHARD ET AL

ations of the nonlinear relativistic model give virtually

the same prediction which agrees fairly well with the clas-

sical models, Skyrme-Hartree-Focle and liquid drop; except

for the effective mass m*/m which comes out slwsys very

low in the relativistic models (including the rel. Eruek-

kner-Hartree-Fock). The linear relativistic model !b_=0,

b,=0) deviates strongly, in particular for energy E and in-

compressibility K. It is interesting to note thet the re-

lativistic B.H.F. calculations .'BHB6/ agree fairly well with

the extrapolated Mean-Field predictions; except fcr the bin-

ding energy which seems to be a bit small.

TABLE 2

Standard f i t

F i t w i th cor r . a
F i t w i thout a
F i t wi thout anom.
magn. moment
F i t w i th b-=O,b,=O
Skyrme f i t 2O/FR86/
Re la t i v . Bruec^ner
H.F. /BM86/
L i q u i d drop model

•E/A [l-1ev<]

16.20
= 0.05
16.19
16.17.
16.20

17.04
15.81
15.32

15.95

Cc[fm-3]

0.1507
r0.0009
0.1502
0.1493
D.15D2

0.1429
0.1627
0.161

0.145

K j-1ev]

177.8
= 8
190.
209.
199.

564.
233.
201.

212.

0 .56 i
--0.004
0.5S5
0.564
0.584

0. 529
0.763
0.57

Table 2: The bulk proper t ies of symmetric nuclear i rat ter
at equ i l i b r i um for the var ious f i t s and for sone other model.
E/A i s b inding energy per p a r t i c l e , Po i s the nudeon den-
s i t y , K i s the c o m p r e s s i b i l i t y , and m*/m is the e f f e c t i v e
mass.
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It is not enough space here to outline other features of

the model. We summarize them shortly, more details may be

found in ref. /RR86/. The full model predicts 6 MeV spin

orbit splitting of the lp-level in 0 which is exactly the

experimental value. This is the great advantage of the rela-

tivistic model compared to the classical models that the

spin properties are automatically implied and that no fur-

ther terms and parameters are needed to adjust them. Note,

however, that only the full model giies this good descrip-

tion. The linear model fails badly predicting 11 Mel/ for

the spin-orbit splitting in 0. There are two other fea-

tures where the classical Mean-field models failed: the le-

vel density near the Fermi-energy is systematically to low,

and the amplitude of the shell fluctuations on the nuclear

charge density is by a factor 2-3 to large. We have looked

at this in the relativistic model and find that they fail

exactly the same way as the classical models do. These are

very probably again effects which call for an inclusion of

cor-elations.

Altogether we see that the relativistic model is as

flexible and powerful as the classical Skyrme-Hartree-Fock

description. It allows the same marvelous reproduction of

nuclear ground-state data, and it shares many of the

failures of the classical model, which all hint at corre-

lations (bejond Mean-Field). However, it is clearly superior

in predicting spin properties, furthermore it provides a

good basis for any application tvhere relativistic wave

functions are needed.
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5. DtrORHCP STATIC CALCULATION'S

The success of the spherical applications of the model moti-

vates to do the nefct step in evaluating nuclear properties:

the evaluation of deformed ground states. Before we can har-

vest interesting results on the relativistic effects in de-

formation properties, we have to work out some invohed

numerical techniques.

TABLE 3

Nucleus

12C
160
160
160

20Ne
20Me
20Ne
20Ne
20Ne

E CMeV)

-94.1
-12B.9
-120.6
-119.9

-142.2
-161.5
-166.4
-141.3
-121.9

r (fm)

1.9S
2.29
2.31
2.32

2.62
2.45
2.54
4.21
7.20

i

-0.005
0.006
0.003

-

-0.54
-0.20
0.42
1.51
2.39

comment

grid 0.25 fm
spherical code

various
ini tial
deformat ions

24Mg

40Ca
40Ca

48Ca
48Ca

-208.9

-373.8
-35B.2

-490.4
-G66.7

2.56

3.06
3.09

3.IB
3.21

-0.20

0.002

-0.0003

spherical code

spherical code

Table 3 . : Results of ca l cu la t i ons w i th the l i nea r paramett
sat ion o f r e f . 2 : g =10.3, g =J2.6, ms=550, m^z/83 and
m = 938 MeV, i n d u c i n g Coulomb f o r c e . I f notvcommented
otherwise an ax i a l g r i d w i th a spacing of 0-5fm has br c-n
used. The S is the dimensionless quadrupole deformat ion.
The r i s the r .m.s . rad ius .

We represent the four components of the nucleon ivaie f u - c -

t i on and the meson f i e l d s on ran a x i a l space g r i d . In order
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to avoid the fermion doubling /BH83/ we have used shifted

grids for the four different components of the wave func-

tions, employing a shift by half a mesh spacing either in

z-direction or in r-direction or in both directions. As in

similar classical calculations /DK81/ we derive consistent

field equations on the grid by first discretising Ihe ac-

tion on the grid and then performing the variation. Ihe

energy of che system is computed from the (discretized) ac-

tion by standard techniques of field theory. We restrict

all further considerations U the static case where all ob-

jects are time-independent and in particular where all

space-vector parts of the vector fields vanish. In order

to employ the well established iteration techniques of

classical calculations /RCB2/ we transform the Oirac equa-

tion into an effective Schroedinger equation (having an

energy-dependent mass), and we use then the damped gradient

iterations /RC82/ to find the (local) minima of the action.

Ihe details of the numerical procedure will be published

elsewhere /I_e86/.

In table 3 we show the results of the relativistic

sxially deformed calculations for various light nuclei.

Here the old linear parametrisation of Walecka /Wa76/ has

been used throughout, and the dimensionless quadrupole de-

formation is defined as in eq. (15). First we note that the

"standard" spherical nuclei, namely 160, 40Ca, and 48Ca,

come out to be spherical; the remaining small deformation

indicates the precision of the numerical representation.

For 16D we have compared two grid spacings, the standard

grid with 0.5fm and a finer grid with O.25fm spacing. The

residual deformation is much smaller on the finer gria. We

see ajso a dramatic change in the binding energy. This is

similar to classical calculation. The fir»e grid gives
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already an excellent discription as one sees from the com-

parison with the spherical results. Nevertheless we prefer

to use the "coarse" giid with 0.5fm spacing for reasons of

computing time. The overall effect is mainly an energy shift

which may !.-e estimated from comparing spherical and de-

formed results for 160, iOCa and i8Ca.

The interesting results are those for the deformed nu-

clei. 20Ne and 24Mg show substantial deformations and they

are comparable to classical calculations /QF7B/ and to Cata.

For 12C we obtain negligible deforir.ition. That is net sa

surprising because 12C is rather a soft nucleus than a de-

formed system, and the position of the actual deforest ion

minima depend sensitively on the forces used. In fact, i-.e

know that >he spin orbit splitting tends to restore spheri-

city and that the parametrise:ion used in table 3 has a

large spin-orbit force.

For 20\e we have explore the whole range of a>ja]ly

deformed local minima. This ••.< i achieved by starting the

iteration from various diffeictly deformed initial config-

urations. The prominent minim, TI comes out at 5 = 0.^2 in

accordance with classical re.v.ts. The occurrence of a,

less favorite, oblate minimur s also quite common. The -ie»t

oblate and prolate deformtionr are a bit surprising. They

may be due to the fact that w compute always clcsed shell

nuclei (with proper reorderin of coursed; a pairing force

may smoothen some of these ex. emely deformed minima. Ihe

most prolate solution, however, may survive bec?u3e it re-

presents quite clearly a chain of five a-particles loose];.

bound to each other. This con'.guration may be sn effect of

the parametrisation which proi' ices a rather large binding

for the Q-particle.
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6.DYNAMICS OF 160-160 COLLISION'S

A relativistic Mean-Field model is a natural starting point

for a microscopic description of energetic heavy-ion col-

lisions. We have applied the model, as outlined in section

2, to time dependent calculations of 160-160 scattering

/CRB5A For these first exploratory calculations we have

used a slightly simplified Lagrangian: we omit the photon,

the p-meson and the nonlinear self-couplings of the

c-meson, i.e. we use the linear model of ref /Wa72/. The

parameters are given in the table caption of table i.

A few technical explanations are necessary:

We represent the meson fields and the baryon nave functions

on a three-dimensional (24x24x24) mesh in coordinate space.

Quantities in momentum space are obtained by means of a fast

Fourier transform method. We employ isospin-degenerate

nucleon wave functions and treat the spin degrees of freedom

in the usual four-component spinar formalism. Thus we pro-

pagate eight independent fourcomponent wave functions for

each Q nucleus. We use the relativistic static Hartree

wave functions for each of the 0 initial states. The nu-

clei are located at a separation distance of 10 fm from each

other on the nesh, and are Lorentz boosted to the appropri-

ate initial energy in the center-of-velocity frame. The

time evolution for the baryon wave functions is done with

a fifth-crder predictor-corrector in momentum space and the

meson equations are solved simultaneously by Green's func-

tions techniques. With the above mesh, the momentum-space

truncation occurs at about 2 GeV/c. As a test of the ac-

curacy of our numerical techniques we evaluate the total

energy ot each time step in the evolution, and note that

it is constant to better than lx]0 . We have also
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evaluated the continuity equation at each point in time to

further guaran'je the correctness of our solutions.
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FIG. 3. Countour snapshots of the coordi/iate-sp-nce
baryon density pa(jr - O.y.z.i), in the scattering plane for
"0(600/4 MeV, fc = 2 fm) + 160. The maximum density is
0.29 fm~3 and is attained at 6 fm/r. The values of the den-
sity contours are as follows: solid curve, 0,26 fm"3 ; dashed
curve, 0.10 fm"3 ; dot-dashed curve, 0.04 fm"3 ; large-dotted
curve, 0.014 fm~3; and small-dotted curve, 0.005 fm"3 .

We have studied with this approach collisions of
160(Elab=300, 600, and 1200 MevVnucleon) +

160 at various

impact parameters. The time evolution is followed until the

expanding matter reaches the edges of the mesh. We show n

Fig, 3 the time evolution of the spatial baryon density for



RELATIVIST IC MEAN-FIELD THEORIES...

E, h=6DO MeV/nucleon and b=2 fm. The ear ly t im, behavior i n

the approach i s s im i l a r to that obtained by use of non

r e l a t i v i s t i c TDHF. Subsequently, a compression zone and

sideward flow develop (between t = 6 and ID fm/c) . a f ter

which the system proceeds to undergo s p a l l a t i o n . This resu l t

can be contrasted wi th TDHF ca lcu la t ions at medium energies

where p r o j e c t i l e l i k e at.o t a r g e t l i k e fragments emerge a f te r

the react ion /SC8Q/. The sideward flow observed i n the pre-

sent approach resembles the large transverse-momentum t rans-

fer predicted by nuclear f l u i d dynamics /SHBO/ and the I'UU

approach,/H585/.

Both, the t o t a l s p a l l a t i a n of the nuc le i and the strong

c o l l e c t i v e sideward f low, are caused by the meson f i e l d be-

ing own degrees-of-freedom. We f i nd that the c- and u-meson

f i e l d s develop strong out-of-phase o s c i l l a t i o n s in space

and t ime, soon a f te r the maximum compression po in t . The nu-

cleons are def lected by these o s c i l l a t i o n s in f i e l d s . The

strong space - time o s c i l l a t i o n s destroy the nucleon-nucleon

binding and produce the s p a l l a t i o n . The strongest meson

f i e l d s are concentrated near the o r i g i n and that gives r i se

to the sideward f low.

Altogether the resu l t of the r e l a t i v i s t i c Mean-Field

dynamics are half-way between c lass i ca l TDHF ca lcu la t ions

and f l u i d dynamics. The mesonic degrees-of-freedom seem to

procuce e f fec ts which are usual iy expected from two-body

co r re la t i ons . They do not produce enough to reach the f l u i d

dynamics l i m i t . Probably some two-body co r re la t i ons have

s t i l l to be added. But c e r t a i n l y the r e l a t i o n between two -

body e f fec ts and Mean-Field w i l l be d i f f e r e n t i n r e l a t i -

v i s t i c and in c l ass i ca l models. That i s an i n t e r e s t i n g task

for fur ther s tud ies .
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7. CONCLUSION

I t has been shown that the r e l a t i v i s t i c Mean-Field theory

i s as capable in reproducing the bulk proper t ies of nucle i

as the c lass ica l Skyrme-Hartree-Fock model. A .ery p iec ise

descr ip t ion can be achieved wi th an error of Q.35X for the

energies, of O.b% for the r a d i i , and of 3.9X for the sur-

face thicknesses. Studying modi f icat ions of the model (sur-

face v ib ra t i ons , anomalous magnetic moments) we could show

that the f i t has exhausted the p o s s i b i l i t i e s of a Mean-

F ie ld model, and any step fu r ther needs to consider cor-

re la t i ons of various so r t s . We want to point out the advan-

tage of r e l a t i v i s t i c over c l ass i ca l models that a l l spin

proper t ies ( i n p a r t i c u l a r the sp i n -o rb i t force) are i m p l i c i t

i n the theory without requ i r i ng extra terms and extra para-

meters.

The r e l a t i v i s t i c model produces reasonable deformations

roughly comparable to resu l t s of c l ass i ca l c a l c u l a t i o n s .

There are differences in detai l which deserve furf-.er stu-

dies of model and force dependence of the deformation-ener-

gy surfaces.

The dynamic calculations show the most pronounced re-

la t i v i& t ic effect namely that the mesons, being now dynami-

cal degrees-of-freedom of i t s own, produce part of the

effects which are usually expected from two-body col l is ions.

We observe complete spallation of the nuclei and pronounced

collective sideward flow.
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