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Abstract: Scattering of 7L1 by 120Sn targets at E l a b - 11 MeV Is Investigated

In the coupled-channel frame by taking account of the projecti le virtual

excitations to the lowest three excited states. Calculations are performed by

the cluster-folding (CF) Interactions and the double-folding (DF) one. Both

Interactions reproduce very well the expelmental data on the cross section,

the vector analyzing power, the second-rank tensor ones and the third-rank

tensor one In e la s t i c and project i le Inelast ic scattering, although some

differences are found between the CF results and the DF ones . In the

calculation, the virtual excitations of the projectile are Important for most

or the analyzing powers and the spin-orbit Interaction Is Indispensable for

the
58,,
the vector analyzing power. These features are In contrast to those In Li-

Nl scattering at 20 MeV and are Interpreted as over-Coulomb-barrier

e f f e c t s . The scattering amplitudes and the analyzing powers are Investigated

by the Invariant amplitude method, which provides a key connecting the spin-

dependent Interactions to the analyzing powers. The method proposes an

Important relationship between the tensor analyzing powers, which Is useful In

analyses of both theoretical and experimental results. Finally, It is found

that In the elastic scattering the second-rank tensor analyzing powers are

proportional to the strength of the second-rank tensor Interaction and the
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vector and third-rank tensor analyzing powers to the square or cube of the

strength of this Interaction, while In the Inelastic scattering the cross

section is proportional to the square of the strength of the tensor

interaction, other quantities being weakly dependent on the strength.

1. Introduction

In recent years, a lot of Investigations both experimental ) and

theoretical ) have been concentrated on scattering of polarized LI and LI

by nuclei. They have clarified that analyzing power data from the polarized

beam are the valuable source of the knowledge of spin-dependent interactions

between nuclei. Among various theoretical approach, the coupled-channel (CC)

studies with folding models of projectile-target Interactions ' ' ) have

provided a successful understanding of the experimental data of cross sections

and vector and second-rank tensor analyzing powers for both of elastic and

projectile Inelastic scattering. Let us neglect excitations of the target

nucleus for simplicity. The folding interaction calculated for the ground

3tate of the projectile gives a diagonal potential for projectile-target

relative motions, while the calculated between the ground state and the

excited one of the projectile generates excitations of the projectile by the

target ) . The CC analyses stated above have revealed an Interesting feature

of the Interaction; i.e. virtual excitations of the projectile caused by the

folding non-diagonal interactions give rise effective spin-dependent

interactions and produce some Important contributions to the analyzing powers.

Effects of such projectile excitations compete with those of the above

diagonal potential and their resultant contributions to the analyzing powers
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seem to depend largely on the relative magnitude of the Incident energy to the

Coulomb-barrier height ) .

At Incident energies less than or co.nparable to the Coulomb-barrier, for

example at 20 MeV or below on HI targets, most of the vector analyzing power

or elastic scattering are explained by effective spln-orblt Interactions from

both of the projectile virtual excitations and higher orders of the ground-

state tensor po ten t ia l , while the tensor analyzing powers in the same

scattering are mainly explained by the tensor potential I tse l f ) and the

virtual-excitation effects are very small, although a small but important

contribution from projectile virtual breakup processes Is found In the tensor

i fi
analyzing powers ) . In this case the spin-orbit potential obtained by the

folding has l i t t l e effects In both the analyzing powers throughout the

analyses. On the other hand, in scattering of 7L1 by '2C at 21 MeV, the

Coulomb barrier is much lower than the Incident energy as Is shown In f i g . 1,

and the spin-dependent Interactions produce more complicated effects than in

the scattering by the Nl target. The folding spin-orbi t potential

reproduces almost the observed vector analyzing powers when the projectile

excitations are switched off and I t seems as If the calculation would succeed

in explaining of the experimental data. However, when they are switched on

once, the spin-orbit potential hardly contributes to the analyzing power and

the observed analyzing power is attributed to the alternative source, i .e. the

effective spln-orblt interactions from the projectile virtual excitations and

the higher orders of the tensor potential which are similar to those in the

Nl case ' ) . The tensor analyzing powers in the C target are remarkably

affected by the projectile excitations ) contrary to the case of the Ni

target ) . Even considering the speciality of the C nucleus, for example

the extremely large deformation ) , i t may s t i l l be a plausible speculation

that at Incident energies higher than the Coulomb barr ier deta i ls of

Interactions and reaction mechanisms concerned are effectively reflected in
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the calculated obaervables and as the result the role of each spin-dependent

Interact ion Is generally d i f fe rent from that at energies comparable to or

below the barrier. In fact , the calculated cross section and analyzing powers
12 *ift

for the C target become similar to those for the HI target with Increasing

the barrier height by the a r t i f i c i a l Increase of the atomic number ) from 6

to 15. This suggests the Importance of the relative magnitude of the Incident

energy to the Coulomb barrier. From such consideration, I t w i l l be worthwhile

to I n v e s t i g a t e In more d e t a i l the role of the various spin-dependent

Interactions In other cases of higher Incident energies.

As the folding Interaction discussed above, the following two kinds have

been employed so far , I . e . the cluster-folding (CF) Interact ion ' ) and

the double-folding (DF) one ' ) . In the former, the projecti le, say L I , Is

assumed to consist of an u-par t lc le and a t r l t o n and a-target and t r l t o n -

target opt ical potentials are folded into the relevant states of L i , while,

in the la t te r , an Inter-nucleon potential between a project i le nucleon and a

target one Is folded Into the relevant states of the projectile and target.

More details for the former are referred to ref . 12 and those for the l a t t e r

w i l l be described in sec. 2. Both calculat ions produce spin-dependent

interactions of various tensor rank; for example In the CF calculat ion ) ,

they are the central and spin-orbit potentials and the tensor Interaction, the

maximum rank of which is seven when the highest spin of p ro jec t i l e Is 7/2 .

The calculated cross sections and the vector and second-rank tensor analyzing

powers by the CF and DF Interactions are quite similar to each other In the

7 L i - Nl scat ter ing at 20 MeV, as w i l l be shown l a t e r . In the L i - C

scattering, however, they have given very d i f fe rent results for the above

observables, par t icular ly at large angles ) . Such a difference between the

Nl target and the C one w i l l be interpreted a3 an effect s imi lar to that

discussed already, i . e . at higher energies than the Coulomb barrier, the

details of the interaction affect the calculated quantities which allow us to
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see the d i f ference between the above two kinds of Interactions. This

stimulates Investigations of LI and LI scattering at higher Incident

energies. Further, both of the CF and DF interactions are of phenomenologlcal

nature as will be discussed later in more de ta i l ard the t h e o r e t i c a l

Just i f icat ion i s rather weak. In particular for their Imaginary parts ) .

Thus the investigations wil l play a role of the val idi ty t e s t for such

treatments of Inter-nucleus Interactions.

Recently, experiments have been done for scattering of polarized Li by

Sn at It MeV ) . This scattering is one of the examples where the incident

energy highly exceeds the Coulomb barrier as Is seen in f l g . l . Furthermore,

they Include measurements of a third-rank tensor analyzing power. The

theoretical analysis of this quantity Is very Interesting because they are the

f i r s t experimental observation. Including of this quantity In the analysis

wil l Impose an additional examination on the theoretical models for the

Interaction and the reaction mechanisms concerned. In these circumstances,

this paper investigates the Li- Sn scattering theoretically, on the basis

of the folding models, including the projectile virtual excitations by the

coupled-channel method. In the next sect ion, we wil l describe the general

treatment of the projectile-target interaction by the double-folding model and

compare the numerical result with the CF one ) on scattering of LI and LI

by 5 8Ni at 20 MeV. This provides the v a l i d i t y or the use of the DF

interaction by the magniflclent succsss In explaining the data on one hand and

on the other hand confirms that the CF and DF interactions give similar

results for scattering of these ions at energies comparable to the Coulomb

barrier. In sec . 3, the roles of the folding potentials and the effective

Interactions due to the virtual excitations are studied by both or the CF and

DF Interac t ions for the LI- Sn s c a t t e r i n g . The results of these

calculations are compared with each other and a l s o compared with the

experimental data. There some considerable differences are found between the
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two kinds or calculations, the origin of which Is Investigated through the

form factors of the Interactions. In both cases, however, the agreement

between the theory and the experiment i s quite success fu l within the

experimental errors, including the third-rank tensor analyzing power. In sec.

1, the results of the calculation are analyzed by the Invariant amplitude

method ) . This gives the deeper Insight of the effects of the spin-dependent

Interactions; for example, It clarifies the reason why the vector and third-

rank tensor analyzing powers are particularly influenced by the choice of the

Interaction or by the reaction mechanism. The method also proposes an

important relationship between the tensor analyzing powers, which Is useful In

analyses of both theoretical results and experimental data. Finally, the

dependences of the cross sections and analyzing powers on the strength of the

second-rank tensor Interactions are Investigated. Roughly speaking, the

interactions contribute to the second-rank tensor analyzing powers in the

first order and to the vector and third-rank tensor analyzing powers in the

second or third order in the elastic scattering, while the cross section In

the inelastic scattering is affected by this Interaction In the second order.

Sec. 5 will be devoted to the summary and discussions of the results.

2. Double-folding Interactions and tests of Its validity in

scattering of 6Li and TL1 by 58Ni at 20 MeV

The double-folding (DF) interaction between two nuclei have been

discussed earlier In detail ) . In this section, the essence of the method Is

summarized and i t s validity la examined by comparing the numerical result with

the CF calculation and also with the experimental data in the Li- Hi and

\ i - Nl scattering at 20 MeV. Let us consider an Interaction V(1 Tor the

excitat ion of. the project i le P from the 1-th state to the J-th state, while
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the target nucleus T Is In the ground state. As a special case, this

Interaction gives the potential for the projectile-target relative motion when

both of the 1-th and J-th states are the ground state. The DF method gives

r,d r., . ( 2 .

where the coordinates «"1 , r 2 and R are shown in r i g . 2, p is the transition

nucleon density of P from the l - t h state to the J-th state and p is the

ground state nucleon density of the target nucleus. The quantity v Is the

lnter-nucleon potent ia l which Is taken to be the so-called M3Y interaction

modified with knock-on-type exchange ef fects ) . In order to Introduce an

absorption e f f e c t , the Imaginary part with the factor IN. and the same shape

as the real one Is added to this Interaction, where Nj is a riexlble parameter

and Is fixed by f i t t i n g the calculated elastic-scattering cross section to the

measured. Such a t rea tment has been s u c c e s s f u l I n high energy

scat ter ing 2 3 ' 2 5 ) .

The density p .. Is calculated by microscopic wave functions T . ( P ) . For

the Li projecti le, for example.

' 7
| I «<rr r^lt^Ll)) . (2.2)

The wave function T ( Li) Is obtained by a microscopic treatment ' ) of the

a-t cluster model, which taki s =icount of the antisymmetrlzatlon between seven

nucleona and reproduces the data of the binding energy and the ^uadrupole

moment for the ground state ) , those of the excitation energy and B(E2) for

the f i rs t excited state and a-t phase shifts ) for the scattering states.

The density thu3 obtained is good descriptions of form factors of electron

elastic and inelastic scattering ) . For PTn0. the nucleon density obtained

from the electron-scattering data ) with the correction due to the proton
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charge d i s t r i bu t ion Is employed. In the numerical calculation of V.,, spin-

orbit Interactions are neglected for simplicity, the effect of which wil l be

discussed la te r .
7 *̂  R

The coupled-channel calculation for the LI- Nl sca t t e r ing is carr ied

out by taking account of the 1/2 , 7/2 and 5/2 excited states In addition to

the ground s t a t e of 3/2 for Li with N. -0 .7 . The r e s u l t s for the cross

sect ion and the vector and tensor analyzing powers are compared with those by

the CF interaction1 2) and a lso with the data^) in f i g . 3a for the e l a s t i c

s c a t t e r i n g and in f i g . 3b for the inelastic scattering leading to the f i r s t

excited s ta te of LI. In the figures the CF calcula t ion includes the spin-

o rb i t po ten t ia l but i t does not yield any real effect. Exoept for several

minor differences the results by the DF calculation are quite similar to those

by the CF ca lcula t ion and f i t the experimental data very well. Similar DF

calculations with the same N are performed for the LI- Nl scat ter ing where

the 1 ground s t a t e and the 3 . . 2 . and I „ excited states and non-re3onant

breakup s ta tes of 1 (s ) , 0 , 1 and 2 are considered by the coupled-channel

method. The calculated cross sect ion and vector analyzing power In the

elas t ic scattering are in good agreements with those by the CF calculat ion )

which reproduces the experimental data ) very well. These analyses provide

the validity for the use of the DF interaction. In the next section, we wil l

examine the DF in te rac t ion as well as the CF one in scattering at a higher

incident energy.

3. 7Ll-1Z0Sn scattering by the CF and DF interactions

The s ca t t e r i ng or 7LI by 120Sn at ifii MeV w i l l be analyzed in the

following by the c lus te r - fo ld ing CCF) in te rac t ion and also by the double-

folding (DF) one. The low excited states of Li of 1/2 , 7/2 and 5/2 are

- 8 -



taken i n t o account in a d d i t i o n to the ground state of "}/2 , in the coupled-

channel framework. I n the c a l c u l a t i o n of the CF i n t e r a c t i o n , s e v e r a l

combinat ions of the a- Sn and t - Sn opt ica l potent ials are examined, the

numerical values of potent ia l parameters being In tab le 1. The combination

used as the standard Is set Al for the o-120Sn potent ia l ) and set Tl for

The mass number of Sn Is not speci f ied in the reference for Al and A2 but the

potent ia ls are assumed to be va l id fo r Sn because Sn has the l a r g e s t

abundance In the natural t i n and the potent ia l parameters depend weakly on the

target mass number for t h i s element.

the t - 1 2 0 S n one^ ) , where the l a t t e r does not Include the sp ln -o rb l t (LS)

par t . In the DF ca lcu la t ion , the nucleon densi ty of Sn i s obta ined from

the e l e c t r o n - s c a t t e r i n g data"" ) and Nj Is determined so as to f i t the cross-

sec t i on data or the L i e l a s t i c s c a t t e r i n g , r e s u l t i n g Nj - 0 . 1 7 . The

i n v e s t i g a t e d Is the cross sec t i on o, the vector analyzing power IT , the

second-rank tensor analyzing powers T 2 Q , T?Q and T ? 1 and the t h i r d - r a n k

tensor analyzing power T,_ In the e las t i c scat ter ing a <1 In the Ine las t ic one

leading to the f i r s t excited state of 7L1 (1/2~, 0.18 MeV).

The r e s u l t s of the CF c a l c u l a t i o n and those of the DF one are compared

wi th each other and also with the experimental data ) In f i g . 1 . The gross

behaviour of the above observables In the i r angular d is t r ibu t ions are quite

s imi lar between the two calculat ions and both calculat ions reproduce the data

very w e l l w i t h i n t h e i r exper imental e r r o r s . These r e s u l t s J u s t i f y the

underlying t h e o r e t i c a l Trame. There severa l minor d i f f e rences are found

between the two c a l c u l a t i o n s . The DF cross section Is s l i g h t l y larger than

the CF one g i v i n g be t te r agreement w i th the measjred In both e l a s t i c and

i n e l a s t i c s c a t t e r i n g . For the ana lyz ing powers, the calculated by the DF

Interact ion osc i l l a tes more strongly In the angular d i s t r i bu t i on than tha t by



the CF one and Is consistent with the angular fluctuations of the data. From

the cross sections and s'ch fine structures In the analyzing powers, the DF

calcu la t ion looks be t t e r than the CF one In the agreement with the data but

the definite superiority of the DF In terac t ion Is hardly ident i f ied In the

present experimental accuracy. I t 3hould be emphasized that the calculated

T reproduces well the characteristic feature of the measured one In both

elast ic and Inelastic scattering. This provides the guarantee of the validity

for the present theoretical assumptions.

In the CF calculation, a deeper a-Sii potential ) A2 Is examined but the

difference of the calculated between Al and A2 is very small] for example, the

r e s u l t s by the combination of A2 and Tl are not distinguishable from those by

the combination of A1 and T1 In most observables. Since the LS potent ia l has

not been derived for the t r l t o n scattering from Sn in the present energy

region, we will refer the optical potential from Sn, T2 which Includes the

LS part, as an alternative of the trl ton potential ) . The use of this t r l ton

potential will help us In studying ef rec ts of the LS potent ia l in the Li-

Sn s c a t t e r i n g . In f i g . 5, the following two combinations are compared

with each other and also with the experimental data; I . e . the combination of

At and T2 and that of A1 and T3 where T3 i s the same as T2 except for the

neglect of the LS p a r t . The r e su l t s of these combinations are generally

similar to those from the standard combination of At and Tl , with a few

exceptions for example the e las t ic vector analyzing power, and are s t i l l good

descr ip t ions of the experimental data. In the vector analyzing power of the

e las t ic scattering, a remarkable effect of the LS interaction i s observed by

comparing set T2 to set T3; I . e . , the magnitude of IT., suffers from a big

reduction due to this Interaction. This LS effect is demonstrated in f i g . 6,

where the pure effect of t h i s In terac t ion is displayed by neglecting the

tensor Interaction and thus the coupling with the LI excited s t a t e s , the

Input po ten t i a l s being the combination of A1 and T2. The LS interaction
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I tself gives positive vector analyzing power In most angles which has the

opposite sign to the contribution from the tensor interaction. The f inal

vector analyzing power is the result of the competition between the LS

Interaction and the tensor interaction accompanied by the projectile virtual

excitation. Such an Important contribution of the LS Interaction is a typical

feature of the scattering at energies over the Coulomb barrier and has not

been observed in ' L I - Ni scattering at 20 MeV. More details, which Include

7 12
similar effects in L I - C scatter ing, w i l l be given In ref. 20. Further,

T T

rather minor effects of the LS Interaction appear In elastic T_o, T2) , T,_

and inelast ic lT^ In r i g . 5. Such LS effects are seen in comparison betwee.

the combination of A1 and TI and that of Al and T1 where the LS part of T2 is

added to T I . Other combinations which Include A2 as well as Al are studied.

Through these investigations, a tendency is found, i .e. the vector analyzing

power and the third-rank tensor analyzing power In the elastic scattering are

particularly ea3y to be affected by changes of the Input opt ical potent ials,

whether the LS Interaction Is included or not. This wi l l be related to the

fact that in these analyzing powers the tensor Interaction acts only In i t s

second order or higher orders, which w i l l be discussed later In more detai l .

The analysis also reveals that the calculated analyzing powers are more

sensitive to the t r i t o n central potential than to the alpha-particle one.

Thi3 is because in the folding Interactions the contribution of the former

potential has larger magnitudes than that of the latter at the nuclear surface

region.

To clarify the origin of the differences between the CF result and the DF

one, the form factors of the cent'al interaction In the elast ic-scat ter ing

channel, for example, are lnvestlgal-1 in the region where the Interactions

produce large contributions to the scattering amplitude. In the case of

strong absorption l i ke heavy-Ion scattering by nuclei, the characteristic

feature of the scattering is mainly governed by interactions at the strong
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absorption radius R which ia assumed to be determined by the quarter-points

recipe 3 5 ) ,

R - -2Ra - -2 (1 * 003ec(lB1 A ) ) , (3.1)

where n is the so-called Sommerfeld parameter

(3.2)

The quantity B^ .̂  Is defined for the Fresnel- type d i f f rac t ion scatter ing so

that the cross section f a l l s to one quarter of the Rutherford value at e -

9 1 / 1 ( . F ig . 7 shows the form factors of the rea l part and those of the

imaginary one In the region of 5 - 11 fm of the L I - Sn relative distance.

The rigure contains two kinds of the CF Interactions, the combination of At

and T1 and that of A2 and T1, and the DF interaction. The absorption radius

13 10.6 fm In the present case. Around this point, the two CF form factors

are very similar with each other while the DF form factor is much smaller than

the CF ones for both rea l and Imaginary parts . Such differences of form

factors between the Interactions wi l l explain why the two CF Interactions give

the similar results but the DF Interaction gives the d i f fe rent ones. More

deta i ls w i l l be discussed in the next section In terms of the Invariant

amplitudes.

Detai ls of the projectile-excitation effects are shown in f i g . 8 for the

standard CF calculation, where the calculations by the single channel (3 /2 ) .

the two channels (3 /2" , 1/2"), the three channels (3/2", 1/2", 7/2") and the

four channels (3/2". 1/2". 7/2", 5 / 2 ) are displayed s?parately, where the

single-channel calculat ion Is only for the e las t ic scattering. Generally

speaking, the effects of the projectile virtual excitations are large for the

e las t ic -sca t te r ing observables, par t icu la r ly for IT and T,Q . Inmost

observablea Invest igated, the c o n t r i b u t i o n of the 5/2 s t a t e Is not
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negl igible, which was very small In the case of the 7L1- Nl scattering at 20

MeV ). Similar effects of the projectile virtual excitations are observed In

the DF calculation where the effects are much more pronounced. Finally, I t Is

remarked that the project i le excitations by Coulomb interaction produces

Important contribution to most observablea, particularly to the cross section,

the vector analyzing power and the third-rank tensor analyzing power l i . the

Inelastic scattering. In this section, we have found several features or the

calculated analyzing powers which have not been seen In the previous analyses

of the L i - Nl scattering. These new features wi l l be considered as the

ref lect ion of the fact that the Incident energy la much higher than the

Coulomb barrier.

1. Analyses by the Invariant amplitudes method

I t has been discussed that the Invariant amplitude method ) Is useful In

analyses of polarization phenomena In nuclear reactions because I t provides a

guide-post for solving complicated effects of many kinds of spin-dependent

Interactions ' ' )• The method Is based on the expansion of the

transition amplitude In accordance with the tensor rank In the spin space. In

this sense, the method resembles the theory for deuteron scattering published

la ter ). However, the invariant amplitude method uses exp l i c i t l y the

associated space tensors which are helpful in practical use. Also i t has been

developed In more general form and thus I t Is applicable to any two-body

reaction. In the present section, we wi l l apply the method to the L I - Sn

scattering to c lar i fy the structure of the scattering amplitude in the spin

space and discuss how the spin-dependent Interactions govern the analyzing

powers.
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1.1 The invariant amplitudes in elastic scattering of Li

F i rs t , we wi l l describe the outline of the theory. The transition matrix

M can be expanded In terms of the tensor In the spin space zf ,

where j ? Is the associated ordinary space tensor and i ts matrix element jan

be described by the tensor of the same rank constructed from k, and k f , the

I n i t i a l and f inal momenta. In the case where the spin of the target nucleus

and that of the residual one are zero and no p a r i t y change happens in the

transit ion, the matrix element of M Is given by J,

k

r-it-k

where fl and n. are the solid angles of k. and k, , respectively, s (v . ) and s .

(v_) are the spin (z-component) of the Incident particle and the emitted one,

respect ive ly , and k is k for k - even and k+1 for k - odd. The quantity

C, (n) Is related to the spherical harmonics it, (n) as
Im lm

^ V n ) •

The Clebsch-Gordan coefficient (SJSJ.V.-VJ.|kK> arises from the matrix element

of i 7 k _ and the factor constructed from C and C- describes that of 5? .

Other t r i v i a l factors l ike the physical part of the matrix element of if ^_<

are Included in F . The amplitude F is Invariant under rotations of the

coordinate axes and is a function of e, the angle between k, and k f t the c m .
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energy and the Q-value. The invariant amplitude F. Is designated by the rank

of the spin tensor, with which F Is associated; for example, F , f and

F (r - 0 , 1 , 2 ) are the s c a l a r , vector and second-rank tensor terms,

respectively. In the first order of Interactions, F , F and F represent

the contributions to the scattering amplitudes from the central, spin-orbit

and second-rank tensor Interactions, respectively. In principle, they contain

any higher-order contribution of these interactions within the restriction due

to their tensorlal properties.

In the case of the elastic scattering of LI, the matrix element of M is

represented by designating the row and column by the z-compone>.t of the Li

spin as )

(1.3)

where A-H satisfy the elastic-scattering conditions due to the time-reversal

theorem

(OH) - / f (A-F) -2(B+E) cot 6 (1.1)

and

(B-E) • /§ (G+D) +2(C-H) cot B . (1.5)

Each matrix element of (1.3) Is rewritten in terms of the invariant amplitudes

F. by the use of (1.2), which will be given la ter . The e las t i c - scat ter ing

conditions become

F22 - F2Q (1.6)

and
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Thus we have one scalar, one vector, two second-rank tensor and two third-rank

tensor amplitudes as Independent ones, which can be chosen In the reference

frame, y//\k x Ik and z//k , as

U = Fnn , ( t .8 )

«J|Fn elne

oose J || f3 2

,sln3e.

The amplitude U Is related to the scalar, S to the vector, T2o and T to the

second-rank tensor and T, and T to the third-rank tensor In the spin space,
3d 36

respectively. With these new amplitudes, A-H are given by

A - •i(U + T2a) , (1.9)

C " I ( T 26
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0 ' I S " T 1 ^ 0 0 ' 8 !T38

H - 2"(

Similar theoretical developments Tor the Ine last ic scat ter ing are given In

Appendix.

Since the analyzing powers are described by A-H, they can be expressed by

U-T, . The expressions are the key for connecting the spin-dependent lnterac-
36

tlons to the polarization quant i t i es , which w i l l be discussed In the next

subsection. The amplitudes U, S, T, (T , . ) and T, (T,o ) are the representa-

tlve of the central, sp ln -orb l t , second-rank tensor and third-rank tensor

In terac t ions , respect ively , In thei r f i r s t order and thus I t Is reasonably

speculated that U Is dominant and other amplitudes are comparatively small

because the central Interaction Is strong and the spin-dependent Interactions

are weak. The numerical calculat ions show that the order of magnitude of

these amplitudes Is approximately described by

at most angles for both the CF and DF Interactions, where the left-hand aide

of the Inequality sign Is larger than the right-hand aide by almost one order

of magnitude. The magnitude of these amplitudes are shown In f i g . 9, for

example for the CF Interactions or the A1-T2 and A1-T3 combinations, where the

ef fect of the LS potential and that of the projectile virtual excitations are

- 1 7 -



also examined. The figure shows that the above relat ion, (4 .10) holds

independently of the presence of the LS potential or the projectile virtual

excitations. As Is seen In the figure, | s | , |T, | and |T,g| are affected

considerably by the presence of the LS Interaction or by the projecti le

virtual excitations, while other amplitudes are affected very l i t t l e . In more

d e t a i l , the p r o j e c t i l e excitation Increases | s | by a large amount but

decreases IT , I and | T , . | seriously and the LS potential a f f e c t s these

amplitudes In a quite opposite way with less amount. This will be discussed

later In connection with the calculated analyzing powers. The amplitudes

calculated by the deep CF interaction are almost equivalent to those by the

shallow Interaction. The effects of the projecti le excitations In the DF

calculation are similar to those In the CF one; I .e . only | s | , |T | and |T, |

receive serious e f f e c t s . F ig . 10 compares | u | - | T , B | between the CF

calculation and the DF one, where the combination A1-T1 Is used Tor the CF

calculat ion, corresponding to f i g . 4. Dif ferences between the two

calculations are found In all amplitudes, which produce the differences in the

calculated quantities In f ig . 4. Referring to the expressions of Tpn1 T20

and T21 In the following subsection., one will understand that the oscillatory

angular dependence of |T, | in the DF calculation In f ig . 10 Is reflected in

that of the second-rank tensor analyzing powers in rig. 4. Rather large CF-DF

differences are observed in | s | , |T, | and | T , . | . This Is consistent with the

theoretical observation in elastic IT., and T-. In fig. 4.

In the absence of the LS Interaction, the main spin-dependent interaction

i s the second-rank tensor one because the parity of the folding interaction Is

even and the fourth- and sixth-tensor Interactions are comparatively weak. In

th i s case, the amplitudes S, T, and T,o will arise rrom the second order or
3a 3B

higher orders of the second-rank tensor interactions. Thus i t i s interest ing

to examine how the amplitudes U-T-. are governed by these interactions. In
5B

fig. 11, the magnitudes of U-T,o obtained by reducing the strength of the
JB
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aceond-rank tensor part of the CF Interactions to one half of the original one

are compared with those by the original Interactions, where the higher-rank

tensor Interactions In ad ltlon to the spln-orblt Interaction are neglected to

simplify the consideration. The calculation Is based on the A1-T3 combination

and Is performed In the four-channel frame. In the figure, the magnitudes of

T and 1 are decreased by about one half and those of S, T, and T by

about a quarter by the reduction of the tensor Interactions, while U Is

scarcely changed. This means that T. and T,n are proportional to the
2a 20

strength of the second-rank tensor Interaction and S. T, and T,_ are
3a 3a

proportional to the square of the strength of that interaction. When the

higher-rank tensor interactions are taken into account, such proportionalities

are modified but v,he modifications are very small except Tor T, and T, at
3d 3D

small angles, as is shown In the figure. These features can be understood by

assuming that T, and T,. are mainly produced by th« f i r s t order or the

second-rank tensor Interactions, while S, T- and T,_ are produced essentially
3a 3B

by the second order of that Interaction. The amplitude U Is domlnantly

governed by the central Interaction and is almost Independent of the tensor

one. Thus, in the present scattering, the amplitudes S-T,fi are good measure

of the second-rank tensor Interactions.1.2 Invariant amplitude analyses of the analyzing powers

Considering (1 .10) , one can neglect In a good approximation the terms

which Include T, and T, but not U in describing the e l a s t i c scattering
3a 30

analyzing powers by U e t c . . These approximate formulae are given In the

following, the full expressions being in Appendix.
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- - I Re|UT2J * /3UT2. - 1||S|ZJ

and

- 8UT3J

with

N - 1o .

To invest igate the val idity or the approximation, three kinds or calculation

for the analyzing powers are displayed In f i g . l 2 j the calculations by the

exact formulae, those by eq. (1.11) (approximation I ) and the calculations by

neglecting the U-independent terms except for N (approximation I I ) . A l l

calculat ions are performed In the four-channel CC frame and the interaction

used is the CF one of A1*T2. In the rigure, i t is clear that eq. (1 .11) Is

very accurate for T , , T , . and T g . and Is quite close to the exact

calculation In IT and T , while the neglect of the U-independent terms

(approximation I I ) has high v a l i d i t y for the second-rank tensor analyzing

powers but not for IT . and T , . These features are also found In the

calculations by various combinations of the alpha potential and the t r l ton one

and In the DF ca lcula t ion. I t should be noted that the calculated T , .

changes I ts sign by Including the terms of ST » and ST ". This happens due to
da £D -

the virtual-excitation effect as Is shown In the following. In the comparison
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of the four-channel calculations with the single-channel ones In f i g . 12, the

T
sign of T by the approximation I I Is changed by the pro jec t i l e v i r tua l

exc i ta t ion . Further,as Is seen in f i g . 9, the amplitudes |T I and |T I are
Jot JP

decreased seriously by Increasing the coupled channels from ona to four, while

|s| Is increased by this increase or the channels. This decrease of |T | and

| T , J reduces the magnitude of contributions of the U-dependent terms to T,_

as Is seen In r i g . 12 (approximation I I ) and the Increase of |s| Increases the

relative Importance of the terms ST« and ST« . These efrects cause the
cct £B

competition between the U-dependent terms and U-independent ones In T,_ of

eq. (1 .11) , resulting the f inal change of sign In T T , 0 .

Since the second-rank tensor analyzing powers are described well by only

the U-dependent terms, one can derive the following formula by neglecting U-

independent terms,

T,_ - -2T,. - /6T
20 20 £i

or

T22sln8 - J l T2()sin8 • 2T21oose (1.13)

with

In f i g . 13, TT2 Q obtained by eq. (1.12) with T2Q and T2 ) calculated exactly Is

compared to the exact • „ . The calculations are perrormed by the two kinds

of In teract ion; the CF interaction of A1-T2 combination and the DF one, the

v i r t u a l - e x c i t a t i o n erfects being taken into account by the Tour-channel

coupling frame. The comparison just i f ies eq. (1.12) fa i r ly well for the CF

Interactions. For the DF interaction, the characteristic feature of the exact

calculat ion is reproduced by ( 1 . 1 2 ) , though I ts eight-hand side oscillates

more strongly than the exact In the angular distribution. Such deviations of

the approximation from the exact are related to the virtual-excitation efrect

- 2 1 -



because the agreement with the exact calculation Is much better In the single-

channel calculat ions. The val id i ty of (1.12) can also be examined In a way

free from the choice of the Interaction. In the 7 Ll - 5 8 Ni scattering at 20

MeV, the shape-effect formulae ) have been found to be very good descriptions

of T , T and T . The formulae have been derived seml-classlcally^) and

also quantum-mechanieally ). They are for T and T

(1.11)

slneTT20 . (1.15)

In the present case, these formulae a lso describe the measured T__ and Tp.

very wel l by using the measured TT2_ for the right-hand side of the equations,

as i s shown In f i g . 11 . These formulae s a t i s f y eq . (1.12) exact ly , which

means that the exper imental data themselves s a t i s f y eq . ( 1 . 1 2 ) . S im i l a r

considerations can be applied to other scat ter ing; for example the v a l i d i t y of

(1.13) has been confirmed In scat ter ing or LI and 7 L i by Nl t a r g e t s at 20

MeV ) . The r e l a t i o n (1.12) or (1.13) Is a measure of the spin-dependent

Interact ions; that I s , when I t i s s a t i s f i e d , e f fects of higher order terms of

the spin-dependent in teract ions are small In these analyzing powers, whether

the analyzing powers are the calculated or the measured. The approximat ion

used In the d e r i v a t i o n of (1.12) or (1.13) can be avoided by al lowing the

par t i c ipa t ion of more po lar izat ion q u a n t i t i e s i n the formulae. Such exact

re la t ionships w i l l be discussed elsewhere ) .

I t should be remarked tha t the p rope r t i es of U-T discussed i n the

previous subsection are re f lec ted In the calculated analyzing powers. This can

be understood through the expressions (1.11) . For example, as i s discussed

already, the amplitudes S, T, and T,n are se lec t i ve ly Influenced by the Input
3a 36

potent ia ls and the reac t ion mechanism; p a r t i c u l a r l y , | s | i s increased and
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|T I and | T , I are decreased seriously by the virtual excitations of the

projectile, while other amplitudes are almost stable. When these properties

are combined with eq. (1.11) where a l l terms of IT,, and T,_ contain S, T-,
It JU 3a

or T , I t w i l l be reasonab ly u n d e r s t o o d why o n l y I T , , and T , _ a r e e a s i l y
m I i io

af fected by the change of In teract ions or by the project i le v i r tua l

excitations. In the Inelastic scattering leading to the l/2~ state of L i ,

similar analyses are performed, where we have one vector and three second-rank

tensor amplitudes but no scalar amplitude. The details are given In Appendix.

The second-rank tensor analyzing powers are mainly governed by the

corresponding tensor amplitudes, while In IT and T the contributions of

the above four amplitudes compete with each other. The absence of U makes the

analyses more complicated.

In the previous subsection, the invariant amplitudes have been found to

depend on the strength of the second-rank tensor interaction in the def in i te

ways; |U | Is almost independent on the strength, |T_ | and |T | are nearly

proportional to the strength and | s | , |T_ | and |T | are approximately

propor t iona l to the square of the strength. Thus I t is interest ing to

investigate how such dependences of the amplitudes are reflected on the cross

sections and analyzing powers. The calculation is carried out In the four-

channel coupling frame, the Input potential being the A1-T3 combination. The

calculations performed by reducing the strength by one half are compared with

those by the f u l l strength, where the f o u r t h - and s ix th - rank tensor

Interactions are neglected. The results are shown In f i g . 15. In the elastic

scatter ing, Tpo' T20 a n d T21 a r e a l m o s t proport ional to the tensor

i n t e rac t i on strength. This is easily understood by considering of the

approximation I I for the analyzing powers together with the properties of

|T I and |T | mentioned above. The magnitude of IT and T are decreased

by the reduction of the tensor strength more strongly than the square of the

strength. From the behaviours of |s| , |T | and |T | observed In f i g . 11,

- 2 3 -



one will see that each term of IT., and, T,n In eqs. (4.11) Is proportional to

the square or cube of the tensor Interaction strength. Thus the dependence of

IT,, and T„ on the strength Is quite reasonable. These results indicate

that the second-rank tensor interactions contribute to the second-rank tensor

analyzing powers mainly in the first order and to the vector and third-rank

tensor analyzing powers in the second or third order in the perturbation-

theoretical sense. In the inelastic scattering, the cross section i s

decreased to a quarter by reducing the strength of the second-rank tensor

interactions by one half, while all analyzing powers are changed by small

amounts. This will be explained' by considering that all amplitudes in the

inelastic scattering are decreased by one half or one fourth by the reduction

of the tensor s t rength and the decreases in the amplitudes are almost

cancelled between the numerator and the denominator in the analyzing powers

but no cancellation is in the cross section. Because of the lack of U, the

dominant contributions to the cros3 section come from the tensor amplitudes

and they are proportional to the square of the tensor strength. From these

analyses, It will be emphasized that, in the elastic scattering, the analyzing

powers are the measure of the second-rank tensor interactions, while, in the

inelastic scattering, the cross section is the measure of these interactions.

5. Summary and discussion

The elastic scattering and Inelastic one leading to the 1/2 excited

state of the projectile are Investigated In the Li- Sn case by the coupled-

channel method, where the 1/2 bound state and the 7/2 and 5/2 resonance

states of LI are taken Into account in addition to the 3/2 ground state.

Between the projectile and the target, the two kinds of interaction are
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studied; the cluster folding (CF) Interaction and the double-folding (DF) one.

In the former, as the Input the a-target and trlton-target optical potentials

are employed under the assumption of the a-t cluster model Tor L I , where

several combinations of these potentials are examined. In the DF calculation,

the so-called M3Y inter-nucleon potential Is Tolded between 7L1 and 120Sn, the

val idi ty of the method being confirmed In ' L i - Ni scattering in advance.

The calculation shows that both of the Cf and DF Interactions are quite

successful In explaining the experimental data of the elast ic scattering and

those of the inelast ic scattering simultaneously. The newly observed third-

rank tensor analyzing powers are reasonably predicted by the calculation

Just i fy ing the theoretical frame. Through these analyses, I t is found that

the difference between the interactions and the v i r tua l excitations of the

pro ject i le affect the analyzing powers seriously which are In contrast with

the case of L i - Nl scattering at 20 MeV. Part icu1arly, the calculated

vector analyzing power is found to be given by the competition between the

spin-orbi t Interaction and the second-rank tensor one. These w i l l be

understood as the above-Coulomb barrier effects. Here, effects of the folding

LS potential are Investigated for the CF calculation which uses essential ly

the L i - Sn Interaction because of the lack of the knowledge of the t- Sn

spin-orbit potential. Since the LS potential affects substantially the vector

and third-rank tensor analyzing powers, reexamlnatlons by the CF Interaction

with the t- Sn spin-orbit potential are desirable to draw any def in i te

conclusion on the real effect of the LS potential on the analyzing powers.

Accordingly, the DF calculation should be Improved so as to Include the proper

LS interaction In any way.

To get more Insights of the calculation, the analyses are extended by the

Invariant amplitude method. The theory classifies the scattering amplitude

into the scalar, vector, second-rank tensors and so on In the spin space and

thus they ref lect effects of the corresponding spin-dependent Interactions.
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For the elastic scattering, for example. I t Is clar i f ied how these amplitudes

are Influenced by the choice of the Interaction or by the reaction mechanism.

In particular, the vector and third-rank tensor amplitudes are easily affected

by these factors. The analyses also find that the scalar'amplitude is larger

than other amplitudes. This allows us to reojce the expressions of the

a n a l y z i n g powers Into simple forms, the v a l i d i t y of which Is confirmed

numerically. In the extreme case where a l l U-lndependent terms are neglected,

one can derive a relationship between the second-rank tensor analyzing powers.

The relationship is Justified by the CC calculation successfully for the CF

interaction and satisfactorily for the DF one. The experimental data are well

described by the relation formula. Thus the re lat ionship w i l l be userul in

invest igat ing these analyzing powers both theoretically and experimentally.

The simplified forms and the properties of the amplitudes discussed above lead

to understanding of the reason why the vector and the third-rank tensor

analyzing powers are easily affected by the choice of the interact ion or by

the projectile virtual excitations.

Further, the following is found by the CC ca lcu la t ion . In the e las t i c

s c a t t e r i n g , the second-rank tensor analyzing powers are approximately

proportional to the strength of the second-rank tensor Interact ion and the

magnitudes of vector and third-rank tensor analyzing powers are varied by the

change of the strength more strongly than the square of the in teract ion

strength, the cross section being almost stable against the variation of the

i n t e r a c t i o n . On the other hand, in the Ine las t ic scat ter ing, the cross

section is proportional to the square of the second-rank tensor interaction

strength but the analyzing powers are weakly dependent on the strength. Thus

the analyzing powers are good measures of the second-rank tensor Interactions

In the elast ic scat ter ing , while the cross section Is the measure in the

I n e l a s t i c s c a t t e r i n g . The above cons idera t ion I s of course global

understanding of the feature of the tensor interact ion and. In d e t a i l , the

- 2 6 -



higher orders of the second-rank tensor interaction produce Important effects

on the calculated quantities. In fact, as mentioned already, the projecti le

v i r t u a l exci tat ions contribute considerably to the second-rank tensor

analyzing powers through higher orders of the Interaction In addition to the

fourth- and alxth-rank tensor Interactions. Since i t Is clarified that, above

the Coulomb barrier, scattering and reactions of Li provide useTul tools of

studying the Interactions from the target, more investigations are desirable

in such energy region.
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Appendix Full expressions of analyzing powers by the Invariant amplitudes

1. Analyzing powers in elastic scattering or spin 3/2 particles by 0 targets

The analyzing power T Is given by

TKQ - Tr(MTKflM )/N (AD

with

N - Tr(MM*) .

Sine? the matrix elements of M, A-H, are given by the new invariant amplitudes

U-T as is seen in eqs. (1.9), the analyzing power t Is also expressed in

terms of these amplitudes by the straightforward application of (1.9) to (Al).

IT.. - — Im|—US» • — S T » • fsT « (A2)

f ° O t e )

I R e i U T
2 ; - n i s ' 2 - K s 1 " 9 * %28 t a n e U3)

* 5 isT3Jcot9 • 1|ST3J - ^ T 2 o T 3 J - f r ^ T j J
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Re(- %2Jtane • JuTjgtane - % 2 « * Is i 2 | (AM)

• K.V.

1T31

- lsTJ« - xTo T,»(tane * foots)

1Ol2aT3B 1 0 ^ 8 38 2 3a 3B1

(A6)

5T3.T3B~ t B |
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/5IT33)

— In(-2/}UT «eotB - 8UT « + fsT « * ̂ S T . » (AT)

* 2/3To T *<tane + fcote) - 2T..T *(tane + —oote)

. JlT T . - J M T T .1
5 2o'3B 5 26 3B1 -

The approximate formulae (1.11) are derived rroro the above by neglect ing or

the terms which Includes T , and T,_ but not U.
3a 3B

2. Scattering amplitudes and analyzing powers by the Invariant amplitudes

in the Inelastic scattering to the 1/2 excited state of LI

The scattering matrix M of the Inelastic scattering to the 1/2 excited

state of LI is given by designating the low and column by the z-component of

Li spin In the Initial and final states,

I k B C D \
M -

\ -D C -B A / .
(A8)

The matrix elements A-D are expressed in terms of the Invariant amplitude F. .

Defining the new amplitudes analogously to ( 1 .8 ) ,

(A9)
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• F2 1)sine

T2B ~ , /5

we get

A - i ( / 3S - T , ) , (A10)

C "

D -

The cross section a is given by

and the analyzing powers by

1_

Aon

T20
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1T32 " 1

" " ^" 1 > { 3 S T a 5

where

|2 . 1 i . |2
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Table Caption

Table 1. Parameters of optical potentials for a-Sn and t-Sn In the cluster-

folding Interaction. The sets A1 and A2 are for the shallow a-Sn

potential and the deep one, respectively ) . The sets Tf-tt are for

the t-sn potential ' 3 ) , where the spin-orbit potential Is Included

in T2 and T4. Other notations are as usual.

Figure Captions

Fig. 1. Incident energies against Coulomb barrier. Center-of-mass Incident

energies ror scattering of 7L1 by 12C at E l a b - 2 n MeV, by 58H1 at

E l a b -11 and 20 MeV and by 120Sn at E l a b-11 MeV are shown In

comparison with the Coulomb barrier.

Pig. 2. Coordinates for double-folding calculations. P and T represent the

projectile and the target nucleus, respectively.

Fig. 3. Comparison between cluster-folding calculations and double-folding

ones in LI- Nl scattering at E, b»20 MeV. The cross section and

the vector and second-rank tensor analyzing powers by the four-

channel CC calculation are shown for the elastic scattering (a) and

for the Inelastic scattering to the first 1/2~ excited state or \ i

(b). The calculated quantities by the CF interaction and by the DF

one are described by the dashed l i n e s and the sol id l i n e s ,

respect ively . They are compared with each other and with the

experimental dai-a3).
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Fig. 1. Comparison between cluster-folding calculations and double-fol ding

ones In LI- Sn scattering at E -11 Mev. The cross section and

the vector, second-rank tensor and third-rank tensor analyzing

powers by the four-channel CC calculation are shown for the elastic

scattering and the Inelastic one to the f i r s t 1/2 excited state of

L i . The calculated quantities by the CF Interaction with the A1-T1

input combination and those by the DF Interaction are described by

the dashed l i nes and the sol id ones, respectively. They are

compared with each other and with the experimental data ).

Fig. 5. Ef fects of sp ln -o rb l t In te rac t ions in the c lus ter -To ld lng

calculation for the scattering of 7L1 by °Sn at E, b»11 MeV. The

ca lcu la t ions by two combinations of the Input potentials are

compared with each other and with the data ), where the t r l t o n -

target potent ia l with a spin-orbi t potential (T2) and the one

without (T3) are combined to the shallow a-target potential (A1).

The ca lcu la t ions are performed In the CC frame with the four

channels and are shown for the cross section and the vector, second-

rank, tensor and third-rank tensor analyzing powers for the elastic

scattering and the Inelastic one to the f i r s t 1/2 excited state of

L i . The sol id and da3hed lines denote the combination A1-T2 and

A1-T3, respectively.

Fig. 6. Demonstration of effects of spin-orbit Interactions In LI- Sn

elast ic scattering at E -11 MeV. The dotted l ine Is for the

single-channel ca lcu la t ion by the centra l plus sp ln -o rb l t

Interaction, the dashed one for the four-channel calculation by the

- 3 7 -



central plus tensor Interact ion and the so l id one for the four-

channel calculation which contains both spin-dependent Interactions.

The Interaction la based on the A1-T2 CF one.

Fig. 7. Form factors of folding potentials for LI from Sn. The form

factors of the diagonal potentials are compared between the shallow

CF Interaction (dashed l ines), the deep CF one (solid lines) and the

DF one (dotted lines) In the range 5-13 fro of the projectile-target

relative distance. The strong absorption radius Is shown by R .

Fig. 8. Effects of pro ject i le v i r tua l excitat ions on cress sections and

vector and second- and third-rank tensor analyzing powers In the

scatter ing of 7L1 by 120Sn at E, .-11 Mev. The effects of the

projecti le virtual excitation are shown for the observables in both

of the elastic and Inelastic scattering. The dash-dotted l ines, the

dotted ones, the dashed ones and the solid ones are for the single-

channel calculation, the two-channel one, the three-channel one and

the four-channel one, respectively. The Interaction Is the A1-T1 CF

one.

Fig. 9. Effects of spln-orblt Interactions and pro jec t i le v i r tua l excita-

t i ons on | U | . |S | . | T 2 o | , | T 2 B | . |T 3 a | and \t^\ In 7Ll-1 2 0Sn

scattering at E -11 MeV. The LS errects In the elastic-scattering

amplitudes are shown In the upper figures (a) and the projectile-

excitation effects in the lower figures (b) . The calculations In

(a) are In the four-channel CC frame where the sol id l ines and

dotted ones are for the A1-T2 CF Interact ion and A1-T3 CF one,

respect ively. In (b), the A1-T3 CF Interaction Is used, where the

so l id l i nes and the dashed I lne3 are for the four-channel

calculation and the single-channel one, respectively.



Fig. 10. Comparison between the CF calculation and the DF one In |U | , | s | ,

| T 2 J , | T 2 B | . | T 3 J and |T 3 | ) | In 7 L 1 - ' 20Sn scattering at E lab-lH

MeV. The calcula t ion Is for the e l a s t i c s ca t t e r i ng and t akes

account of the four channels. The solid lines and the dashed lines

are for the DF interaction and for the Al-11 CF one, respectively.

Fig. 11. Dependences of Invariant amplitudes on the strength of the second-

rank tensor Interactions In LI- Sn s ca t t e r i ng at E b" l ) i | MeV.

The magnitudes of U, S, T- , T . . , T, and T , . In the e l a s t i c
ca do 5a JD

sca t t e r i ng are shown for the A1-T3 CF Interac t ion (dash-dotted

l i n e s ) and for the modified In te rac t ion (solid l ines) where the

strength of the second-rank tensor In terac t ion Is reduced to one

half of that of the or ig ina l i n t e r a c t i o n . For these l ines the

fourth- and s ixth-rank tensor In te rac t ions are neglected. The

do t t ed l i n e s a :e for the o r i g i n a l A1-T3 I n t e r a c t i o n . All

calculations take account of the four channels.

Fig. 12. Examinations of approximations for analyzing powers In Li- Sn

scattering at E, .-11 MeV. The ca lcu la t ions by approximations I

(dashed l ines) and II (dotted lines) for the vector analyzing power

and the second- and third-rank tensor ones In the elastfc scattering

are compared with each other and with the exact calculation (solid

l ines ) . In the second-rank tensor analyzing powers, the approxima-

t ion I cannot be resolved from the exact in the figure. For the

third-rank tensor analyzing power, the single-channel calculation Is

additionally displayed. Others are by the four-channel calculation.

The A1-T2 CF Interaction Is used.
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Fig. 13. Examination of the relationship between the tensor analyzing powers

for 7Ll-1 2 0Sn scattering at E l ab-11 MeV. The right-hand side of eq.

(4.12) (dashed lines) is compared with the left-hand side calculated

exactly (solid lines) for the A1-T2 CF Interaction and the DF one In

the e las t ic scatter ing. The calculation is performed In the four-

channel frame.

Fig. 14. Examination of shape-effect formulae In L I - Sn elastic scattering

at E, b"11 MeV. The solid lines for T , . and T_. are calculated by

eqs. (1.11) and (1.15), respectively, by using the experimental data

properly connected by the dotted l ine Tor T2Q In the right-hand

sides of the equations. The data are from ref . 33).

Fig. 15. Dependences of cross section and analyzing powers on the strength of

the second-rank tensor Interact ions In L I - Sn scatter ing at

E h "** MeV. The cross section, the vector analyzing power and the

second- and third-rank tensor analyzing powers In both of the

elastic scattering and the Inelastic one are shown for the A1-T3 CF

Interact ion (dash-dotted l ines) and for the modified Interaction

(so l id l ines ) where the s t rength of the second-rank tensor

i n t e r a c t i o n i s reduced to one h a l f of that of the or ig ina l

in te rac t ion . For these l i n e s the f o u r t h - and s i x t h tensor

Interact ions are neglected and the calculations take account of the

four channel3.
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Table 1

A1

A2

T1

T2

T3

T«

15 .1 1.562 0.556 11.00 1.562 0.556

218.6 1.373 0.553 29.87 1.373 0.553

117.0 1.210 0.688 18.08 1.175 0.890 0 .0

1.30

1.31

1.25

151.5 1.200 0.660 11.50 1.600 1.00 8.00 1.10 0 .80 1.30

151.5 1.200 0.660 11.50 1.600 1.00 0 .0 1.30

117.0 1.210 0.688 18.08 1.175 0.890 8.00 1.10 0 .80 1.25
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