
CONF-870424—3

DE87 004399

MULTIDIMENSIONAL LINEAR-LINEAR NODAL TRANSPORT METHODS
IN WEIGHTED DIAMOND DIFFERENCE FORM*

Y. Y. Azmyf
Engineering Physics and Mathematics Division

Oak Ridge National Laboratory

8 -s '» ° S -a S * & O a k R i d S e . Tennessee 37831

%% %$& i i"j^
•g § o *••&* s H !

^-Ilillli
O g — go-C §>,S
5>J: S> S ^ ? S 2 = fe
I^-Jsi'^ls Paper to be submitted to the
e § §!'§..§ H e ! International Topical Meeting on Advances
^ ™ « £ s l g " - = i-n Reactor Physics, Mathematics and Computation
* l | ~ | g « - 1 Paris, France, April 27-30, 1987

i li^iili!
1 !ilii5ii-s
g l|.!ii|is-§i

g " g o « g = ' E ' g B T I , , »bniit»d mmiiKript hM bwn , .. :. > . ->
" • B ^ S " 6 ! 3 ! ? withortd by • contractor of * • U.S. ' ' * ' • ! •. , .:'
g . S S - j j S E S o S « Govwmmnt undar contract No. DE- ;
o S a g S ' S f g AC05-&WR21400. Accordingly, th. U.o.
« " r f c g S u S > > o - Govwnmsnt raoin* * nonmclum*.

• o J = S o S , ! =
- 5 - 0 S 2 S roy*y-fr» KCOTM to pubW< or raproduc*

« t l ^ . > ^ £ ^ < > i > S £ th* pubtthKl form of this contribution, or
& * i 2 o " 1 S = S ilow oth« to do » . for U.S. GowmnMnt <—

llfillilii MASTER
jPart of this work was done while at the University of Virginia, Char-
lottesville, Virginia 22901

*Research sponsored by U.S. Dospartrcent of Energy under contract number DE-
AC05-84OR21400 with the Martin Marietta Energy Systems, Inc.

"FT
DISTRIBUTION M y'-\^ .• ;• : ! . i . ' . i i r- i l i ; ; i i U t i s A i t t f *



MULTIDIMENSIONAL LINEAR-LINEAR NODAL TRANSPORT METHODS
IN WEIGHTED DIAMOND DIFFERENCE FORM

Y. Y. Azmy
Engineering Physics and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, Tennessee ?<7831

ABSTRACT

Two previously derived approximations to the linear-linear nodal transport
method, the linear nodal (LN) and the linear linear (LL) methods, are re-examined
together with a new approximation, the bi-linear (BL) method, that takes into
account the bilinear nodal flux-moment. The three methods differ in the degree
of analyticity retained in the final discrete-variable equations; however, they
all possess the very high accuracy characteristic of nodal methods. Unlike pre-
vious work, here the final equations are manipulated and cast in the form of the
classical weighted diamond difference (WDD) equations. This makes them simple to
implement in a computer code, especially for those users who have experience with
WDD algorithms. Other algorithms, such as the nodal algorithm, also can be used
to' solve the WDD-form equations.

A computer program that solves two-dimensional transport problems using the LN,
LL, or the BL method was written and was used to solve two simple test problems.
The results are used here to confirm our algebraic manipulations of the nodal
equations and also to compare the performance of the three methods from the com-
putational, as well as the theoretical, point of view. The three methods are
found to have comparable accuracies, especially on meshes that are sufficiently
fine. It is apparent that a given method will be more appropriate to use for
solving certain problems than the other two methods, depending on the specifica-
tions of the problem.

I. INTRODUCTION

Nodal methods have t>een developed and implemented for the numerical
solution of the discrete-ordinates neutron transport equation. ̂ -'^ Numerical
testing of these methods and comparison of their results to those obtained by
conventional methods have established the high accuracy of nodal methods.*»2
Furthermore, it has been suggested that the linear-linear approximation is the
most computationally efficient, practical nodal approximation.^ Indeed, this
claim has been substantiated by comparing the accuracy of the solution, and the
CPU time required to achieve convergence to that solution by several nodal
approximations, as well as the diamond difference scheme.^.3

Two types of linear-linear nodal methods have been developed in the
literature: analytic linear-linear (NLL) methods in which the "transverse-
leakage" terms are derived analytically,^>2 and approximate linear-linear (PLL)
methods in which these terms are approximated.2-6 j n Spite of their high accu-
racy, NLL methods result in very complicated discrete-variable equations that
exhibit a high degree of coupling, thus requiring special solution algorithms.
On the other hand, the sacrificed analyticity in PLL methods is compensated for
by simpler discrete-variable equations and diamond difference-like solution
algorithm.3"6



One PLL scheme which was previously developed and implemented included
a bilinear component, of the node interior expansion of the flux.^ For the two
test problems considered in Ref. 2, this scheme was found to be very similar to
an NLL scheme (also presented in Ref. 2). That is, inclusion of the bilinear
moment resulted in a high accuracy of the solution and in the coupling of the
discrete-variable equations.^ Hence, no attempt has been made so far to derive
an NLL method that includes the bilinear moment of the flux, as this would have
resulted in a very cumbersome set of equations. In addition, it is not clear yet
how much can be gained, in terms of better accuracy, at the cost of the antici-
pated complication of such a method.

The purpose of this work is to derive an NLL method and a PLL method,
both of which have been derived before, and to cast them in a simple weighted
diamond difference (WDD) form. Also, we derive a new NLL method which includes
the bilinear moment of the flux, the BL method, cast in a simple WDD form. It
must be emphasized that the final equations for the three nodal approximations
presented here are explicit WDD relations, with analytically derived spatial
weights, which may be solved via a WDD algorithm. This is in contrast to the
nodal equivalent finite difference (NEFD) method-̂  in which only the solution
algorithm, but not the form of the final equations, resembles WDD. This is an
important difference, especially that one of the main criticisms directed towards
nodal methods in general is the difficulty of their final forms and the compli-
cated algorithms necessary to solve them. Our ability to write the nodal equa-
tions in a simple WDD form makes the high accuracy of such methods accessible to
the many users familiar with conventional WDD methods with minor modifications.

In Section II of this paper we will simultaneously derive the
discrete-variable equations for the three nodal methods presented here. These
equations are shown to form a closed set of algebraic equations (i.e., as many
equations as unknowns). In Section III we manipulate the discrete-variable equa-
tions to obtain a simple WDD form of the equations, with spatial weights that are
analytically derived rather than pre-assigned as in conventional WDD methods.
The three linear-linear nodal methods discussed in this paper are compared from a
theoretical point of view in Section IV and from a computational point of view in
Section V. Also in Section IV we describe the nodal algorithm and the WDD algo-
rithm for each method, as well as the algorithm that we actually used in our com-
puter code, which is a mixture of the nodal and WDD algorithms. A brief summary
of the work and the main conclusions are presented in Section VI.

II. THE NODAL FORMALISM FOR THE NEUTRON TRANSPORT EQUATION

In this section we present the nodal formalism through which the
discrete-variable equations are derived from the continuum neutron transport
equation. In this development we will assume steady-state, and we will consider
the case of a monoenergetic external source problem in two-dimensional Cartesian
geometry with isotropic scattering. The resulting methods can be extended easily
to many energy groups and eigenvalue problems by employing an inner-outer itera-
tion procedure. Addition of a third dimension is straightforward but lengthy.

In order to conserve space, we will derive simultaneously the three approxi-
mations of the nodal method considered here. These are: the linear nodal <LN)
method^*^ (which is a PLL method), the linaar linear (LL) method,^-'^ and the bil-
inear (BL) method (both NLL methods).

The discrete-ordinates approximation of the transport equation in two-
dimensional Cartesian geometry is given by

(1)



. The ,2th inner iterate of the source, S , normally
l source as well as the inscattering source calculated
ion (^a <$> \ o is the scattering cross section and <f>

where ft, and rj are the x- and y-components of the k-th unit vector, fi, ,
I+l

k = 1.....N; A (x,y) is the (£+1) inner iterate of the k-th angular flu:-:, and a
is the total cross section. The ,2-th inner iterate of the source, S , normally
contains the given external
from the Jl-th inner iteration (a $> \ o
is the i-th inner iterate of the

N I
scalar neutron flux given by <f> = 2 w, ip,) and updated after every inner itera-

K=l
tion. The inner iteration procedure is irrelevant to the remainder of the
derivation, hence the superscript indicating the iteration index will be
suppressed.

First we divide the domain of the problem into M rectangular computa-
tional elements, i.e., nodes, of the form [-a.., + a.. ] X [-b, , + b. ] , 1 -
1,...,M. We define Legendre polynomials on trie interval [-c,+c] By

Pn(z) - Pn(z/c), n > 0 , (2)

where P is the regular Legendre polynomial of order n, defined on the interval
[-1,+1]. The normalization relation for p then becomes

+c
- f dzp (z) p (z) - .. 2_. 5 . ( 3 )

c J-c *nr ' *n ' (2nH-l) mn

Then we define the transverse moments of the angular flux by

( 4 a )

f2i±l) r
+ a . , , . , . (4b)

|—^—I J dx », (x.y)p.(x) ,{ 2a J J-a Ykv l 7 ^ i v

where we have suppressed the node index on the node dimensions, a and b. The
transverse-moments of the source, S .(x) and S. (y) are defined analogously.
Also the nodal moments of the angular flux are aefined by

+a -fb

•'—a *'—H J Xt

with analogous expressions for the nodal moments of the source.

Now we operate on the transport equation, Eq. (1), by the transverse
moments operator; namely, we multiply Eq. (1) by (2i+l/2«») p.(x) and integrate

s eqaHfeionbe x-dimension of the node, to obtain the x-mom X

where the x-leakage moments are given by
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The same procedure is repeated in the y-direction to obtain analogous y-moments
equations and expressions for the y-leakage moments. This set of equations is
exact albeit not closed. Closing the system requires expanding the surface
fluxes on the RHS's of Eq. (7) and its y-analogue in a truncated series. Since
the order of this expansion is different for each of the three methods considered
here, we introduce the coefficients

(8a)

and

(8b)

Both the zeroth and first order moments of the leakage terms are retained in the
LL and BL methods, while in the LN method, the bilinear component of the leakage
terms is neglected. That is, for the three methods Eqs. (7) are approximated by

_ ^ k

_ ^ k

*k.ly(y) "~uT
L J

K r < • T V

The next step is to substitute Eqs. (9) into the RHS's of Eqs. (6),
then solve the latter exactly by using an integrating factor. Evaluating the
solution at the node surface, we obtain

( 1 O a )



( 1 O b )

where 5, » ca/p,, and e, « ab/rj, . Two analogous equations can be derived from
the y-moments equations. It should be noted that Eq. (10.b) contains the second
difference between the three methods considered in this paper. Because neither
the LN or the LL methods take into account the bilinear moment of the flux, the
bilinear component of the source, S n , arising from inscattering is neglected in
these two methods. In contrast, in the BL method (t/. - 1) the bilinear component
of the source is calculated every iteration.

Equations (10) and their y-moments analogue represent a total of four
equations. In addition, there are four incoming flux-moments boundary conditions
relating the surface flux-moments in a given node to those in an adjacent node or
to the global boundary conditions. On the other hand, the list of discrete-
variable unknowns includes eight surface flux-moments and three (four) nodal
flux-moments for the LN and LL (BL) methods. The source moments have not been
counted as unknowns because in every iteration they are explicitly written in
terms of the known nodal flux-moments calculated in the previous iteration.
Hence, it is clear that additional relations between the discrete-variable unk-
nowns are necessary in order to solve the set of equations uniquely. These rela-
tions are obtained by requiring the nodal balance of all retained flux-moments in
each method. That is, we multiply Eq. (1) by

j—~—11 oh |P-CX)P-(y)> i'J " 0»l» an<i integrate over the node to obtain

[ib, (+b) — ib, (—b)l + •&, — . etc.
k,oyv ' k,oy rk,oo aJ

The equation resulting from the case i—j—1 is valid only for the BL method where
the bilinear moments are calculated and conserved; thus, the four balance equa-
tions close the system of algebraic equations for the BL method. In the LN and
LL methods the set of algebraic equations is closed without the i-j-1 equation,
which is not valid anyway since the bilinear moments are not calculated in these
methods.

The set of algebraic equations represented by Eqs. (10), their y-
moments analogues, and Eqs. (11) can be solved in their present form using the
traditional process of sweeping the mesh. However, this results in complicated
expressions and requires the storage of many coefficients for each node type and
each distinct angular direction. Instead, in the next section we manipulate
these equations in order to cast them in a simple weighted diamond difference
(WDD) form which requires the storage of only one (two) spatial weight for each
node type per distinct angular direction for the BL (LN and LL) method.



III. THE WEIGHTED DIAMOND DIFFERENCE FORM

Two algorithms have been used previously to solve the discrete-
variable equations, Eqs. (10) and (11), for the LN and LL methods. The
Nodal algorithm*- is based on simultaneously solving the equations for the
outgoing flux-moments (e.g., for A*k^0. V"k • (±a). etc.) first, then using
these to calculate the nodal flux-moments;Xiihich contribute to the new
iterate of the scalar flux. In the Weighted Diamond Difference (WDD) algo-
rithm^'^ the nodal flux-moments are evaluated first from uncoupled expres-
sions, then used to calculate the outgoing flux-moments. The advantage of
the WDD algorithm is that it does not require the simultaneous solution of
algebraic equations in each node. This is even more important in three-
dimensional problems where the number of coupled equations to be solved
simultaneously in the Nodal algorithm is larger, However, the WDD algo-
rithm results in very complicated expressions,^ and has been limited so far
to the LN method.^>^ Our objective in this section is to rewrite the
discrete-variable equations in the form of WDD relations to which either
the Nodal or WDD algorithms may be applied. By a WDD relation we mean an
expression for the nodal flux-moments in terms of the surface-evaluated
transverse flux-moments. The relation is fully specified by means of a
spatial weight that, traditionally, was preassigned based on intuition and
experience. The spatial weights in the present work are not preassigned,
but rather derived analytically from the equations obtained via the nodal
formalism. Also, the form oi -i WDD relation is modified here to accommo-
date the presence of the first order flux-moments that are not commonly
incorporated in conventional WDD methods.

In order to obtain the WDD equations we eliminate the source
moments from Eqs. (10) using the full set of Eqs. (11). This yields four
expressions, for each method, relating the nodal flux-moments to the
transverse flux-moments. The coefficients appearing in these equations can
be written in terms of the spatial weights defined by

k , i
I coth 5, — T—k 6. 1 - (12.a)

*k k *kl

to become,

coth e. - — /
k €k

- - | | , 1 - 0 , 1 (12.b)

fl + /?•k,o|

m
A (+b) +Hc.oy

(13.b)

where



A - Ax(l - u ) - 1, if LL method, (14)

- 0, otherwise.

Two equations analogous to Eqs. (13), with the x-traverse flux moments
appearing on the LHS, can be derived also. This set of four equations now
replaces Eqs. (10) and their x-moment analogues, and are solved simultane-
ously with Eqs. (11), using the Nodal or the WDD algorithm.

In Sec. IV we will compare the equations for the three methods
from the theoretical point of view, then in Sec. V we will present numeri-
cal results for test problems solved by the three methods to compare their
performance. It is worthwhile mentioning that while the LN and LL method
formalisms are not new, and have been derived and implemented before,^-"^
writing their final equations in the simple WDD for-n of Eqs. (13) is new.

IV. COMPARISON OF THE THREE LINEAR-LINEAR NODAL METHODS

In the absence of a complete and rigorous error analysis of nodal
transport methods in general, and the three methods considered here in par-
ticular, choosing a certain method to solve a given problem is often based
on intuition and experience-. From the comparisons presented in this and
the following section, this author is convinced that none of the methods
dominates the other two. That is for each problem to be solved a comprom-
ise has to be reached between the available resources (such as the memory
size, the computer speed, etc.) and the achieved results (such as accuracy,
simplicity of method, and solution algorithm, etc.)- The main differences
between the three methods are summarized in Table I, and are discussed in
the remaining part of this section in more detail.

A. The LN method
For the LN method there are two distinct spatial weights per

dimension per distinct discrete-ordinate for each node type. This is the
simplest of the three methods because it has the least coupling between the
algebraic equations; however, it contains the least analytical information.
In fact as in the NEFD algorithm-*, the LN method equations can be manipu-
lated to obtain uncoupled expressions for the nodal flux-moments in terms
of the incoming transverse flux-moments.

An interesting fact about the expressions for the spatial
weights, Eqs. (12) is that they are odd functions of the discrete ordinate.
For example, a, . (~/v) - -<*k • G O • This significantly reduces the storage
requirement, and simplifies the solution procedure by allowing us to write
the final set of equations in terms of incoming and outgoing transverse
flux-moments which is required by the sweep methodology. For example, for
/ij>0, the outgoing transverse flux-moment i/>, . « & . (±a) and the
incoming transverse flux-moment A . • \fr, ' !*+a). 'The balance equations
then become RlX':L k'x^then become,

tZd>k L K,xo K.xoj /e k

2 ek

*k.lo " Slo/ a •



-L- L° - xh1 I + —Z L° -2x1, + -i 1 (15.c)
OJT I t v 1 If Y 1 I *? ̂  I K n v If rtn \c t

k L J k L J

k,ol ol

The WDD relations become,

f1 + ak,ol ,o f1 ~ ak,o] ,i . , (16.a)

ak,l1 ,o , f1 ~Qk,l| .1 . (16.b)

and two analogous equations for the y-moments, where
s = sign (a, ), s « sign (n, ), and 5. , e, ,a, . ,5, . represent the absolute
values of the corresponding-quantities. ' '

The Nodal algorithm is obtained by using Eqs. (16) and their
analogues to replace the nodal flux-moments in Eqs. (15). This results in
a set of three coupled equations that must be solved simultaneously for the
outgoing flux-moments in terms of the incoming flux-moment. Alternatively
a WDD algorithm (equivalent to the NEFD-5) is obtained by solving Eqs. (16)
and their analogue for the outgoing flux-moments, then substituting the
result in Eqs. (15). This yields three equations which can be solved for
the nodal flux-moments before they are coded, or can be solved numerically
for each node. In the code we developed, and for which the results
presented in Sec. V were obtained we chose to implement the second option
for its simplicity.

B. The LL method
The LL method also has two distinct spatial weights per dimen-

sion, per distinct ordinate, per node type. It has a higher degree of cou-
pling than the LN and BL methods, which may explain why a WDD algorithm has
never been implemented for it yet. The LL method retains more analytical
information in the discrete-variable equations than the LN method, mani-
fested in the higher order representation of the leakage terms.

The nodal balance equations are the same as Eqs. (15). The WDD
equations are,

f1 + "k.ol ,o f1 ~ ak,o1 i (17.a)
[ 2 J ^k.xo + [ 2 J Vxo "" Voo + Sxak,o\,lo '

f1 + ak.l] .o + f1 ~ ak,l | .1
[ 2~ j *k,xl + [ 2~^J *k,xl ~ V o l

3<*k,ls*



and two analogous equations in the y-moments. Just like the LN method, a
Nodal algorithm, and a WDD algorithm are possible here. To obtain the
Nodal algorithm, Eq. (17.b) and its analogue are solved for A .. and
A th ^ i b t i d f th l f E ( 1 7 ) t btiA 1 ,
four c

then ^ is obtained from the analogue of Eq. (17.a) to obtain
four coupled equations in the four outgoing flux-moments. On the other
hand, the WDD algorithm is obtained by individually solving Eq. (17.a) and
its analogue for il>° and ij> , and simultaneously solving Eq. (17.b) and

its analogue for TJ>° 1 and ij)° , . The resulting expressions are substi-
tuted in the balanceXequatiohs yielding three coupled equations which must
be solved simultaneously for the nodal flux-moments. In our implementation
of this method we analytically eliminated A and \&, using Eq. (17.a)
and its analogue, then numerically solved tne remaining live equations in
each node.

C. The BL method
The BL method is unique in that it requires the calculation and

storage of only one spatial weight per dimension per distinct discrete-
ordinate for every node typed. Of course, it contains the most analytical
information in the algebraic equations. It has more coupling than the LN
method, but less than the LL method. However, it requires the calculation
of an additional angular flux-moment, and the storage of an additional
scalar flux-moment. In the context of the two test problems of Sec. V,
there seems to be very little gain in accuracy due to using the BL method
as opposed to the LN or LL methods. Problem configurations may occur, how-
ever, which lead to bilineav moments of relatively large magnitude that
would cause the BL method to be more accurate than the, otherwise almost
identical, LN and LL methods.

For the BL method, the balance equations, Eqs. (15) must be aug-
mented by a conservation equation for the bilinear nodal flux-moment,

3ss
d (18)

The WDD relations are given by,

,xo

ak

fl - a.

b, — y>, + s a, v> . ,
k,xo k,oo x k k,lo

*

(19.a)

(19.b)

with analogous equations in the y-moments. By similar arguments as before,
one can derive both a Nodal and a WDD algorithm for the BL method. The
algorithm we adopted in our code was derived by solving Eqs. (19) and their
analogue for the outgoing flux moments, which are then eliminated from the
balance equations, Eqs. (15) and (18). This yields four coupled equations
in four nodal flux-moment, which are solved simultaneously in every node.



V. NUMERICAL COMPARISON OF THE THREE LINEAR-LINEAR NODAL METHODS

We have implemented the equations for the LN, LL, and BL methods
derived above in a computer code using the algorithms described in Sec. IV
to solve them numerically. These are, in some sense, a combination of the
Nodal and WDD algorithms; the final equations are coupled (like the Nodal
algorithm) and are solved simultaneously for the nodal flux-moments (like
the WDD algorithm). This was preferred to a pure WDD algorithm because it
is much simpler and can be extended easily to three-dimensional geometry.
In order to monitor easily the memory size required to solve a problem, we
used a container array methodology, in which all arrays have variable
lengths and are contained in one array of fixed length, the container
array, A.

Two test problems were solved using the three methods in order to
compare several of their computational aspects, and also to validate the
correctness of our derivation of the WDD form.

The first test problem is shown in Fig. 1. This problem was
solved on a sequence of meshes using an S-4 EQN type angular quadrature,
and a pointwise, relative convergence criterion of 10"^ on each one of the
calculated nodal flux-moments. The converged solution was used to calcu-
late the quadrant-averaged scalar fluxes, and flux averages over the two
regions denoted 1 and 2 shown in Fig. 1. This was to make possible com-
parisons of both global quantities as. well as relatively local quantities.

Fig. 1. Geometry and nuclear data for test problem 1.
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The results of the calculations are shown in Table II. Also shown is the
length of the container array, the number of iterations and CPU time (in
seconds) required to achieve convergence, and the number of calculated
negative fluxes. In general, the LN method takes the shortest CPU time to
converge, followed by the BL method, while the LL method takes longest.



This is not surprising since in the algorithm we adopted, three, four, and
five equations, respectively, are solved simultaneously for each direction
per node. Of course, the BL method consumes more memory than the other two
methods because it requires the storage of two additional arrays containing
the old and new bilinear moments of the scalar flux. Therefore, in prob-
lems with only a few material regions, such as the two cases presented
here, the BL method requires more storage; however, for problems with many
material compositions, or high order angular quadrature, and hence many
distinct spatial weights, the BL method may require a smaller storage area.
The calculated quantities seem to change only very little with the method,
especially at locations where the flux is relatively large. In fact,
several quantities calculated by the three methods on the same mesh are
identical. Moreover, all three methods yield, approximately, the same
number of negative scalar fluxes.

The second test problem is a modification of Khalil's steel and
water problem9 with a smaller average scattering ratio to avoid excessively
slow convergence since our code is not equipped with acceleration methods
yet. The geometrical configuration and nuclear data are shown in

Fig. 2. Geometry and nuclear data for test problem 2.
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Fig. 2. We used an S-4, EQN type angular quadrature with a 10"4 pointwise
relative convergence criterion on all the calculated nodal moments of the
scalar flux by each method. The results for this problem presented in
Table III suggest conclusions identical to those reached from the results
of the first test problem. Here, the difference between the solutions
obtained by the three methods is more pronounced especially at low flux
regions when coarse meshes are used. However, the solutions seem to con-
verge to one another when finer meshes are used.



VI. SUMMARY AND CONCLUSIONS

We have rederived the Linear Nodal (LN) and the Linear Linear
(LL) methods for solving the neutron transport equations, which have been
shown previously to possess very high accuracies on coarse meshes. Our
main objective was to simplify the final equations for these methods whose
difficulty limited the wide spread practical use of high order nodal
methods. We were able to write the final equations for these two methods,
as well as a third new method, the Bi-Linear (BL) method, in a simple
Weighted Diamond Difference (WDD) form. Unlike traditional WDD methods,
here the spatial weights are derived analytically from the equations rather
than preassumed.

The LN method is the simplest of the three methods. The bilinear
term in the scattering source is neglected and the expansion of the
transverse leakage term in the linear moments equation is truncated at the
zeroth order. Yet, the LN has been successfully applied by other authors
to obtain accurate solutions to transport problems. In the LL method, the
transverse leakage is expanded in a linear series in the equations for the
constant and linear moments. Hence, it contains more analytic information
but is far more complex than the LN method. The accuracy of the LL method
also has been demonstrated elsewhere. The BL method, which differs from
the LL method only in that it retains the bilinear moments of the scatter-
ing source, has not been considered before, except in an approximate sense.
The BL method is the most complete analytically, at the expense of calcu-
lating and storing an additional nodal flux-moment, the bilinear moment.
On the other hand its WDD form is written in terms of only one spatial
weight (versus two for LN and LL) per distinct discrete ordinate for each <
node type. Furthermore, the BL final equations are less coupled than the
LL equations, which makes their numerical solution faster, in spite of the
additional effort expended in calculating the additional moment.

We coded the three methods in one computer program, and used them
to solve two test problems in order to verify the derivations and to com-
pare the computational performance of the three methods. The numerical
results indicate that the three methods solutions are very close to one
another especially on fine meshes. The three methods seem to differ most
at locations of very low flux levels. It is very difficult to reach
rigorous conclusions from the results of two test problems. Additional
work on the error analysis of these methods will be necessary in order to
identify classes of problems to which each method is more suitable to
apply.
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Table I. Summary of Comparison Between the Three Linear-Linear Methods.

LN LL BL

Number of weights/ordinate/dimension/node

Number of discrete-variable unknowns/ordinate/node

Include bilinear flux moment

Include leakage bilinear component

Coupling of WDD equations in different dimensions

WDD algorithm possible

Number of equations solved simultaneously in WDD algorithm

Max coupling* in WDD equations

Min coupling* in WDD equations

Max coupling* in Balance equations

Min coupling in Balance equations

*Max (min) coupling in a set of equations is the max (min) number of
unknown variables appearing in any equation in the set.

2

7

No

No

No

Yes

1

4

3

6

5

2

7

No

Yes

Yes

Yes

4

6

4

6

5

r-i

8

Yes

Yes

No

Yes

4

4

4

7

5



Table II . Comparison of the numerical solutions by the three
methods for test problem 1 (see Fig. 1). Calculations
were performed on ORNL's Vax 8600.

Mesh I I IV
Length
of A

# of
its

CPU
(sec)

Neg.
fluxes

10x10
20x20
40x40

10x10
20x20
40x40

10x10
20x20
40x40

1.676
1.676
1.676

1.676
1.676
1.676

1.676
1.676
1.676

.4170E-1

.4161E-1

.4159E-1

.4170E-1

.4161E-1

.4159E-1

.4169E*1

.4160E-1

.4159E-1

.1986E-2

.1990E-2

.1992E-2

.1989E-1

.1991E-1

.1992E-1

.1996E-1

.1992E-1

.1992E-1

LN Method

.2151

.2145

.2144

.4148E-1

.4006E-1

.4003E-1

LL Method

.2151

.2145

.2144

.4207E-1

.4001E-1

.4004E-1

BL Method

.2151

.2145

.2144

.4218E-1

.4004E-1

.4004E-1

724
2564
9844

724
2564
9844

893
3338
13018

19
21
19

17
19
19

24
23
23

19
83
286

26
115
474

30
113
463

B
16
52

6
18
40

6
18
40

Table III. Comparison of the numerical solutions by the three
methods for test problem 2 (see Fig. 2).
Calculations were performed on ORNL's Vax 8600.

Mesh

10x10
20x20
40x40
80x60

10x10
20x20
40x40
80x80

10x10
20x20
40x40
80x80

1.
1.
1.
1.

1.
1.
1.
1.

1.
1.
1.
X.

I

,953
955
957
957

953
955
957
957

953
955
957
957

II

.3650

.3504

.3388

.3339

.3651

.3504

.3388

.3339

.3651

.3503

.3388

.3339

III

.1626E-1

.1556E-1

.1516E-1

.1504E-1

.1623E-1

.1556E-1

.1516E-1

.1504E-1

.1623E-1

.1556E-1

.1516E-1

.1504E-1

IV

.2222E-4

.2727E-4

.2696E-4

.2682E-4

.2376E-4

.2727E-4

.2696E-4

.2682E-U

.2231E-4

.2726E-4

.2696E-4

.2682E-4

1

IH Method

-.3909E-4
.7959E-5
.9325E-5
.9408E-5

IX Method

-.3037E-4
.8524E-5
.9579E-5
.O403E-5

BL Method

-.2170E-4
.8935E-5
.9584E-5
.9407E-5

2

.3948E-6

.2789E-7

.2761E-7

.2729E-7

-.1989E-7
.2693E-7
.2744E-7
.2725E-7

-.4675E-7.
.27O7E-7
.2744E-7
.2725E-7

Length
of A

940
2780

10060
39020

940
2780
10060
39020

1042
3482

13162
51722

# of
Its

23
23
30
30

23
23
29
29

23
24
31
30

CPU
(sec)

23
84
428
1684

37
138
691

2748

28
112
S59

2275


