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ABSTRACT

A gauge model based on the Yang-Mills'equations for

the Poincarê group cannot be consistently quantized«at least

in a perturbative approach. The problem is related to the

absence of a Lagrangian. Adding the counterterms required by

consistency and renonaalizability turns the model into a

gauge theory for a de Sitter group.
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1* INTRODUCTION

The quantization of a gauge model fcr the Poincaré

group is expected from the start to face difficulties be-

cause of two peculiarities of the group: it is nonsemisimple

and it acts on spacetime itself. Ás a consequence of the

first peculiarity, the Yang-Mills equations are not deriva-

ble from a Lagrangian I*2 . Due to the

second all source fields belong, besides some tensor or

spinor representation, to a "kinematic" representation whose

generators are derivative fields on spacetime. The number

of derivatives appearing in currents and invariants is there

by augmented, representing a great threat to renonnaliza-

bility. Our objective here is to show that such a model can-

not even be consistently quantized: an unremovable inconsis-

tency appears in the gauge field vertices, a problem which

seems to stem from the absence of a Lagrangian. In order

to illustrate what happens let us consider an unrealistic

but instructive model. Suppose we did not know the Yukawa

coupling Lagrangian jCx = <\ f Y Y , but we had some-

how arrived at the field equations in the form

By .
YD . -

where D s •*• Y «L. — "^ * Suppose further that we had some

evidence (say, "experimental") that a 4k a, . This is a

baffling situation from an intuitive point of view, but the

problem can be made more definite if, ignoring the Lagrangian,
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-we try to qpanti.se the system by the Klllãn-Yang-Feldman

(KYFI formalism3. The trouble is clear: as seen from the

channels of Y and Y , the coupling constant is gj seen

fro» the *f channel, it would be g'. The f Y Y vertex

obtained fro» Eqs. (1.1) and (1.2) would be different from

that obtained fro» (1.3). This trivial remark points to a

fundamental inconsistency of those equations, which are

coherent only when g»g*. On the other hand, if we examine

them in the light of Vainberg's theorem4, which gives nec-

essary and sufficient conditions for the existence of a
*

Lagrangian for a giver» set of equations, we find that g*g'

is necessary for (1.1) - (1.3) to be derivable from a

Lagrangiaa.

lie show in section 2, Ly using the KYF formalism,

that this kind of inconsistency is present in the Yang-

Mills equations for the Poincarê group.

The fact that the Poincarê group comes out as an Inonü-

tfigner contraction limit of the de Sitter groups is exploited

in section 3 to provide more insight on the problem. The de

Sitter groups being semisimple, a Lagrangian model can be

built up, the path integral formalism may be used to sup-

ply the Feynman rules and the Poincarê model is then seen

as a limit case. The comparison of the de Sitter and Poin-

carê cases sheds some light on the way the inconsistencies,

absent in the former, emmerge in the latter. Geometrical

considerations suggest that the de Sitter models can be

viewed as smoot led versions of the Poincarê model.

Inconsistencies in field theories appear mainly

when renormalization is involved, and find sometimes rem-
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•dy in the addition of counterterms to the Lagragian, with

consequent modifications in the field equations* A notorious

example is the electrodynamics of scalar mesons, which only

becomes renormalizable if a self-interaction term "X ¥ is

added to the purely electromagnetic Lagrangian. As here no

Lagrangian is at hand we may think of changing the equations

directly. A study of the possibilities arising in this line

of thought is given in sector 4 where, by combining require-

ments of vertex consistency and renormalizability, successive

counterterms are introduced in the Yang-Hills equations.

Curiously enough, the final well behaved resulting theory

is just a de Sitter gauge model, which in this way appears

as a "functionally corrected" Poincaré model.

2. VERTEX INCONSISTENCY

The Poincaré Lie algebra is the semidirect product

of the Lorentz algebra and the algebra of the translations

in spacetime. It is convenient to use the double index

notation 3 ^ <*, p - 1,2,3,4 , with •< < f ) , for the

Lorentz generators and to take T* for the translation

generators. Individual indices can be raised and lowered

by the Minkovski metric \<t .
ê  v

Taking A fp> and B /* as the gauge potentials

related respectively to the Lorentz sector (which consti-

tutes a gauge subtheory) and the translation sector, the

corresponding field tensors turn out to

F"'r .V
A"'. - ̂ " r -
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The Yang-Hills equations for the Poincarê group are

where o ' is the source spin density, u

is a source energy-momentum including coupling to the gauge

fields and X is the Planck length.

There is no Lagrangian density from which the above

field equations can be derived1*2. It will be seen in section

4 that some pieces of this system of coupled equations can

have Lagrangians, but the fact is that the whole system can-

not. Attempts to redefine the fields so as to make the theory

more tractable either disfigure its character by changing

the meaning of the fundamental fields or make it trivial.

For example, if the treatment used for the Korteweg-de Vries

equation is applied here, the fields B;» must be some de-

rivative ^k*^* , corresponding to the vacuum of the model.A

In the absence of a Lagrangian * the natural way pos-

sibly open to quantization is the KYF formalism. It is conve-

nient to use (2.1) and (2.2) in (2.3) and (2.4) so that the

equations acquire the form
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•

where

(2.8,

(2.9)

2**̂ *
p

Gauge*fixing terms should be added to the left-hand side but

they will not be important for the argument which follows.

Let us consider the sourceless case. To simplify the

discussion, we shall rewrite (2.5) and (2.6) symbolically as

B .

In the KYF formalism, we look for a *toerturbative so -
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lution in the form

-1

Iteration to the desired order is then performed by replac

ing the A1! and B s successively in terns of the free solu

tion» A and B. The operator FT1 represents a convolution

with the Green's function of the differential operator in

the l.h.s. cf (2.5» and (2.6) with Feynman boundary condi-

tions.^ We shall refer to K"**- simply as the Feynman prop-

agator in some supposedly fixed gauge. The Feynman rules

•re obtained by projecting each one of these perturbative

solutions on outgoing fields of the same kind. Each time

they "hit" the free propagator» these outgoing fields prod

uce free fields of the same kind, so that the first contri-

butions give precisely the basic vertices for the Feynman

rules. In the case (2.11), such vertices are of the form

gAV(A) and g*AN(M and from them just the expected 3-leg

end 4-leg vertices for a gauge model for the Lorentz group

are obtained. Eq. (2.IX) is, of course, a set of coupled

equations, one for each potential M fp . Take for

A*

instance the component M l r . The projection is to be

made on an outgoing field A x~ «of exactly the same

kind. OUter potentials A ._ , A* ^ , etc, ap-

pear in the vertices. In the equations for A ^ and

A Or. • the projections are made on outgoing fields
ti Â>
r\ i and A O/» • respectively. The important point

A* A>is that the 3-leg vertex involving .*\ ^^ , A ^ and
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will appear the saj« when obtained from each one

of their respective equations. In other words, the expres-

sion for a vertex can be obtained from the equation related

to any of its legs,and the result is independent of the choice

of the leg. This general fact of perturbative field theory

is easily found for (2.11), which are in reality the Yang-

Mills equations for a Lorentz gauge model. Ghost fields

could be introduced in principle through the old laborious

Feynman way**7 but (2.11) alone has a Lagrangian and in fact

it would be simpler to pursue the whole treatment for the

Lorentz sector by the path integration methods.

Now we come to the main point. The same consider-

ations above, when applied to the whole set (2.11) and

(2.12), lead to an insurmountable difficulty: vertices

like a B()A^ B * cvBACJA") and*BAAB do come

out from (2.12) but not from (2.11). There are AB cou-

plings in (2.12) but no field B appears in (2.11). Thus,

the expression for a vertex is no more obtained from the

equation for any of its legs, being dependent on the choice

of the leg. With some freedom of language, we might say

that the B's are able to "feel" the A's, but not the other

way round. Or still, that vertices involving B's and A's are

present for outgoing B's but not for outgoing A's. The same

kind of inconsistency would appear in our defective Yukawa

model (1.1)-(1.3) with g-0 and g'#0.

From this fundamental vertex inconsistency we con-

clude that, at least from the point of view of the KYF for-

malism, a model with (2.3) and (2.4) as field equations is

not amenable to quantization.
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3. RELATION TO DE SITTER MODELS

For usual gauge node Is, it is simpler to obtain the

whole set of Feynman rules by the path integral approach and

it will be instructive to examine our special case in the

light of this standard procedure. It requires a Lagrangian,

which is missing, but we can resort to the well known fact

that the Poincarê group P is a Inona-tfigner contraction8 of

the two de Sitter (dS) groups.9 As dS is semisimple, we can

easily write down both the Yang-Hills equations and the

corresponding Lagrangian for a dS gauge model. The compar-

ison of the two cases will allow us to see why and where

the procedure breaks down in the Poincarê model.

The relations between classical gauge models for P

and dS have been studied in detail W O and we shall here only

recall the main points. In order to see what happens to gauge

fields in the contraction process it is convenient to look

at the contraction as acting on the group parameters u*

. The parameters «»"** («*} s V " »

related to the Lorentz subgroup* remain untouched. The pa-

rameters w represent "rotation" angles, compact or not,

depending on the relative sign of *̂  *nd t̂ lf , where

is the diagonalized dS invariant metric. Con trac-

tion requires redefining such angles as L u>* « a. ,

where the fe. are the translation parameters and L is a

length parameter which is taken to infinity in the contrac-

tion limit. A translation is thereby viewed as the limit of

some infinitesimal rotation with an infinite radius. The dS

generators J ^ obey
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where

r

ab
with tab] meaning antisymmetrization in the indices. If A ^

are the gauge potentials for the dS gauge model, then A"'^*

remain the same through the contraction process, but A /*

p. s. I- D / * i where D ̂ .

is the translation gauge potential of the previous section.

This can be checked, for example, by comparing the vacuum

potentials A ^ » oL. vu and D j* c dy» o.

In the same process, if F ^ v are the dS field strengths,

the F"' t»v become the field strengths (2. II related

to the Lorentz subgroup, while % .̂v s L F *-v

become the translation field strengths (2.2). The Yang-Hills

equations for the dS model«

-A* Fcb^ e.F*rAa 0

reduce exactly to the sourceless versions of (2.3) and (2.4)

in the contraction limit L. —» 00 , and the same happens

to the corresponding Bianchi Identities.

The contraction procedure has been frequently used

to approach questions involving P, 1J> mainly because it al-

lows a point to point comparison to the better behaved dS

group. It has been so in the demonstration of the non-exis-

tence of a Lagrangian for the set of equations (2.3) and

(2.4K1 Equation 43.3) comes from the typical Lagrangian
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in which the algebra double indices are lowered and raised

by the Cartan-Killing metric of dS. In the contraction lim-

it, such a metric becomes degenerate and the field equations

loose some terms. In particular» the cubic term in 8.present

in (3.3) and related to the 4-leg vertex typical of gauge

theories, is suppressed (as discussed below).

Path integral quantization can be performed without

too much ado and Feynman rules of the usual kind are obtained

for the dS model. For the P model, we start by making the

substitution A •*. * L. D »• and follow the

same procedure but keeping in mind what happens at the

limit. Also the ghost fields with O s ) indices must

be substituted in an analogous way, but as they will not

be* important for our central problem we shall not discuss

them. In reality we shall concentrate on the inconsistency

of the P model, leaving aside all the details having no

bearing upon it. Once the substitution is made, (3.4) be-

It is clear that the limit cannot be taken immediately:

only the part

(3.6)

corresponding to a Lorentz group gauge model, with only

(2.3) for field equations, would remain. As is frequently

the case in the contraction formalism» we should first per-

form all the calculations and take the limit at the last

step, although here we shall keep an eye on the relations
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to the field equations. Because it will be enough to make

our point, we shall only examine in detail the 3-field

vertex: (3.5) is written as

(3.7)

where we have kept the dS structure constants (3.2).

We can obtain (2.3) and (2.4) from (3.5) simply by

taking variations with respect to A -v and B M W ,

respectively and then taking L -*OD .An important point

is that (2.4) is obtained with an overall factor IT2, which

cancels out. A consequence is that the contributions coming

from the 3-field terms in (3.7), proportional to IT2, will

remain in (2.4) but will be suppressed in (2.3). We see in

this way how it happens that the B-A coupling, present in

(2.4), vanishes in (2.3), and find the same inconsistency

of the previous section. The same happens to the terms AaB*

omitted in (3.7). The terms in B* have a IT4 factor and are

totally supressed.

Another consequence of (3.5) is that, once the 6 ^

become (beside the A * j*. ) the fundamental fields in

A t*
p , the conjugate momenta

become ill-defined. The vanishing of their time components

is usual in a gauge theory, but here also the space coenpo-

nents vanish: the momenta conjugate to } is

T T - — L G ^ n # s o that in the limit the

canonical quantization is jeopardized.
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In the Feynnan rules for gauge models, the groip

dependence rests basically in the structure constants,12

whose cyclic symmetry is used precisely to make the ver-

tices symmetric in the external legs.13 The cyclic sym-

metry is absent for nonsemisimple groups, which suggests

that the inconsistency found here might be a common ill-

ness of all models involving such groups.

He have seen that, as long as we take the Yang-

Mills equations as the very foundations of the theory» the

Poincaré model is inevitably inconsistent. Let us forget the

equations for a moment and use the contraction procedure to

obtain a quantized theory. This amounts to take (3.5) seri-

ously and get the resulting Feynman rules. The task is

rather lengthy albeit standard. The results are simple and,

once found, easily understood. .We shall here only describe

the main points of the resulting theory, trying to justify

them by general arguments:

i) The Lorentz sector constitutes a gauge subtheory,

with usual rules;

ii) As seen in (3.5)» the propagator of the B fields

will be just the usual one, in some fixed gauge, times a

factor L*; the same applies to the corresponding ghosts;

iii) vertices are as usual, with the difference that

each B leg (or corresponding ghost) gains a factor IT1

tan obvious consequence of the A r -* *- ° >* substitution).

Note that no final factor of L comes out from inter-

nal B lines in a diagram, since the L* factor in the propa-

gator is just compensated by the L"1 factors in the two

vertices connected. Graphs with external B legs will retain

IT* factors. However, if we calculate an S matrix element

with N external B legs, the same L~H factor will appear in
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each term in the perturbative series and, consequently,

cancels out. Only when graphs with different numbers of

external B legs are compared will the IT1 factors play

a role.

The geometric setting for a P gauge model is best

seen as an associated bundle, with Minkowski space as the

base manifold and the fibers being tangent (also Kinkowski)

spaces on which the group acts. In the analogous setting

for a dS model1, each tangent space is replaced by a dS space

characterized by a length parameter L. When \ > 00 , each

dS space approaches a tangent Minkowski space. If we use

conformai coordinates8for each dS space, its points will be

projected on a Minkowski space. In such coordinates, the

natural dS group parameters are precisely u> r and <x ,

A*f ft*

and the gauge fields become naturally A ' ̂  and ° /* .

The quantized theory sketched above is in reality a dS model,

viewed in conformai coordinates. To use an analogy, a dS

model stands to a P model like a parabola to its asymptote,

which is more and more approached when L becomes larger and

larger but is never really attained. The dS model appears as

a "smoothing" of the incongruous P model and seems to be its

nearest quantizable theory. In the next section we shall

arrive again at a d$ model from a rather different approach.

4. CONSISTENCY AND LAGRANGIAN CHARACTER

Lagrangian theories do not exhibit the inconsistency

described above. We could ask whether or not vertex consis-

tency implies the presence of a Lagrangian or, in other
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words, whether only Lagrangian theories are quantizable in

a coherent way. He shall not consider this very general

question here. We shall restrict ourselves to Eqs. (2.3) and

(2.4) In the source less case and proceed to a kind of naive

patchwork, trying to see which terms should be dropped or

added to sake then into consistent equations. We find that

every tine they beco— consistent, they also become derivaol<

from a Lagrangian.

We can start by simply dropping all terms coupling

B to A in (2.4*. The field equations become

which are derivable from the Lagrangian X. m,—M V T v ) *

fb** - V B"*r^ • They are the field equa-

tions of gauge models for the Lorentz group JQ and for the

abelian translation group l̂ < . Their set would describe a

model for the direct product X • T ^ . Notice however

that, as the fields B j* are Lorentz vector fields, they

should if» reality couple to a Lorentx gauge potential. We

take this into account by treating B ••. as a source

field: usual derivatives are replaced by covariant ones and

a sourc« current appears in (4.1). As B ^ is a vector,

it is its rotational which goes into the covariant derivative

0 ^ v given in (2.2). Also the divergence in (4.2) be-

comes covariant. Vertex consistency then fixes the source

current, and the new equations are
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(4.4)

These equations are derivable from J C - — A . F . - i -

from which it can be checked that the source current in

(4.3) is, as it should, the spin density. We have been treat-

ing B j*. as "normal" vector fields with the canonical

dimension (mass)1 . In reality, they have a defective dimen-

sion, as is clear from the redefinition « f » *- D /*

used in the contraction procedure. In order to correct this

in the above equations, it is enough to add a factor LT* to

each D u, field (and consequently to every (? ^.v ).

The only novelty will be a factor L~2 in the spin density.

We can now compare the resulting equations with the

sourceless cases of (2.3) and (2.4); the only difference is

the term a F ^ B ^ in (2.4). If we simply add this

term to (4.4), vertex inconsistency comes out, but now we can

relate it to a simple cause: such a term is obtained from a

Lagrangian X s — -?- •*• 6 »̂ 6 y when variations are

taken with respect to B - v ; however, X should also

contribute to (2.3) or (4.3) through its variations with

respect to A ,>gv • This contribution to (2.3)

restablishes vertex consistency. The new Lagrangian,

leads to a rather complicated theory. Then comes a beautiful



point: this theory* as it is* is nonrenormalizable because

of the graphs with four external B-legi and exchange of two

or more A*s. «hen we look for the necessary counterterms,

we find that(- -J- & /* & v B ^ &- J »ust be added to (4.5)

This is quite natural for the four-B-legged graphs, because

they have sero divergence degree. The situation is analogous

to the case of scalar electrodynamics, where the renormali-

zation of the higher order graphs with four external scalar

legs» also of vanishing divergence degree, enforces the pre-

sence of .a 'X f term in the Lagrangian12. The addition

of the B4 term puts (4.5) into the form

This is the same Lagrangian as (3.5). The added B4

term leads to a cubic term in (2.4), just that one we have

seen suppressed by contraction in section 3. Summing up: by

adding to (2.3) and (2.4) the terms necessary to wash out

the vertex inconsistency* and then adding a last term to

make the model renormalizable* we arrive at a de Sitter

theory.

5. riHAL COWCHT:

The absence of a Lagrangian is a most grievous flaw

in a field theory. In the case considered here» the group

contraction procedure can be used to show that the conjugate

momenta of the translation gauge potentials are vanishing,

so precluding a coherent canonical quantization. The exis-

tence of a Lagrangian for the Yang-Mills equations is

closely related to the structure constants* cyclic svmmetrv.



which fails for nonsemisimple groups. Such a symmetry is

used to obtain the Feyranan rules for gauge models , which

have consequently to be reexamined. We have smmn that, for

the Poincarê group, the very definition of a vertex becomes

impossible and quantization,'at least in a perturbative

approach, unfeasible. The possible extension to general

nonsemisimple groups and to the wider case of non Lagrangian

theories is presently under study. For the case at hand,

geometrical and functional considerations suggest a de Sitter

model as the nearest coherently quantizable theory.
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