$IFP -68$

INSTITUTE OF THEORETICAL AND EXPERIMENTAL PHYSICS

c.P.S h a b a 11 n

ON TWO - PHOTON WIDTH OF $6-$ MESON

YIK 539.12

Abstrect

It is shown that a natural magnitude of the radiative width of the δ meson must be $\ell_{\gamma\gamma}$ \approx 1 KeV.

The reason for which the published experimental number for $\mathscr{E}_{\mathscr{H}}$ seems to be too low is presented.

Институт теоретической и експериментальной физики, 1985

 $M - I6$

į

The preliminary result of determination of the two-photon width of the scalar resonance δ (980) from the data on the process e^+ $e^- \rightarrow e^+$ $e^- \eta \pi^o$ $i \sigma^{\prime}$ ''.

$\frac{1}{6}$ r · BR $(5 - 2\pi) = (0.100 \pm 0.025 \pm 0.100)$ KeV (1)

In a literature, one can find th. estimates according to which $\int_{\mathcal{C}_{\text{max}}}$ 5 KeV^{ℓ^2 , ⁵ if the δ meson is a bound quark} $-$ antiquark system, and $f_{\mathcal{I}_{YY}} \approx 0.27$ KeV^{ℓ 3/ if the \hat{O} is a} four-quark system \overline{Q}^2 \mathscr{G}^2 . On a base of these estimates, the result (1) was interpreted as one testifying a four -quark nature of the δ meson^{/4/}. In our opinion such a conclusion is not seem to be perfectly grounded.

Firstly, a quantitative evaluation in the framework of the $\overline{q}q$ scheme, based on using of an effective chiral Lagrangian gives the result^{$/5/$}

$$
f_{\delta\gamma\gamma}^{\prime}(m_{\delta}) = \frac{m_{\delta}}{\pi} \left(\frac{\alpha m_{\delta}}{12\pi F_{\pi}}\right)^{2} \approx 1.3 \text{ KeV} \qquad (2)
$$

As to the estimate $\int_{\delta Y}^2 \infty$ 0.27 in $\bar{Z}^2 \mathcal{G}^2$ scheme, it has been obtained without of computing any definite diagrams and it can be easily increased up to the value 1-2 KeV.

Really, evaluating the contribution of the diagrams of Fig. 1 in $\frac{1}{\delta}$, we shall get (in approximation $M_{f} \approx 2 M_{Z}$)

$$
\int_{\delta\gamma\gamma}^{(\kappa\bar{\kappa})} = \frac{\alpha^2 (\pi^2/4 - 1)^2}{16 \pi^2 m_{\delta}} \cdot \frac{g_{\delta\kappa\bar{\kappa}}^2}{4\pi}
$$
 (3)

Subutituting the values $\frac{2}{3k\pi}/\sqrt{\pi}$ = 2.3 GeV² or $\frac{2}{3k\pi}/\sqrt{\pi}$

= 3 GeV² used in the $\overline{\sigma}^2/\overline{\sigma}^2$ scheme¹⁸¹, one gets $\frac{1}{6}N^2$ 1.7 KeV

or $\int_{\overline{\delta}N}^{1/k\overline{\epsilon}}$ = 2.2 KeV respectively.

In the

Of course, a calculation of a loop diagram with one definite physical intermediate state does not permit yet to fix an exact value of amplitude, but such calculation determines a scale of natural values of the amplitude under consideration. We see that a scale of values of the amplitude $\delta \rightarrow \gamma \gamma'$ is the same in $\overline{\varphi}^2 \varphi^2$ and $\overline{\varphi} \varphi$ schemes, and, consequently, the result (1) is too small to be explained in these schemes.

Let's show now that the data^{$/1/$} are compatible with the values of $\int_{\delta/\!\!/}$ considerable larger than the value (1).

The result (1) was obtained under assumption that the total width of the δ meson is small : $\int_{\mathcal{A}}^{\mathcal{D}}$ = 54 MeV^{/9/}. But in both schemes ($\overline{q}q$ and $\overline{q}q^2$) a natural value of $\frac{1}{2}$ approximately is by six time more, and this fact does not contradict (see Ref. $/6-8$, $10/$) to observation of z narrow peak in the process \hat{r} $\hat{\rho}$ \rightarrow \sum $\hat{r}/335$) ρ π .

If the δ resonance is wide (\int_{δ}^{∞} ~ 300 MeV), it must be described (see Ref.^{/6-8, 10/}) by formulae

 $\overline{2}$

$$
\sigma_{\gamma\gamma \to \gamma\pi}(W) = 8\pi \int_{\delta\gamma\gamma} (W) \int_{\delta\gamma\pi} (W) \cdot
$$

$$
\int W^2 m_{\delta}^2 + i m_{\delta} \int_{\delta} (W) \Big|^{-2} \qquad (4)
$$

À

where

$$
V_{\delta} \cong V_{\delta\gamma\pi^{\circ}} + V_{\delta K\overline{K}}
$$

and
$$
\int_{\delta\gamma\gamma} (W) = (W/m_{\delta})^3 \int_{\delta\gamma\gamma} (m_{\delta})
$$
,

$$
\int_{\delta\gamma\pi} = \frac{g_{\delta\gamma\pi}^2}{16\pi W} \left[1 - \frac{2(m_1^2 + m_2^2)}{W^2} + \frac{(m_2^2 - m_2^2)^2}{W^2} \right]^{\frac{1}{2}}
$$
,

$$
\int_{\delta k\overline{k}} (W) = \frac{g_{\delta k\overline{k}}^2}{16\pi W} \left[\frac{V1 - 4m_k^2}{W^2} \right]^{\frac{1}{2}} \left(1 - \frac{2}{\pi} \arctg \sqrt{4m_k^2 / W^2} \right), \quad W \le 2m_k
$$

Then, it is possible to get a value of $\int_{\delta\gamma\gamma} \text{ larger than the}$

value (1).

The Fig.2 demonstrates an attempt to describe the da ta^{/1/} in terms of two resonance cross sections, first of which **was calculated using the formulae (3) and (4) with** $\frac{1}{6}$ $\frac{1}{2}$ **0.5 KeV and** $\mathscr{G}_{\mathcal{S}\eta\mathcal{F}}$ **a** -4.8 GeV, $\mathscr{G}_{\mathcal{S}\mathcal{E}}$ **r** -3.2 GeV^{/11}. The part of cross section connected with $A₂$ meson was computed **using the standard formula for narrow resonance with** $\begin{pmatrix} 7 & y \end{pmatrix}$ */a/ ** *** 0.6 KeV and with other parameters from Hef. • We have used a slightly less value of** *tfy*y***^a ^s compared to conven tional mean value, because some part of events from area of** *Ax* **meson must be treated aa belonging to right branch of** *S~* **resonance /^*yo distribution if** *Ъ* **resonance ie wide.**

Thue, as it is seen from Pig.2 the data' 'do *not* **contra** dict to $\frac{1}{2}$ = 0.5 KeV. If one will take into account that \sum_{n} \sum_{n} $\frac{11}{n}$ the systematic mistake in determination of $\frac{dy}{dx}$ on ners

is estimated to be 100 $\%$, one can not exclude until now that the real value of $\frac{1}{\delta r}$ could be close to $\frac{1}{\delta r}$ / $\frac{1}{\delta}$ XeV - a **value predicted by the** $\mathscr{G}\mathscr{G}$ scheme of the \mathscr{D} meson.

The author is grateful to L.B.Okun, A.E.Aeratyan and M.A.Kuban teev for useful discussions.

 $\boldsymbol{\mathrm{f}}$

Fjq. *I*

Ŷ,

Reference»

- **1. Wacker К., Report on XXII International Conference on High Energy Physics, Leipzig, 1984»**
- **2. Budnev V,M., Kaloshin A.B.-Phys.Lett., 1979, v. 8бВ, р.351.**
- **3. Achaaov N.H., Devyanin S.A., Shestakov G.N. Z.Phys., 1982, . С16, p.55.**
- **4. Zsltcev A#M, Report on XXII International Conference on High Energy Physics, Leipzig, 1984.**
- **5. Volkov М.Ж., Kreopalov D.V. Tad. Pie., 1983, v.37, p.1297.**
- **6. Shabalin S.P. ?ad.** *Tiz.,* **1984, v.40, p.262.**
- **7. Shabalin Б.Р. Preprint ITEP-128, 1984.**
- **8. Achasov H.N., Devyanin** *S,JL>,* **Shestakov G.lf» Uspekhi Piz.** Nauk, 1984, v.142, p.361; preprint Inst. for Mathematics **(Hovosibirak) TP-121, 1981.**
- **9. Particle Data Group. Rev.Mod.Phys., 1984, v.56, H°2, Part II.**

10. Platte S.M. - Phys.Lett., 1976, v.Bb3, p.224.

 $\hat{\boldsymbol{\beta}}$

 $\overline{\mathbf{r}}$

 $\mathcal{A}^{\mathcal{A}}$

 $\frac{1}{\sqrt{2}}$

 $\langle\sigma\rangle$.

 \mathcal{L}^{\pm}

ti y

 $\frac{1}{\epsilon}$

ИНДЕКС 3624

 $\begin{aligned} \mathcal{L}_{\text{in}}(\mathcal{L}_{\text{in}}(\mathcal{L}_{\text{out}}),\mathcal{L}_{\text{out}}(\mathcal{L}_{\text{out}}), \mathcal{L}_{\text{out}}(\mathcal{L}_{\text{out}}), \mathcal{L}_{\text{out}}(\mathcal{L}_{\text{out}}), \mathcal{L}_{\text{out}}(\mathcal{L}_{\text{out}}), \mathcal{L}_{\text{out}}(\mathcal{L}_{\text{out}}), \mathcal{L}_{\text{out}}(\mathcal{L}_{\text{out}}), \mathcal{L}_{\text{out}}(\mathcal{L}_{\text{out}}), \mathcal{L}_{\text{out}}(\mathcal{L}_{\text{$

М..ПРЕПРИН ИТЭФ, 1985. № 68 . с.1-8

l,