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PRECISE ERROR PROPAGATION FROM DETECTOR MEASUREMENTS
TO CHARGED TRACKS PARAMETERS
IN SIMULATION STUDIES

Résumé :

Un algorithme numérique direct (sans recours a la méthode de
Monte-Carlo) est proposé pour le calcul des matrices d'erreurs sur un
estimateur optimal des paramétres des trajectoires dans un détecteur de traces,
en supposant des erreurs gaussiennes sur les mesures brutes, et en incluant, au
besoin, l'effet de la diffusion multiple. Des approximations sont données pour le

cas de trajectoires hélicoidal.

Abstract :

A direct numerical algorithm (without Monte-Cario evaluation) is
proposed to compute the error matrices on optimal estimator of trajectory
parameters in a track detector, assuming gaussian errors on the raw
measurements, and including, if needed, the effect of multiple scattering.

Approximations are given for the case of helix trajectories.



1. Introduction :

In order to evaluate by simulation the precision available on quantities of
physical interest, one needs an esumation of the error matrices on the
geometrical parameters of each track, starting from the errors on each point
measurement. This is generally obtained by approximate analytical expressions
(e.g. assuming equally spaced points measur<d with the same precisionl. ar bv a
Monte Carlo simulation. We propose a direct method to calculate these
matrices {within the gaussian approximation}, using the additivity of weight
matrices : Moreover this calculation can be extended to the case where random
deviations occur along the trajectory, such as multiple scattering (in this case
the weights are no more additive) ; it follows closely the methed proposed

elsewhere to reconstruct tracks and fit their parameters [1,2,3].

2, Deterministic trajectory - Additivity of weight matrix =

2.1. Principle =

We suppose in this section that the trajectory is exactly determined by
the initial parameters (5 param. P] PZ"‘P5 for curved tracks), i.e. there is no
multiple scattering, no fluctuations in energy loss.

It is measured ar n points : two coordinates (1"-)"-) at each point i, with
a covariance matrix
- bk 3. 6‘"1-}
«-‘ -
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or, in a more convenient form, with a weight matrix we =

. When only

one coordinate (l—s. x ) is measured, we write :

T
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The least sguares estimator of B l--P5 from these measorements has a

well-known weight matrix :

t
W= = D w Do ;
t

where D, is the (2x5) matrix of derivatives of x; and ¥ Wit P Ps.

Each term of (1) represents the weight matrix of the point 1 relative to
the parameters. It should be noted that these elementary matrices are singular,
but W is inversible as soon as n is large enough for example 3 measurerments of
both coordinates).

The matrix D; can be expressed as a product D; = U; T;, where T; is the
{5x5) matrix of derivatives of the local paramsters {at point i) w.r.t. the initial
ones, and U; is the (2x5) matrix of derivatives of the measured coordinates
w.r.t. the local parameters {in favourable cases, there coordinates are merely

two out of the local parameters ; see appendix | for more general cases).

2.2. Practical implementation =

An interesting feature of Eq.(l) is that different detectors encountered
by a trajectory can be handled independently, and the determination of the

error matrix on F,..Ps for a given particle is decomposed in 3 steps :

(a) calculation of the trajectory (geometrical step)

{b) for each detector on the trajectory : determination of meas.errors,
calculation of W , whencew&,:% h:“"Dl' (detector dependent step).

{c) Summation over the detectors and inversion of W.

Steps {a) and {c) are general and need no discussion.

Step {b) requires a good knowledge of the detector performances, but at
the level of a point measurement only : the precision on each point is evaluated
irom prototype studies, accounting for all circumstances : position, angles, edge
effects, ambiguities, overlapping of two tracks, e¢tc... Inefficiencies, ionization

fluctuations and other randorn local phenomena can be inserted at this stage for




a Monte-Carlo evaluation (simulating many times the same track, i.e. with the

same initial parameters).

= The error matrix obtained in this way gives the uncertainties to be
expected in an actual track reconstruction with an optimal estimator.

The actual computation of D; is not needed and can be replaced by a
E step-by-step decomposition of Eq.(}) ; each step is a propagation from a
measured point to the next one in the same detector (thus over a short length)
so that first order expressions can be used (see appendix 2 for explicit
expressions in some useful parametrizations). For example, we want to

calculate rhe weight matrix on the parameters at first point in a detector :
hal t
W= Z UwUT .:Z_q-r;‘4 U';T."
(-3

where T is the matrix of derivatives of parameters at point i w.r.t.
64

the parameters at point j.

Since -r‘-“ =1::)l"l-“1;)1 , we obtain :
t 4
4
W= v, +1:,1 Ug1’z,1+1-4",4 -r),z VB-';,'z 1-’:,1+"" .
* ARERE 17}
= V. + Ty, ‘{Uz +T, ["3"1-4,; (vyr )Ty T . Tp.1
Hence a practical algorithm of computation :
-start with W = "I.J'"

- from (= nN-4 te A1

(1) compute 1—,_ ceq (first order approx.)

(2) renlace W Ln 'r“hw T“‘1 :
(3) add v, b W



3. Accounting_for random deviations {muit. scattering)

3.1. Formalism :

In this case the errors on the points are correlated ; so their contribu-
tions to W are no more additive. However the algorithm developed in sect.2 can

be extended in a very natural way.

Let Wi+1 be the information matrix on the parameters at i+{, obtained
from the measurerments at i+, i+2, ...n, accounting for all sources of errors
(including the multiple scattering between i+l and n} : W, js the weight matrix
of an optimal estimator of these parameters. We want to express Wv as a

function of w YW (\\.ewht of pomt i} and the multiple scattering between i
and i+l. lLet us consxder W‘. = 1-“1 : W, 'r“"‘- , the information matrix

on the parameters at point i from the points i-[ to n , neglecting the multipie

. N c-—] -
scattering. The effect of mulit. scatt. is to add extra terms to & = (W‘) P

if the distance between i and i+l is small, and if we choose as parameters the
angles o and (? in two planes tangent to the trajectory and perpendicular to
each other, these terms are merely the well known variance of the angle
deviation 491 _ (45— M.\/)‘L g' )
“ et = —P—\,— DR )
(51, i+l is the number of radiation lengths between i and i+1). So the

covariance matrix, including the multiple scattering is :

» )
ZE = Zl‘ + M(;t‘0-1) with (M.',{M).(_‘ =<M‘;l't1 )ﬂ(;-—' Ag,

and all other terms of M G = 0

. -1
Now we can express W, as the sum of (ZL) , information from
points i+l to n, and V;, information from point i, because the measurement

errors on point i are clearly independent of 2l errors involved in & .

(measurement errors on points i+l to n, and mult. scatt. zrrors between i and

n).

»
¢



To summarize :

¢ _ -1
h’{ = [(T-\'n,[ w('+1 -I-('+1)t.) 1+ Mf}l'H + U Q)

3.2. Algorithm :

H With measurement points close to each other, we just insert Eq.(2) in the

loop described and the end of sect.2 ; so we get :

- start with W = VU,
-from (= Nn-1 ta 1

(1) compute TC,(*1
t
(2) replace W 'n-a Tl:u)t w T, .

(2') replace W 53 (w-1+ MC L+1)-"
(3) add v b W 4

N.B. Steps (2) and (2') can be exchanged.

In more complex cases, when two points are separated by a long distance
and a large amount of material (for example beteen different detector) it is
necessary to split the propagation step (2) in several parts, and to insert a

mult. scatt. step (2'} at intermediate points,

In principle this algorithm must be applied throughout all detectors.
However, if the effects of .nult. scatt. inside the detectors are much smaller
than between them, it can be split and applied in each detector independently ;

the detectors are then linked in this way :

({0}
~start with W= W1 (weight matrix at first point in the NP

detector)



- For j N-1 ta 14 (loop over the dGetectors)

(i) propagate W to the wall(s) between det. j+1 and j T R
' M 4 ) re Pgul’ { i
(i") replace W by (W + M) at this wall necesgary :
(ii) propagate W to the [irst f:cint meas. in det. j

(iii} add w(A b W (weight at [irst paint in det. |} .

If the mult. scatt. inside a detector is not quite negligible, a step (ii') is
to be inserted after {ii) :
-4 -1
(ii') replace W by (W + "J)

Approximate expressions for M can be found in [1,2).

.
i
H
i

4. Using vertex information :

When several tracks are issuing from the same vertex, a geometrical
constraint increases the injormation on each track. We want to show briefly
how this is expressed in terms of a global information matrix.

For each track independently we have a set of 5 param. (Pil...Pi5) and
their weight matrix \Vj. All tracks together are defined by 3 general parameters
XYZ (coordinates of the vertex) and 3 param. (§¢,\9¢,, 9y for each track (e.g.

the components of the momentum,or two angles + the curvaiure}). The 5 param.

P;‘- are functions of X,Y,Z and 4y, 9v, 9+, . Let 'a,; be the (5x6)
derivative matrix of these functions ; the information matrix on X,Y,Z, 9¢¢ ,
t
9, 39¢; from track i is -a,_- W.,' -a; and the information matrix on all
parameters (X,Y, 2 4., ,912,%43, - q,x") reads :

woow, ... W,0..

(Y] 40
4 P < B
‘u);o 1'”;1 ° .
w = o \‘~ H
u]:’: @) . _'U.’;.‘. o cer



where the ?UH are (3x3) blocks, and e o if k#-D, h&u and

A
w is the covariance matrix of the parameters :

with ©o

E. = -C.. W, W,o'

-1 _1 -1
ét'd' = 5." urf;' + UJ. goo JJ

Of course all parameters are correlated to each other : to obtain the
uncertainty on a physical combination of them (such as an invariant mass, a
total energy, etc...) one must, in principle, use the whole covariance matrix of

the subset of parameters involved.

kyt



5. Conclusions :

We obtained a practical algorithm to calculate the global information
matrix, i.e. the weight matrix on the physical paramcters of a track, or several

tracks originating from the same vertex ; the ingredients are :

. weights of elementary measurements {local physical properties of the

detectors}
. transport matrices along the trajectory (purely geometrical calculation)

. If needed, loss of information due to random deviations (multiple

scattering)

In certain conditions this method can be applied to each detector

independently, and the matrices then linked with the same basic tools.
The advantages of this approach are :

. precision : it accounts for local circumstances which influence 1he
uncertainties on raw measurements, and for local inef{iciencies

(missing points, overlapping tracks, etc...).

. universality and flexibility : it allows various parametrizations, and

decouples the local handling of errors from the geometrical propagation.

It could be used, either 1o make realistic and detailed predictions on the
geometrical and kinematical resolution for charged particles, or to verify on
real tracks (without Monte-Carlo simulation] that all sources of errors have
been correctly handled, better than with }/ tests only (e.g. comparing with
predictions the gap between two portions of the same track in different
detectors, or the dispersion at a vertex, or the reconstructed mass of a V°,

etc...)
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Appendix [ - Matrix U
1. 2d example : let us begin with a very simple axample : a straight line fit,

with one coordinate measured at each poini : so T is (2x2), U is {1x2), w is

scalar.
Equation of trajectory : y= Q,+ &, X (Param. Qo a,)

Local parameters at ¥ {d.ﬁ 4,+4,x (local coordinate)

A, = Ay (local slope)

"d.mfc measurenent of 4 al p-'k-c( ES
--------- \N\'H‘- ercor T
() wesio)
_— T = (o 1 ) ¢
. 4
—- D; = (4 =)

(‘)(1/« Y4 %) = (‘/w? /e )

Xfer Hla}

> W= = W = (‘7-1{«.& Exifqp ) (well fonoant}

Z.—’{: /I‘:" a_x.'l/v.“
[ [y ¢

g_“_d_c_a_.;_} ~.easure menk of t.‘; F:"'Ai y
('-“‘H" eeror T )
own the Goae ch.'-(d L.,a
N s

N "oL t-'(‘u.c“ measSure astin t

- -e.

In the local frame, the equation of the trajectory is :

g—- ofy X + of,


http://co.se..-

This equation and the ‘:ondirior':'\*u':ive x and y as functions of « and o,
, whence tzota/ (A4 way)
and the derivatives :
’a_t' _ 4 . 2 e} Foe o, 2 O

Pl Atpea | g

{this is true if the fitted trajectory is ciose to the measured point).

So we get : U; = (—-\—:r_ﬂ(‘ O)
el 3

whence .
D = U\-I’\ = . ’ }

y Xl.+ ‘(“”1 At H ™

far  xlal™

t
w‘: DC w, DC = 1Y
X.‘/ﬁ!— ’("/G‘Et

N N

. ’ /
with d"-:(t\t""k;u({)ﬂ"*
) " .
( T¢ is the projected uncertainty on the y axis along the direction of the

trajectory).

2. 3d generalization :

We consider now 3d trajectories (curved or not)
We choose as local parameters around point i :
d
43 > S, 43 [c]
———t x A R . c
Coocdk. ;(a pes Par:.w- . aF purvarw;_c_ (l a-.-a)
N—————
0*’ Fl'x¢o| >



—_—

'ocn' frame
tx_ We reasure, in the local frame :
{t‘ =&, z+ ‘t-'; y+ \’;’3
measuved ?uonh'h’z; = }\': x + ‘4':. 4 ‘)‘f’%
in the plane .\‘-'x-t-*,l‘-%... V."g='3

x

‘\f b '; is an orthogonal matrix .
x‘. P": vl.

k3 " »
A.’ B v,

Local parametrization of the trajectory {té = A, X F o, (A o)

3= Bix+ Ra (g 0)

After elimination of 1,1,} we find :

’

at’ V- N a7 Ao

2o, ‘\+.(‘l..+(;1\) 'b(;, r\+ul_‘rx+(;¢‘_)
T _ag, -y W A,
2, Aok oty gV 24, N+ ody + v
other dirivabives =2 O
VEAE, \o-u" 0 o
we\zhce u - 4 (gv Rl hel ©
4\+.(4‘4+F_‘d )\’F,—\)' PI_)\/.(" o oo

Llnft'uo‘ DF U: (40 ooc) when :] awd %

o1 00 o
are weasured abl  Frcad o,

)



Appendix 2 - Matrix T

We consider the trajectory as an helix (radius R, axis along z)

L. Cylindric coordinates ; measurements at fixed r :

order

AL«:-A—‘-_:tﬂ'\F ) A'S—

Position defined by ¢,
Direction defined by é, 8
Curvature defined by c= A /R

Local parameters : {,QL& t, < at fixed r (1 = cob 8 )

Variation of parameters from r* to r+Ar along the trajectory (at first
in Ae s this is valid for A¢ & © 3pg ar & K )

- £2f)

£ A _
—F o AP=

At = O 3 Ac = O

Hence the matrix of derivatives 2P(c+ar) / 2P

C‘:SF

and, of course :



LY N i
. 0 t Arib.F Ar 0
cos ,3 cosF
¥ 1 Av 0 0
T
0 lgphefesegd O | A
F 1‘*6?,; At wsf
t [} a 1 0
c 0 0 0 i

“

R (r+-4r)
N.B. I F is not 100 large and Ar & ¢ _L’ ~ 1

’ 3[; (")

2. Cartesian coordinates ; measurements at fixed z

R ) by /&
| {
T ‘—! \
o r(a we I -3 (>(a-\~<

Position defined by
Direction defined by
Curvature defined by

x,n}
o<, &
c= (/R



local parameters : XY, %, u,C at fixed z = tan & )

Variation of parameters {from 3 b 3+ AE g
Aot = cuA" ;,Ax:ucos s by A\a= u ot A'S
Au =0 . de =0

7

Hence the matrix 2t (’s +b3 ) / 2P (1)

o /2| * Pl e | ¢
* ! o — B8y cosa Aqy 0
y a i Ax | e Ay o
ot 0 0 1 c A3 “w A’S
u 0 0 0 1 0
t 0 0 0 ] 1




R R KT S

3. Cartesian coordinates ;3 measurements at fived x in a rotated frame
! - /
i
f 6
x I 3
Position defined by 'é' %
Direction defined by «, &8
Curvature defined by ¢ = 4/ R
local parameters : y,z,s,E,c at fixed x
(s:;-‘..a,t: b8 )
Variation of parameters from x to x+4 x :
s __t A
- Ax - Ay = Ax . B7 = x
ds=c Tt T NN
Hence the matrix D fx+ Ax) /2P ) .
4[| ¥ z s t c
y 1 0 qB Ax 0 ]
z ] 1 0
-q’szx q Ax
s 0 0 L 0 Ax
t 0 ] 0 1 0
c 0 0 ] ] 1
where —1_: = —i-



