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Abstract: Scattering of 7Ll by Sn targets at E = 4l MeV 1s investigated

lab
in the coupled-channel frame by taking account of the projectile virtual
excitations to the lowest three excited states, Calculations are performed by
the cluster-folding (CF) interactions and the double-~folding (DF) one. Both
interactions reproduce very well the expelmental data on the cross section,
the vector analyzing power, the second-rank tensor ones and the third-rank
tensor one in elastic and projectile lnelastic scattering, although some
differences are found between the CF results and the DF ones. 1In the
calculation, the virtual excitations of the projectile are important for most
of the analyzing powers and the spin-orbit interaction {s indispensabie for
the vector analyzing power. These features are {n contrast to those in 7L1-
SBNI scattering at 20 MeV and are interpreted as over-Coulomb-barrier
effects. The scattering amplitudes and the analyzing powers are {nvestigated
by the invariant amplitude method, which provides a key connecting the spin-
depehdent interactions to the analyzing powers, The method proposes an
important relatfonship between the tensor analyzing powers, which is useful in
analyses of both theoretical and experimental results, Finally, it is found
that {n the elastic scattering the second-rank tensor analyzing powers are

proportional to the strength of the second-rank tensor interaction and the
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vector and third-rank tensor analyzing powers to the square or cube of the
strength of this interaction, while in the inelastic scattering the crosa
section is proportional to the square of the strength of the tensor

interaction, other quantities being weakly dependent on the strength.

1. Introduction

In recent years, a lot of investigations both experlmental'-sj and

7L1

theoreticalG-”] have been concentrated on scattering of polarized 6L1 and
by nuclei. They have clarified that analyzing power data from the polarized
beam are the valuable source of the knowledge of spin-dependent interactions
between nuclei. Among various theoretical approach, the coupled-channel (CC)
studies with folding models of projectile-target lnteractlonag_12"u']6] have
provided a successful understanding of the experimental data of cross sections
and vector and second-rank tensor analyzing powers for both of elastic and
projectile inelastic scattering. Let us neglect excitations of the target
nucleus for simplicity. The folding interaction calculated for the ground
state of the projectile gives a diagonal potential for projectile-target
relative motions, while the calculated between the ground state and the
excited one of the projectile generates excitations of the projectile by the
target12] . The CC analyses stated above have revealed an interesting feature
of the interaction; i.e. virtual excitations of the projectile caused by the
folding non-dliagonal {nteractions give rlise effective spin-dependent
interactions and produce some important contributions to the analyzing powers.
Effects of such projectile excitations compete with those of the above

diagonal potential and their resultant contributions to the analyzing powers



seem to depend largely on the relative magnitude of the inclident energy to the
Coulomb-barrier height'®).

At incldent energles less than or comparable to the Coulomb-barrier, for
example at 20 MeV or below on SBNI targets, most of the vector analyzing power
of elastic scattering are explained by effective spin-orbit interactions irom
both of the projectile virtual excitations and higher orders of the ground-
state tensor potential, while the tensor analyzing powers in the same
scattering are malnly explained by the tensor potential 1tse1r‘2] and the
virtual-excitation effects are very small, although a small but important
contribution from projectile virtual breakup processes is found in the tensor
analyzing powers‘e). In this case the spin-orbit potential obtained by the
folding has little effects in both the analyzing powers throughout the

‘ZC at 21 MeV, the

analyses, On the other hand, in scattering of 71..1 by
Coulomb barrier is much lower than the incident energy as {3 shown in fig. 1,
and the spin-derendent interactions produce more complicated effects than in
the scattering by the SBNI target. The folding splin-orbit potenttal
reproduces almost the observed vector analyzing powers when the projectile
excitations are switched off and it seems as {f the calculation would succeed
in explaining of the experimental data. However, when they are switched on
once, the spin-orbit potential hardly contributes to the analyzing power and
the observed analyzing power is attributed to the alternative scurce, i.e. the
effective spin-orbit interactions from the projectile virtual excitations and
the higher orders of the tensor potential which are similar to those in the

SBNI caselg'zo]. The tensor analyzing powers in the 12c target are remarkably
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affected by the projectile excltations16] contrary to the case of the “"Ni

’2C nucleus, for example

target‘z]. Even considering the speciality of the
the extremely large del‘ormat.lonm), it may still be a plausible speculation
that at incident energles higher than the Coulomb barrier details of

interactions and reaction mechanisms concerned are effectively reflected in



the calculated observables and as the result the role of each spln-dependent
interaction is generally different from that at energles comparable to or
below the barrlier. In fact, the calculated cross section and analyzing powers
for the ‘ZC target become similar to those for the SBNl target with lncreasing
the barrier helight by the artificlal increase of the atomic number‘G) from 6
to t5. This suggests the importance of the relative magnitude of the incident
energy to the Coulomb barrier. From such consideration, it will be worthwhile
to investigate Iin more detail the role of the various spin-dependent
interactions In other cases of higher incident energies.

As the folding interaction discussed above, the following two kinds have
been employed so far, i,e. the cluster-folding (CF) lnteractiong-w'w] and
the double-folding (DF) one16‘21). In the former, the projectile, say 71.1. is
assumed to consist of an a-particle and a triton and a-target and triton-
target optical potentlals are folded into the relevant states of 71.1. while,
in the latter, an inter-nucleon potential between a projectile nucleon and a
target one Is folded into the relevant states of the projectile and target.
More detalils for the former are referred to ref. 12 and those for the latter
will be described In sec., 2. Both calculatlons produce spin-dependent
interactions of various tensor rank; for example in the CF calculation‘z).
they are the central and spin-orbit potent.llals and the tensor interaction, the
maximum rank of which is seven when the highest spin of projectile is 172",
The calculated cross sections and the vector and second-rank tensor analyzing
powers by the CF and DF interactions are quite simllar to each other in the
7l.i-BBNi scattering at 20 MeV, as will be shown later. In the 71.1—120
scattering, however, they have given very different results for the above
observables, particularly at large angles‘s). Such a difference between the
58N1 target and the 12(: one will be interpreted as an effect sluilar to that

discussed already, 1.e. at higher energies than the Coulomb barrier, the

detalls of the interaction affect the calculated quantities which allow us to



see the difference between the above two kinds of interactions. This
stimulates investigations of 6L1 and 7[,1 scattering at hligher inclident
energies. Further, both of the CF and DF interactions are of phenomenological
nature as will be discussed later in more detall ard lthe theoretlical
Justification 1s rather weak, In particular for thelr imaginary parts12].
Thus the investigations will play a role of the validity test for such
treatments of inter-nucleus interactions.

, Recently, experiments have been done for scattering of polarized 7L; by
120Sn at 44 Mevsl. This scattering is one of the examples where the lncldeat
energy highly exceeds the Coulomb barrier as is seen in fig.1, Furthermore,
they include measurements of a third-rank tensor analyzing power. The
theoretical analysis of this quantity i{s very interesting because they are the
first experimental observation. Including of this quantity in the analysis
will impose an additional examination on the theoretical models for the
interaction and the reaction mechanisms concerned. In these circumstances,
this paper investigates the 7Ll—moSn scattering theoretically, on the baslis
ol the folding models, including the projectile virtual excitations by the
coupled-channel method. 1In the next section, Wwe Wwill describe the general
treatment of the projectile-target interaction by the double-folding model and

b1 ana 7

compare the numerical result with the CF onelz] on scattering of Lt
by 58"1 at 20 MeV. This provides the validity of the use of the DF
interaction by the magnificient success in explaining the data on one hand and
on the other hand confirms that the CF and DF interactions give similar
results for scattering of these ions at energles comparable to the Coulomd
varrier. 1In sec. 3, the roles of the folding potentlials and the effective
interactions due to the virtual excitations are studied by both of the CF and
DF interactions for the 71.1—‘2()Sn scattering. The results of these
calculations are compared with each other and also compared with the

experimental data. There some considerable differences are found between the



tuo. kinds of calculations, the origin of which is investigated through the
form factors of the interactions. 1In both cases, however, the agreement
between the theory and the experiment is quite successful within the
experimental errors, including the third-rank tensor analyzing power. In sec,
4, the results of the calculation are analyzed by the invariant amplitude
methodzz). This gives the deeper insight of the effects of the spin-dependent
interactions; for example, it clarifies the reason why the vector and third-
rank tensor analyzling powers are partlcularly influenced by the cholice of the
interaction or by the reaction mechanism. The method also proposes an
important relationship between the tensor analyzing powers, which is useful In
analyses of both theoretical results and experimental data. Finally, the
dependences of the cross sections and analyzing powers on the strength of the
sacond-rank tensor interactions are investigated. Houghly speaking, the
interactions contribute to the second-rank tensor analyzing powers in the
first order and to the vector and third-rank tensor analyzing powers in the
second or third order in the elastic scattering, while the cross section in
the inelastic scattering is affected by this interaction in the second order.

Sec. 5 will be devoted to the summary and discussions of the results,

2. Double-folding interactions and tests of its vallidity in

scattering of 6[.1 and 7|..1 by 58N1 at 20 Mev

The double-folding (DF) interaction between two nuclel have been
discussed earlier in deta1123]. In this section, the essence of the method is
summarized and its validity ia examined by comparing the numerical result wlth
the CF calculation and also with the experimental data in the 6[.1-58!!1 and
71.1-58"1 scattering at 20 MeV, Let us consider an interaction VJ1 for the

excitation of.the projectile P from the i-th state to the J-th state, while



the target nucleus T is in the ground state. As a special case, this
interaction gives the potential for the projectile-target relative motion when

both of the i-th and j-th states are the ground state. The DF method gives

VJI(H)-(1+1NI)}pPJ1(P (r v, (r +R-r2)d rdre (2.1)

12100 2 Yy 7y 2

where the coordinates r‘.r and R are shown in fig. 2, pPJ1 is the transition

2
nucleon density of P from the i-th state to the J-th state and P100 is the
ground state nucleon density of the target nucleus. The quantity VNN is the
inter-nucleon potential which is taken to be the so-called M3Y interaction
zu]

modified with knock-on-type exchange effects In order to introduce an

absorption effect, the imaginary part with the factor lNl and the same shape
as the real one is added to this interaction, where NI is a flexible parameter
and is fixed by fitting the calculated elastic-scattering cross section to the
measured. Such a treatment has been successful in high energy
scattering?3'?9),

The density fpy1 1s calculated by microscopic wave functions ‘i(P)’ For

the 'Li projectile, for example,

7
7 7
r,) = < ¢ L1)|n§16(r1— e e Ly . (2.2)

Peg1 J
The wave function !1(71.1) 1s obtained by a microscopic treatment‘6'23] of the
a-t cluster model, which takis =2ncount of the antisymmetrization between seven
nucleons and reproduces the data of the binding energy and the guadrupole
moment for the ground st.ate?'ﬁ]. those of the excitation energy and B{E2) for
the first exclited state and a-t phase shlftSZT) for the scattering states,
The density thus obtalned 1s good descriptions of form factors of electron

28]'

elastic and inelastic scattering For Proo’ the nucleon density obtained

from the electron-scattering datazg] with the correction due to the proton

.._7_



charge distribution is employed. In the numerical calculation of le' spin-
orbit Interactions are neglected for simplicity, the effect of which will be

discussed later.

7

The coupled-channel calculatlion for the Ll—beNl scattering is carried

out by taking account of the 1/2], 7/2; and 5/2) exclted states in addition to
the ground state of 3/2  for T with N;=0.7. The results for the cross
section and the vector and tensor analyzing powers are compared with those by
the CF lnt.eract.ion12] and also with the data3] in f1g., 3a for the elastic
scattering and in fig. 3b for the inelastic scattering leading to the first
excited state of 7[.1. In the figures the CF calculation {ncludes the spin-
orbit potential but it does not yield any real effect. Exzcept for several
minor differences the results by the DF calculation are quite similar to those
by the CF calculation and fit the experimental data very well. Similar DF
calculatlons with the same NI are performed for the 6L1-58N1 scattering where
the 1* ground state and the 3“, 2‘, and 1’2 excited states and non-resonant
breakup states of 1'(5). 0_, 17 and 2 are considered by the coupled-channel
method. The calculated cross section and vector analyzing power ln the
elastic scattering are in good agreements with those by the CF calculatlon‘z]
which reproduces the experimental dataao) very well, These analyses provide

the validity for the use of the DF interaction., In the next section, we will

examine the DF interaction as well as the CF one in scattering at a higher

inclident energy.

3. 7L1-12%n scattering by the CF and DF interactions
7 120
The scatterling of 'Li by Sn at 44 MeV will be analyzed in the
following by the cluster-folding (CF) interaction and also by the double-

folding (DF) one. The low excited states of 'L1 of 172, 7/2  and 5/2° are



taken into account In addition to the ground state of 3/2—, in the coupled-

channel framework. 1In the calculatlon of the CF interaction, several

combinations of the a—IZOSn and t—‘ZOSn optlical potertials are examined, the

numerical values of potential parameters being in table 1. The combination

1
used as the standara is set At for the u—‘ZGSn potential‘ 3 } and set T1 for

t'l'he mass number of Sn is not specified in the reference for Al and A2 but the
120 120

potentials are assaumed to be valid for Sn because 5n has the largest

abundance in the natural tin and the potential parameters depend weakly on the

target mass number for this element,

the t-‘ZOSn on931), where the latter does not include the spin-orbdit (LS)

part. In the DF calculation, the nucleon density of ‘2OSn is obtained from

2
the electron-scattering data"z] and NI 1s determined so as to fit the cross-

1

section data of the 'Li elastic scattering, resulting N_. = 0.17. The

I
investigated is the cross section ¢, the vector analyzing power {T the

second-rank tensor analyzing powers TT

1’

20° T20 and T21 and the third-rank

tensor analyzing power TT30 in the elastic scattering a'd in the inelastic one
leading to the first excited state of 7[.! (1/2-, 0.48 Mev).

The results of the CF calculation and those of the DF one are compared
with each other and also with the experimental datan) in fig. 4. The gross
behaviour of the above observables in thelr angular distributions are quite
similar between the two calculations and both calculations reproduce the data
very well within their experlimental errors. These results justify the
underlying theoretical frame. There several minor differences are found
between the two calculations. The DF cross section {s slightly larger than
the CF one giving better agreement with the measured (n both elastic and

inelastic scattering. For the analyzing powers, the calculated by the DF

interaction oscillates more strongly in the angular distribution than that by



the CF one and 1s consistent with the angular fluctuations of the data. From
the cross sections and s''ch fine structures in the analyzing powers, the DF
calculation locks better than the CF cone in the agreement with the data but
the definite superlority of the DF Interaction Is hardly identified in the
present experimental accuracy. It should be emphasized that the calculated

T‘r 0 reproduces well the characteristic feature of the measured one in both

3
elastic and lnelastic scattering. This provides the guarantee of the vallidity
for the present theoretical assumptions.

In the CF calculation, a deeper a-Sn potent1a131) A2 1s examined but the
difference of the calculated between Al and A2 is vary small; for example, the
results by the combination of A2 and T1 are not distinguishable from those by
the combination of A1 and T1 in most observables. Since the LS potential has

120

not been derived for the trfiton scattering from Sh In the present energy

regicon, we will refer the optical potential from “65n. T2 which includes the
LS part, as an alternative of the triton potential:w). The use of thia triton

7

potential will help us in studying effects of the LS potential in the 'Li-

7205n scattering. 1In fig. 5, the following two combinations are compared
with each other and also with the experimental data; i.e. the combination of
At and T2 and that of Al and T3 where T3 ls the same as T2 except for the
neglect of the LS part. The results of Lhese combinations are generally
similar to those from the standard combination of Al and T, with a few
exceptions for example the elastic vector analyzing power, and are still good
descriptions of the experimental data. In the vector analyzing power of the
elastlc scattering, a remarkable effect of the LS Interaction 1s observed by
comparing set T2 to set T3; i.e,, the magnitude of 1T” suffers from a big

reduction due to this interaction. This LS effect {3 demonstrated in fig. 6,

where the pure effect of this interaction i{s displayed by neglecting the

tensor interactlion and thus the coupling with the 7Ll exclted states, the

input potentlals belng the combination of Al and T2. The LS interaction



itself gives positive vector analyzing power in most angles which has the
opposite sign to the contribution from the tensor interaction. The final
vector analyzing power is the result of the competition between the LS
interaction and the tensor interaction accompanied by the projectile virtual
excitation. Sueh an important contribution of the LS interaction is a typlcal
feature of the scattering at ernargles over the Coulomb barrier and has not
been observed in 6.7L1_58m scattering at 20 MeV. More details, which include

! 2123 scattering, will be given in ref. 20. Further,

similar effects in 'Li-'
rather minor effects ol the LS interaction appear in elastic TTZO' T21 N TT30

and inelastic IT in fig. 5. Such LS effects are seen in comparison betwee.

B
the combination of Al and T{ and that of A\ and Tk where the LS part of T2 is
added to T1, Other combinations which include A2 as well as Al are studied,
Through these investigations, a tendency is found, 1.e, the vector analyzing
power and the third-rank tensor analyzing power in the elastic scattering are
particularly easy to be affected by changes of the {nput optical potentials,
whether the LS interaction is included or not. This will be related to the
fact that in these analyzing powers the tensor interaction acts only in its
second order or higher orders, which will be discussed later [n more detail.
The analysis also reveals that tne calculated analyzing powers are more
sensitive to the triton central potential than to the alpha-particle one.
This is because in the folding interactiona the contribution of the former
potential has larger magnitudes than that of the latter at the nuclear surface
region.

To clarify the origin of the differences between the CF result and the DF
one, the form factors of the cent-al interaction in the elastic-scattering
channel, for example, are investigai~d Ln the region where the interactions
produce iarge contributions to the scattering amplitude. In the case of
strong absorption like heavy-ion scattering by nuclei, the characteristiz

feature of the scattering is mainly governed by interactions at the strong



absorption radius Rs which i3 assumed to be determined by the quarter-point

recipe35],

Ry = 3 {1+ cosec(%euu)) . (3.1)

where n 1s the so-called Sommerfeld parameter

(3.2

The quantity @ i3 defined for the Fresnel-type diffraction scattering so

174
that the cross section falls to one quarter of the Rutherford value at 6 =

Fig. 7 shows the form factors of the real part and those of the

7L1— 1 2°Sn relative distance.

8y
imaginary one in the region of 5§ - t4 fm of the

The figure contains two kinds of the CF interactions, the combinatfon of At
and T1 and that of A2 and T1, and the DF interaction. The absorption radius
13 10.6 fm in the present case. Around this point, the two CF form factors
are very similar with each other while the DF form factor is much smaller than
the CF ones for both real and imaginary parts. Such differences of form
factors between the interactions will explain why the two CF interactions give
the similar results but the DF interaction glves the different ocnes. More
details will be discussed in the next section in terms of the invariant
amplitudes.

Details of the projectile-excitatlon effects are shown in fig. 8 for the
standard CF calculation, where the calculations by the single channel (3/2-).
the two channels (3/27, 1/27), the three channels {3/2 , 1/2°, 7/2°) and the
four chanrels (372 , 1/2, 7/2°, 5/27) are displayed ssparately, where the
single-channel calculation is only for the elastic scattering. Generally
speaking, the effects of the projectile virtual excitations are large for the
elastic-scattering observables, particularly for 11'“ and TTBU' In most
observables investigated, the contribution of the 5/2° state 1is not

....]')_
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negligible, which was very small in the case of the 7L1-58N1 scattering at 20
Mev’z). Similar effects of the projectile virtual excitatlons are observed in
the DF calculation where the effects are much more pronounced. Finally, it {s
remarked that the projectile excitations by Coulomb {nteraction produces
important contribution to most observables, particularly to the cross section,
the vector analyzing power and the third-rank tensor analyzing power in the
inelastic scattering. 1In this section, we have found several features of the
calculated analyzing powera which have not been seen in the previous analyses

of the 71,1-58

N1 scattering. These new features will be considered as the
reflection of the fact that the fncident energy 1s much higher than the

Coulomb barrier.

4, Analyses by the {nvarfant amplitudes method

It has been discussed that the invarlant amplitude methodzz] is useful in
analyses of polarization phenomena in nuclear reactions because it provides a
guide-post for solving complicated effects of many kinds of spin-dependent
1nteractlon36f12'22'36]. The method is based on the expansion of the
transition amplitude in accordance with the tensor rank in the spin space. 1In
this sense, the method resembles the theory for deuteron scattering published
1ater37). However, the invariant amplitude method uses explicitly the
associated space tensors which are helpful in practical use. Also it has been
developed in more general form and thus it is applicable to any two-body
reaction, 1In the present section, we will apply the method to the 7L1-1205n
scattering to clarify the structure of the scattering amplitude in the spin

space and discuss how the spln-dependent interactions govern the analyzing

powers.,



7L1

4.1 The invariant amplitudes in elastic scattering of
First, we will describe the outline of the theory. The transition matrix

M can be expanded In terms of the tensor in the spln space :ka.
Ml O R (4.1)
ke * x

where ﬁk" is the associated ordinary space tensor and its matrix element can
be described by the tensor of the same rank constructed from '(1 and kr, the
initial and final momenta. In the case where the spin of the target nucleus.
and that of the residual one are zero and no farity change happens in the

transition, the matrix element of M is given byzz),
<sr"’r"‘r'"|51"’1"‘1>

sr-vr L3 K
= (=) E(sisrvi-vf|k<)r§E_k[CP(ni)xci_r(nr)]KFkr . (4.2)

where Q, and Q, are the solid angles of l(1 and kf, respectively, 51(“1) and sy

i 4
("t‘) are the spin (z-component) of the incident particle and the emitted one,
respectively, and k 18 k for k = even and k+1 for k = odd. The quantity

Cm(n) is related to the spherical harmonics Y!.m(n) as

, LL
C!‘m(ﬂ) Nt Y!‘m(ﬂ] .

The Clebsch-Gordan coefficient (sisrui-vr|k<) arises from the matrix element

of :fk_'( and the factor constructed from C, and C;_ describes that of ng'
Other trivial factors like the physical part of the matrix element of "fk-x

are included in F_ . The amplitude Fkr is invariant under rotations of the

kr
coordinate axes and 18 a function of @, the angle between l(1 and kr, the c.m.



energy and the Q-value. The invariant amplitude Fkr is designated by the rank

K Foor ¥yy and
F2r (r = 0,1,2) are the scalar, vector and second-rank tensor terms,

respectively. In the first order of {ntcractions, FDD' F1‘ and F

of the spin tensor, with which F - is associated; for example,

ap represent
the contributions to the scattering amplitudes from the central, spin-orbit
and second-rank tensor interactions, respectively. 1In principle, they contain
any higher-order contribution of these interactions within the restriction due
to their tensorial properties.

In the case of the elastic scattering of 7Ll. the matrix element of M is

7

represented by designating the row and column by the z-componert of the 'Li

spin aas)

M = (4.3)

where A~H satisfy the elastic-scattering conditions due to the time-reversal

theorem

(C+H) = V3 (A-F) ~2(B+E) cot @ a4

and

(B-E) = /3 (G+D) +2(C-H) cot B . (4.5)

Each matrix element of {4.3) is rewritten in terms of the invariant amplitudes

Fk‘ by the use of (4.2), which will be given later. The elastic-scattering

conditions become

Fos = Fap (u.6)

and



F33 - l-‘31 . (4.7)

Thus we have one scalar, one vector, two second-rank tensor and two third-rank
tensor amplitudes as independent ones, which can be cliosen in the reference

frame, y//rkin kf and z//ki, as

U=Fo o (4.8)

s EE F”sine »

T2u= %F20(3coaze¢|) ¢EF210039 '
TZBEJ%- onsinze '

Tsusﬁ Fyyoin’s cose + J%-F‘azslnae .
TBB = Jl—_:- F31sin36.

The amplitude U is related to the scalar, S to the vector, TZa and TZB to the

second-rank tensor and 'l‘3u and TBB to the third-rank tensor in the spin space,

respectively. With these new amplitudes, A-H are given by

1
A = E(” + TZu) y (4.9)

1 - £ 2.
B = i(v’iTzn Tza)tane + lj(s*TsB) + 5T3ucot8 R
C= l(T + T, )

228 3a’ "’
D= Ty



1 ~ _73 _ 2
E(‘@rzu T,g)tans 5(s+‘r33) ETyg00te

m
L]

‘
F =3 - TZc) ,

2, _ 23, _3
G gs = Tsucote 5T3B
and
1
H = E(TEB T3tx) .

Similar theoretical developments for the inelastic scattering are given in
Appendix.

Since the analyzing powers are desoribed by A~H, they can be expressed by
U-T”. The expreasions are the key for connecting the spin-dependent interac-
tions to the polarization quentities, which will be discussed in the next
subsection, The amplitudes U, S, TZu (TZS) and T3u (TSB) are the representa-
tive of the central, spin-orbit, second-rank tensor and third-rank tensor
interactions, respectively, {n their first order and thus it is reasonably
speculated that U is dominant and other amplitudes are comparatively small
because the central {nteraction i{s strong and the spin-dependent interactions

are weak. The numerical calculations show that the order of magnitude of

these amplitudes is approximately described by
ol > 0sl ~ 7,01 = 'TZBI > |'r3u| - |T3s| (4.10)

at most angles for both the CF and DF interactions, where the left-hand side
of the inequality sign is larger than the right-hand side by almost one order
of magnitude., The magnitude of these amplitudes are shown {(n fig. 9, for
example for the CF interactions of the A1-T2 and A1-T3 combinations, where the

effect of the LS potential and that of the projectile virtual excitations are



also examined. The figure shows that the above relation, (4.10) holds
independently of the presence of the L5 potential or the projectile virtual
excitations., As is seen in the figure, [S], |T3u| and |T38| are affected
conaiderably by the presence of the LS interaction or by the projectile
virtual excitations, while other amplitudes are affected very little. In more
detall, the projectile excitation increases |S| by a large amount but
decreases |T3u| and |T3BI seriously and the LS potential affects these
amplitudes in a quite opposite way with less amount. This will be discussed
later in connection with the calculated analyzing powers., The amplitudes
calculated by the deep CF interaction are almost equivalent to those by the
shallow interaction. The effects of the projectile excitations in the DF
calculation are similar to those in the CF one; i.e. only |S|, lTBuI and ITBGI
receive serious effects. Fig. 10 compares |U|~|T38| between the CF
calculation and the DF one, where the combination A1-T) {s used for the CF
calculation, corresponding to fig. 4. Differences between the two
calculations are found in all amplitudes, which produce the differences in the
calculated quantities in rig. 4. Referring to the expressions of TTZO' TZO
and T21 in the following subsection, one will understand that the oscillatory
angular dependence of ITZuI in the DF calculation in fig. 10 is reflected in
that of the second-rank tensor analyzing powers in fig. 4, Rather large CF-DF
differences are observed in |s|, |T3u| and iT3B|' This is consistent with the
theoretical observation in elastic 1T” and TT30 in fig. 4.

In the absence of the LS interaction, the main spin-dependent interaction
1s the second-rank tensor one because the parity of the folding interaction is
even and the fourth- and sixth-tensor interactions are comparatively weak. In
this case, the amplitudes S, T3u and 'I'38 will arise from the second order or
higher orders of the second-rank tensor interactions. Thus it is interesting
to examine how the amplitudes U~T3‘ are governed by these interactions. In
fig. 11, the magnitudes of U-T obtained by reducing the strength of the

38



s2cond-rank tensor part of the CF interactions to one half of the original one
are compared with those by the original interactions, where the higher-rank
tensor interactions in ad.-ition to the spin-orbit Interaction are neglected to
simplify the consideration. The calculation is based on the At1-T3 comblnation
and is performed in the four-channel frame. In the figure, the magnitudes of
T

and ‘I‘2 are decreased by about one half and those of S, T3a and TBR by

2a 8
about a quarter by the reductlion of the tensor interactions, while U 1is
scarcely changed. This means that T?.a and T28 are proportional to the
strength of the second-rank tensor interaction and S, T3u and T38 are
proportional to the square of the strength of that interaction. When the
higher-rank tensor interactions are taken Into account, such proportlionalities
are modified but “he modifications are very small except for 'r3CI and T3e at
small angles, as is shown in the figure. These features can be understcod by
assuming that T?.u and T?.B are mainly produced by the firat order of the
second-rank tensor interactions, while S, T3° and T3B are produced essentlally
by the second order of that interaction. The amplitude U is dominantly
governed by the central interaction and is almost independent of the tensor
one, Thus, in the present scattering, the amplitudes S-T“ are good measure

of the second-rank tensor interactions.

4,2 Invariant amplitude analyses of the analyzing powers

Ccnsidering (4.10), one can neglect in a good approximation the terms
which include T3¢x and 'l‘38 but not U in describing the elastic scattering
analyzing powers by U etc.. These approximate formulae are given in the

following, the full expressions being in Appendix.

iT.. = ?.."E Im{_1USI + Lo 4 351- s}, [CFRRD)
11 /5N 7 S/i 2a 5728



2 /3
Too = § Re{UT2; - |s| - —STZ'tane + SEsT, *tane) ,

2/' _ _ 73 1
Ty = Re| —-UTZ*tane . HUT Atang - SZST % + —5-ST28| ,
T 1 2y
T,o = - 5 RefUT,2 + /3T ¥ - —|s|
and
Tr. w21 In{-2/3UT, *cote - 8UT.* + -6-ST xe 9£ST t|
30 3a 38" 5 28
VSN
with
R = lUpg ,

To investigate the valldity of the approximation, three kinds of calculation
for the analyzing powers are displayed in fig. 12; the calculations by the
exact formulae, those by eq. (U4.11) (approximation I) and the calculations by
neglecting the U-independent terms except for N (approximation II). All
calculations are performed in the four-channel CC frame and the interaction

used 1s the CF one of A1+T2. 1In the figure, it 1is clear that eq. (4.11) is

T
very accurate for TZO' T21 and T20 and is quite close to the exact

calculation in iT” and Tl‘3o, while the neglect of the U-independent terms

(approximation II) has high validity for the second-rank tensor analyzing

powers but not for 1'1‘” and TT30. These features are also found in the

calculations by various combinations of the alpha potential and the triton one
and in the DF calculation. It should be noted that the calculated TT30
changes its sign by including the terms of ST2; and S‘l‘za._ This happens due to

the virtual-excitation effect as is shown in the following. In the comparison



of the four-channel calculations with the single-channel ones in fig. 12, the

sign of TT by the approximation II is changed by the projectile virtual

30
excitation. Further,as is seen in fig. 9, the amplitudes |T3a| and |T38| are
decreased seriously by increasing the coupled channels from ons to four, while
IS} is increased by this increase of the channels. This decrease of IT3a| and
|T38| reduces the magnitude of contributions of the U-dependent terms to TT30
as 1s seen in fig. 12 (approximation II) and the increase of [S| increases the
relative importance of the terms ST;G and ST;_B. These effects cause the
competition between the U-dependent terms and U-independent ones in T'I‘3o of
eq. (4.11), resulting the final change of sign in TT30'

Since the second-rank tensor analyzing powers are described well by only
the U~dependent terms, one can derive the following formula by neglecting U-

independent terms,

T. -

Tyo = ~2Tg /3T21cot8 (4.12)
or

3

T,,81n8 -J:Tzoslne + 2T21cose (4.13)
with

T, __1 7

T20= Z(TZO + /61‘22) .

0 obtained by eq. (4.12) with T20 and T21 calculated exactly is

compared to the exact TTZO' The calculations are performed by the two kinds

In fig. 13, Trz

of interaction; the CF interaction of A1-T2 combination and the DF one, the
virtual-excitation effects being taken into account by the four-channel
coupling frame. The comparison justifies eq. (4.12) fairly well for the CF
interactions. For the DF interactlon, the characteristic feature of the exact
calculation is reproduced by (4,12), though its «ight-hand side oscillates
more strongly than the exact in the angular distribution. Such deviations of

the approximation from the exact are related to the virtual-excitation effect



because the agreement with the exact calculation is much better in the single-

channel calculations. The valldity of (4,12) can also be examined in a way

7 58

free from the cholce of the interaction. In the 'L1-" N1 scattering at 20

MeV, the shape-effect rormulae3] have been found to be very good descripticns
of T20‘ th and T22. The formulae have been derived seml-classicallyB] and
also quant:mn—mechanically12). They are for T?_0 and T21

_ 2 9T
Tao (1 - 3sin 2) Tyo (4,14)
and
- fé T
T, = 5 sine T, . (4,15)

In the present case, these formulae also describe the measured T20 and 'l‘?_1
very well by using the measured TTZO for the right-hand side of the equations,
as 1s shown in fig. 14, These formulae satisfy eq. (%,12) exactly, which
means that the experimental data themselves satisfy eq. (¥.12). Similar
consideratfons can be applied to other scattering; for example the validity of
(4.13) has been confirmed in scattering of 6[.1 and 71.1 by 58“1 targets at 20
Mev36]. The relation (4.12) or (4.13) 1s a measure of the spfin-dependent
interactions; thzt {s, when it is satisfied, effects of higher order terms of
the spin-dependent interactions are small in these analyzing powers, whether
the analyzing powers are the calculated or the measured. The approximation
used in the derivaticn of (4.12) or (4.13) can be avoided by allowing the
participation of more polarization quantities in the formulae. Such exact
relationships will be discussed elsewhere38)‘

It should be remarked that the properties of U-TBB discussed in the
previous subsection are reflected in the calculated analyzing powers. This can
be understood through the expressions (4.11)., For example, as is discussed
already, the amplitudes S, T and T, are selectively influenced by the input

3a 38
potentials and the reaction mechanism; particularly, |S| 1a inecreased and



IT3u| and |T38| are decreased seriously by the virtual excitations of the
projectile, while other amplitudes are almost stable., When these properties
are combined with eq. (4.11) where all terms of 1T” and TT30 contain S, T3u

or T it will be reasonably understood why only 1T11 and TT30 are easlily

38’
affected by the change of interactions or by the projectile virtual
excitations. 1In the inelastic scattering leading to the 1727 state of 7L1,
similar analyses are performed, where we have one vector and three second-rank
tensor amplitudes but no scalar amplitude. The details are given in Appendix.
The second-rank tensor analyzing powers are mainly governed by the
corresponding tensor amplitudes, while In 1T” and TT30 the contrlbutions of
the above fouwr amplitudes compete with each other. The absence of U makes the
analyses more complicated,

In the previous subsection, the Invariant ampl{tudes have been found to
depend on the strength of the second-rank tensor interaction in the deflinite
ways; |U} 1s almost independent on the strength, ]Tznl and |T28| are nearly
proportional to the strength and |s|, ITiul and |T38| are approximately
proportional to the square of the strength. Thus it is Interesting to
Investigate how such dependences of the amplitudes are reflected on the cross
sections and analyzing powers. The calculation is carried out in the four-
channel coupling frame, the input potential being the A1-T3 combination. The
calculations performed by reducing the strength by one half are compared with
those by the full strength, where the fourth- and sixth-rank tensor
interactions are neglected. The results are shown in fig. 15. 1In the elastic
20° T20 and T21 are almost proportional to the tensor
fnteraction strength, This is easily understood by considering of the

scattering, TT

approximation II for the analyzing powers together with the properties of
T a

|T2ul and |TZBI mentioned above. The magnitude of IT & and 'T,, are decreased

by the reduction of the tensor strength more strongly than the square of the

strength. From the behaviours of |S|, |T30| and |T38| observed in f1g. 11,



one will see that each term of 1'1'” and ,TT30 in eqs. (4.11) is proportional to

the square or cube of the tensor interaction strength. Thus the dependence of

iT and TT on the strength is quite reasonable. These results indicate

11 3¢
that the second-rank tensor interactions contribute to the second-rank tensor
analyzing powers mainly in the first order and to the vector and third-rank
tensor analyzing powers in the second or third order in the perturbation-
theoretical sense, 1In the lnelastic scatterlng, the cross section 1is
decreased to a quarter by reducling the strength of the second-rank tensor
interactions by one half, while all analyzing powers are changed by small
amounts, This will be explained by considering that all amplitudes in the
inelastic scattering are decreased by one half or one fourth by the reduction
of the tensor strength and the decreases in the amplitudes are almost
cancelled between the numerator and the denominator in the analyzing powers
but no cancellation is in the cross section. Because of the lack of U, the
dominant contributions to the cross section come from the tensor amplitudes
and they are proportional to the square of the tensor strength. From these
analyses, it will be emphasized that, in the elastlc scattering, the analyzing
powers are the measure of the second-rank tensor interactions, while, in the

inelastic scattering, the cross section 13 the measure of these Interactlons.

5. Summary and discussion

The elastic scattering and inelastic one leading to the 172" exclited
state of the projectlle are investligated in the 7Ll—1205n case by the coupled-
channel method, where the 172" bound state and the 7/2_ and 5/2° resonance
states of 7Ll. are taken into account 1in addlition to the 3/2- ground state,

Between the projectile and the target, the two kinds of interactlion are

_.24_



studied; the cluster folding (CF) interaction and the double-folding (DF) one.
In the former, as the input the a-target and triton-target optical potentials
are employed under the assumption of the a-t cluster model for 7L1. where
several combinations of these potentials are examined. 1ln the DF calculatlion,

the so-called M3Y inter-nucleon potent:al is folded between 7L1 and 12OSn, the

6,7 .58

valldity of the method being confirmed in Nl scattering in advance.
The calculation shows that both of the CF and DF interactions are quite
successful in explaining the experimental data of the elastic scattering and
those of the inelastic scittering simultaneously. The ncwly observed third-
rank tensor analyzing powers are reasonably predicted by the calculation
Justifying the theoretical frame. Through these analyses, it i3 found that
the difference between the interactions and the virtual excltations of the
projJectile affect the analyzing powers seriously which are in contrast with
the case of 7L1-58N1 scattering at 20 MeV. Particu'arly, the calculated
vector analyzing power 1s found to be glven by the competition between the
spin-orbit interaction and the second-rank tensor one. These will be
understood as the above-Coulomb barrier effects. Here, effects of the folding
LS potentlial are investigated for the CF calculation which uses essentlally

4 -”6Sn interaction because of the lack of the knowledge of the t-’ZDSn

the 'Li
spin~orbit potential. Since the LS potential affects substantially the vector
and third-rank tensor analyzing powers, reexaminatlions by the CF Interactlion
with the t—1208n spin-orbit potential are desirable to draw any definite
conclusion on the real effect of the LS potential on the analyzing powers.
Accordingly, the DF calculation should be lmproved so as to include the proper
LS interaction in any way.

To get more insights of the calculation, the analyses are extended by the
invariant amplitude method. The theory classifies the scatterling ampllitude

into the scalar, vector, second-rank tensors and so on in the spln space and

thus they reflect effects of the courresponding spin-dependent interactions.



For the elastic scattering, for example, it is clarified how these amplitudes
are fnfluenced by the choice of the interactfon or by the reaction mechanism.
In particular, the vector and third-rank tensor amplitudes are easily affected
by these factors. The analyses also find that the scalar amplitude is larger
than other amplitudes. This allows us to reuuce the expressions of the
analyzing powers into simple forms, the validity of which is conflirmed
numerically. In the extreme case where all U-fndependent terms are neglected,
one can derive a relationship between the second-rank tensor analyzing powers.
The relationship is justified by the CC calculation successfully for the CF
interaction and satisfactorily for the DF one, The experimental data are well
described by the relatfon formula, Thus the relationship will be useful {n
investigating these analyzing powers both theoretically and experimentally.
The simplified forma and the properties of the amplitudes discussed above lead
to understanding of the reason why the vector and the third-rank tensor
analyzing powers are eas{ly affected by the choice of the {nteractlion or by
the project{le virtual excitations,

Further, the following i3 found by the CC calculation. In the elastic
scattering, the second-rank tensor analyzing powers are approximately
proportional to the strength of the second-rank tensor interaction and the
magnitudes of vector and third-rank tensor analyzing powers are varied by the
change of the strength more strongly than the square of the interaction
strength, the cross section being almoat stable against the variation of the
interaction. On the other hand, in the inelastic scattering, the cross
section 1s proportional to the square of the second-rank tensor fnteraction
strength but the analyzing powers are weakly dependent on the strength. Thus
the analyzing powers are good measures of the second-rank tensor interactions
in the elastic scattering, while the cross section is the measure {n the
inelastic scattering. The above consideration i{s of course global

understanding of the feature of the tensor interaction and, in detall, the



higher orders of the second-rank tensor interactlion produce important effects
on the calculated quantities. 1In fact, as meniioned already, the projectile
virtual excitations contribute considerably to the second-rank tensor
analyzing powers through higher orders of the interaction in addition to the
fourth- and sixth-rank tensor interactions. Since it Is clarified that, above
the Coulomb barrier, scattering and reactions of 7Ll provide useful tools of
studying the interactions from the target, more investigations are desirable

in such energy reglon.
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Appendix Full expressicons of analyzing powers by the invariant amplitudes

1. Analyzing powers in elastic scattering of spin 3/2 particles by 0" targets

The analyzing power T is given by

KQ

.
Tyo ™ Tr(MTKQM N (A1)

with

N o= Tr(MM') |

Since the matrix elements of M, A~H, are glven by the new invariant amplitudes

u as is seen in eqs. (4.9), the analyzing power T 18 also expressed in

T3 KQ
terms of these amplitudes by the stralghtforward applicatiocn of (4.9) to (A1).

2v6 1 2 2
iT,, = <2 Im{-—US* + —S-~ST_* + SST * (A2)
" A 53 2 528

1 8 1 y
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Tp o2 -1
T30 = 2(/51131 . /31733]

2 tnl- - 6 673,
o Im{ 2/§UT3;cote 8UT % + SST % + SG3ST X (A7)

3 11
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The approximate formulae (l.11) are derived from the above by neglecting of

the terms which includes T3u and T38 but not U.

2. Scattering amplitudes and analyzing powers by the invariant amplitudes

in the ilnelastic scattering to the 12" excited state of 7L1

The scattering matrix M of the inelastic scattering to the 172" excited

atate of 7Li is glven by designating the iow and column by the z-component of

7Li spin in the initial and final states,

A B c b
o | )

The matrix elements A-D are expressed in terms of the invariant amplitude Fk:'

Defining the new amplitudes analogously to (U.B),

S= F1151n8 » (A9)



Ty = (/51-‘200036 + Fp)alne ,

1
T, = -—F (3cose-l)+{F cose + -=F__ ,
28 2/2 20 321 53 22

- 2
T, = J%onsln 9,

we get
1

A= gU3s - Tyy! o (A10)

8 =T

28 '

1
c~gis+ /i'rZu) ,

The cross section ¢ is given by
K
£\ N
o= ()]
Ky 3
ané¢ the analyzing powers by
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" e 2328 2a 2Y
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Table 1.

Fig. 1.

Fig. 2.

Fig. 3.

Table Caption

Parameters of optical potentials for o-Sn and t-Sn in'the cluster-
folding interaction. The sets Al and A2 are for the shallow a-Sn
potential and the deep one, respectivelya‘ }. The sets Ti-T4 are for
the t-Sn potent1a131'3u], where the spin-orbit potential is included

in T2 and T4. Other notations are as usual.

Figure Captions

Incident energies against Coulomb barrier. Center-of-mass incident

1 12 58

Li by Cc at Elab-ZO MeV, by Ni at

energies for scattering of

120
Elab =14 and 20 MeV and by Sn at Ela

comparison with the Coulomb barrier,

b.uu MeV are shown in

Coordinates for double-folding calculations. P and T represent the

projectile and the target nucleus, respectively.

Comparison between cluster-folding calculations and double-folding
ones in 7[.1-58"1 scatitering at Elab-zo MeV. The cross section and
the vector and second-rank tensor analyzl;m powers by the four-
channiel CC calculation are shown for the elastic scattering (a) and
for the inelastic scattering to the first 1/2° excited state of 7L1
(b). The calculated quantities by the CF {nteraction and by the DF
onc are described by the dashed lines and the solid lines,
respectively. They are compared with each other and with the

experimental da:.a3] .
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Fig. 4,

Fig. 5.

Fig. 6.

Comparison between cluster-folding calculations and double-folding

7L1-1203n scattering at E =44 Mev, The cross sectlon and

lab

the vector, second-rank tensor and third-rank tensor analyzing

ones in

powWers by the four-channel CC calculation are shown for the elastic
scattering and the inelastic one to the first 172" excited state of
TLi. The calculated quantities by the CF Interaction with the A1-T1
lnput combination and those by the DF interactlon are descriped by
the dashed lines and the solld ones, respectively. They are

cempared with each other and with the experimental data33].

Effects of apln-orbit interacticns in the cluster-folding
calculation for the scattering of 7Ll by 120Sn at Elab'w MeV, The
calculatlions by two combinations of the input potentials are
compared with each other and with the data33], where the triton-
target potential with a spin-orbit potential (T2) and the one
without (T3) are combined to the shallow a~target potential (A1).
The calculatlons are performed Iin the CC frame with the four
channels and are shown for the cross section and the vector, second-
rank tensor and third-rank tensor analyzlng powers for the elastlc
scattering and the inelastic one to the first 172 exclted state of

TLi. The solid and dashed lines denote the comblnation A1-T2 and

A1-T3, respectively.

Demonstratlon of effects of spin-orbit Interactions In 7L1—’2°Sn

elastic scattering at Elab-hu MeV. The dotted line 1s for the
single-channel calculation by the central plus spin-orblt

interaction, the dashed one for the four-channel calculation by the



Fig. 7.
Fig. 8.
Fig. 9.

central plus tensor interaction and the sclld one for the four-
channel calculation which contains both spin-dependent interactions.
The interaction ls based on the AY-T2 CF one.

Form factors of folding potentials for 7Ll from ’2oSn. The form
factors of the dlagonal potentials are compared between the shallow
CF interaction {dashed lines), the deep CF one (soclid lines) and the
DF one (dotted 1ines) in the range 5-13 fm of the projectile-target

relative distance. The strong absorption radius {s shown by Rs.

Effects of projectile virtual excitations on crcss sections and
vector and second- and third-rank tensor analyzing powers in the
scattering of ?Li by ‘ZOSn at Elab-uu MeV, The effects of the
projectile virtual excitation are shown for the observables in both
of the elastic and inelastic scattering. The dash-dotted lines, the
dotted ones, the dashed ones and the solid ones are for the single-
channel calculation, the two-channel one, the three-channel one and

the four-channel one, respectively. The interaction is the A1-T1 CF

one.

Effects of spin-orbit interactions and projectile virtual excita-
7 120

tions on U], |s]|, |TZ°[. |T28|, |T3u| and |T3a| in 'Li- ““sn
scattering at Elab-uu MeVv. The LS effects in the elastic-scattering
amplitudes are shown in the upper figures (a) and the projectile-
excltation effects in the lower figures {(b). The calculations in
(a) are in the four-channel CC frame where the solld lines and
dotted ones are for the A1-T2 CF interaction and AV-T3 CF one,
respectively. 1In (b), the A'-T3 CF interaction is used, where the
solid lines and the dashed lines are for the four-channel
calculation and the single-channel one, respectively.
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Fig.

Fig.

Fig.

10.

1.

12.

Comparison between the CF calculation and the DF one in |U}, |S].

7 120
175,10 ITZBI, ,TBu, and ,TBB' in -

MeV. The calculation 1s for the elastic scattering and takes

L1 Sn scattering at E 4y

lab”
account of the four channels, The solid lines and the dashed lines

are for the DF interaction and for the Al1-T1 CF one, respectively.

Dependences of invariant amplitudes on the strength of the second-

7Li-‘ZOSn gcattering at E =44 Mev.

rank tensor interactions in
lab

The. magnitudes of U, S, T2u’ TZB' T3(1 and T38 in the elastlic
gcattering are shown for the A1-T3 CF interaction (dash-dotted
lines) and for the modified interaction (solid lines) where the
strength of the second-rank tensor interaction is reduced to one
half of that of the original interaction. For these lines the
fourth- and sixth-rank tensor interactlons are neglected. The
dotted lines are for the original At-T3 interaction. All
calculations take account of the four channels.

20S

Examinations of approximations for analyzing powers in 7L1-1 n

scattering at Elab'uu MeV. The calculations by approximations I
(dashed lines) and II (dotted lines) for the vector analyzing power
and the second- and third-rank tensor ones in the elastic scattering
are compared with each other and with the exact calculation (solid
lines}. In the second-rank tensor analyzing powers, the approxima-
tion I cannot be resolved from the exact in the figure. For the
third-rank tensor analyzing power, the single-channel calculation is

additionally displayed. Others are by the four-channel calculation.

The AY-T2 CF interaction is used.
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Fig.

Flg.

Fig.

13.

14,

15.

Examination of the relationship between the tensor analyzing powers

7L1—12°sn scattering at Elab'"" MeV. The right-hand side of eq.

for
(4.12) (dashed lines) is compared with the left-hand side calculated
exactly (solid lines) for the A1-T2 CF interaction and the DF one in
the elastic scattering. The calculation is performed in the four-~
channel frame.

Examination of shape-effect formulae in 7L1-12°Sn elastic scattering
at Elab'u“ Mey. The solid lines for Tzo and 721 are calculated by
eqs, (4.14) and (4.15), reéspectively, by using the experimental data
properly connected by the dotted line for TTZO in the right-hand

sides of the equations. The data are from ref, 33).

Dependences of cross section and analyzing powers on the strength of
the second-rank tensor interactions in 7Ll-12°Sn scattering at
Elab'uu MeV. The cross section, the vector analyzing power and the
second- and third-rank tensor analyzing poWers in both of the
elastic scattering and the inelastic one are shown for the A'-T3 CF
interaction (dash-dotted lines) and for the modified interaction
{solld llnes) where the strength of the second-rank tensor
interaction is reduced to one half of that of the origimal

interaction, For these lines the fourth- and slxth tensor

interactions are neglected and the calculations take account of the

four channels,



Table 1

Yo To ) ¥y " 3, Vso Tso 230 [
At 45.4 1,562 0.556 11,00 1.562 0.556 1.30
A2 218.6 1.373 0.553 29.87 1.373 0.553 1.34
T 147,0 1.240 0.688 18,08 1.475 0.890 0.0 1.25
T2 151, 1,200 0.660 14,50 1.600 1.00 8.00 1.19 0.80 1.30
T3 151.5 1.200 0.660 14,50 1.600 1.00 0.0 1.30
T 147.0 1.240 0,688 18,08 1,475 0.890 8.00 1.10 0.80 1.25
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