TECHNICAL 86-17 REPORT

Analysis of groundwater from deep boreholes in Klipperas

Situation; Vii Strebst Form more; Researchmenting

Cot who are they before

SVENSK KÄRNBRÄNSLEHANTERING AB

SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT CO

BOX 5864 S-102 48 STOCKHOLM TEL 08-65-28 00 TELEX 13108 SKB

ANALYSIS OF GROUNDWATER FROM DEEP BOREHOLES IN KLIPPERÅS

Sif Laurent IVL, Swedish Environmental Research Institute

September 22, 1986

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client.

A list of other reports published in this series during 1986 is attached at the end of this report. Information on KBS technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01) and 1985 (TR 85-20) is available through SKB.

Analysis of Groundwater from Deep Boreholes in Klipperås

Sif Laurent IVL, Swedish Environmental Research Institute Stockholm, 1986-09-22

SUMMARY

Groundwater from three boreholes in granitic rock at an investigation site in Klipperås has been sampled and analysed. This is part of a larger program of geological, geophysical and hydrogeological investigations aimed at finding a suitable site for a high level radicactive waste repository.

Water-bearing levels in the boreholes down to the deepest at 777 m were selected. Prior to sampling, the water-bearing level is isolated between packer sleeves. The water is then pumped to the surface where sensitive parameters such as redox potential, pH, sulphide and oxygen content are measured electrochemically on the flowing water in a system isolated from the air. Water, filter and gas samples are sent to several laboratories for further analysis.

During the site investigations in Klipperås a new mobile field laboratory was introduced with the capability to measure certain sensitive parameters such as Eh and pH downhole and to perform rapid, on site analyses of several other groundwater constituents.

The present report is a presentation of the results of the ground-water analyses. The reliability of the results is discussed but there is no evaluation in relation to geology and hydrogeology. This report presents the basic results from the groundwater analyses to be further evaluated by experts in different fields.

CONTENTS

		Page
1	INTRODUCTION	1
2	SAMPLING	3
2.1	Drilling water	3 3 4
2.2	Sampling equipment	
2.3	Sampling for laboratory analyses and freezing	4
2.3.1	Sampling number	6
3	AUTOMATICALLY RECORDED MEASUREMENTS	?
3.1	Calibration	7
3.2	Measurement	8
3.2.1	Temperature measurement	8
3.2.2	Measurement of pH, pS and Eh	8
3.2.3	Oxygen measurement with probe	8
4	MAIN COMPONENTS OF THE WATER	9
4.1	Laboratory analyses	9
4.2	Sampling	10
4.3	Transport of samples	10
5	ASSESSMENT OF ANALYSIS RESULTS	• •
5.1	Automatic recordings	11
5.1.1	pH and conductivity	
5.1.2	Redox potential	12
5.1.3	pS	:2
5.1.4	Measurement of conductivity	12
5.2	Mobile field laboratory	12
5.2.1	Potassium	12
5.2.2	Calcium and magnesium	13
5.2.3	Iron	13
5.2.4	Fluoride	13
5.2.5	Ammonium and nitrate	1 4 2 19
6	PARTICULATE MATTER	15

		Page
7	ISOTOPE ANALYSIS	16
7.1	Tritium	16
7.2	Carbon isotopes	17
7.2.1	Sample preparation	18
7.3	Deuterium, oxygen and sulphur	18
7.4	Uranium, thorium, radium and radon	18
8	GAS ANALYSIS	19

1 INTRODUCTION

Groundwater from three core drilled boreholes in Klipperås: Kl 1, Kl 2 and Kl 9 has been sampled and analyzed. The sampling levels have been chosen on the basis of hydrological measurements in the boreholes.

All field work has been carried out by personnel from Industrins Processkonsult AB (IPK). The sampling in Klipperås has been carried out in a period of transition between old and new technology.

One level - 406 m - has been sampled in Kl 1. The first sampling there was carried out in Nov.-Dec. 1983 using the old technique (KBS Tk 83-44 and 83-70). The results of the chemical water analyses exhibited an abnormally large variation. A more recent reanalysis of two frozen samples has shed doubt on the correctness of the previous analyses for a number of the parameters. The analyses are therefore not reported here. In June 1985, sampling was repeated at the same level, but now with new technology, i.e. new measuring equipment, automatic recording of the measured values and chemical analyses in our own computer-equipped field laboratory (to be published as SKB TR 86-16).

Kl 2 was sampled for the first time in Oct.-Dec. 1984. Five levels were sampled on this occasion: 326, 623, 741, 761 and 777 m. At the four greatest depths, it was found that drilling water admixture was around 5% and did not decrease during sampling. The work was therefore interrupted after a relatively short time at each level. The measured values have been recorded automatically with the computer unit, Chemmac, which recorded the measured values in units of one-half mV. In order to permit all the measurement results to be treated uniformly, the measured values in the filed computer tables have been divided by two. The chemical analyses were performed in the field laboratory, where the analysis results were calculated manually and recorded on test reports. In May 1985, a new sampling was carried out, this time at 860 m and with the new equipment. At this level as well, such high concentrations of drilling water were found that the sampling was interrupted after a week or so.

Kl 9 was sampled during Aug.-Sept. 1985. Only the 696 m. level was investigated. New technology was used throughout.

Control analyses are performed about once a week by AB IVL, Stockholm, to verify the results of the field laboratory. A number of laboratories are used for special analyses (see Sections 6-8).

The present report consists mainly of a presentation of the results of the groundwater analyses. The reliability of the results is subjected to some scrutiny. No further evaluation in relation to geology or hydrology is made here, but the material in the report will be further analyzed by experts in different fields.

The geology and hydrology of the study area are described in KBS TR 86-06 and 86-08.

The fracture mineralogy at the Klipperås study site has been investigated by E-L Tullborg (SKB TR 86-10). The relations between the chemical and isotopical composition of the groundwater and the fracture minerals are described in that work.

The importance of groundwater composition in relation to final disposal of radioactive waste is discussed in the final report KBS-3, Volume 2 and 3 (Final storage of Spent Nuclear Fuel - KBS-3; 2 Geology Volume and 3 Barriers Volume) Stockholm, May 1983.

The previously used sampling equipment is described in KBS TR 83-44 and a description of the new mobile field laboratory will be presented in the technical report SKB TR 86-16.

2 SAMPLING

The sampled boreholes are core-drilled with a diameter of 56 mm. Kl 1 and Kl 2 are virtually vertical while Kl 9 slopes about 60° . Normally, borehole length is given in the tables, but the corresponding vertical depth is also indicated in Tables 1-2.

Before sampling starts in a borehole, it is first cleaned by means of gas-lift pumping three times with compressed nitrogen. Gas-lift pumping is repeated prior to each new sampling sequence in a borehole.

The sampling equipment (see Section 2.2) is lowered to the level selected for water sampling and is allowed to work there for 3-4 days before sampling starts. Successive sampling for at least 8-9 days makes it possible to follow changes in the composition of the water, which can be due to activities in the borehole and/or changing conditions in the rock.

The changes may be due to many factors. They may, for example, derive from drilling water or accidental contamination during the drilling procedure. Slowly declining Eh values may be due to the fact that there was adsorbed oxygen on the surface of the sampling equipment (hose, probe etc.). An example of changes due to natural causes is the fact that several aquifers with different composition can be tapped during the pumping procedure.

In interpreting the analysis results, it is important to know whether the water is subject to external influence or whether the results stem from unaffected groundwater. The sampling periods are therefore made longer than before in order that stable conditions can be achieved.

2.1 DRILLING WATER

Drilling water used in the core drilling of the sampling holes is taken from percussion boreholes within the study area and is filtered through mechanical filters of cellulose material (18 CMC 3-2), which separate particles with a diameter greater than 5 μ m. The drilling water can penetrate into fractures in the rock and

contaminate the groundwater. In order to get rid of the drilling water to as great an extent as possible, the borehole is gas-lift-pumped both before the hydrological survey and immediately prior to installation of the sampling equipment.

The drilling water for Kl 2 and Kl 9 was marked with 0.5 g/m³ of uranine AP (Na fluorescein, $C_{20}H_{10}Na_2O_5$) in order to permit traces of drilling water in the sampled waters to be traced. The amount of drilling water found in the analyzed water is reported in Tables 1-2. The measured uranine content in Kl 1 only shows the background. It is calculated as "Drilling water" in order to facilitate comparison with other concentrations.

2.2 SAMPLING EQUIPMENT

The sampling zone is 5 m long and is sealed off by 1 m wide rubber packers that are expanded to a pressure that is 0.7-0.8 MPa above the groundwater pressure. During sampling of some deeper levels, the measuring zone is only sealed off by an upper packer. This is the case in Kl 1, 406 m and in Kl 2, 761, 777 and 860 m. The sampling equipment consists of a 2 m long measuring probe and a 3 m long pump. The water intake is thus 5 m below the upper packer. Given borehole lengths refer to the upper packer. The pump, which is made of steel and equipped with teflon seals, has a maximum capacity of 0.12 l/stroke and can pump 200-250 ml/min (about 300 l/d). The water flow is often lower than the pump capacity (Tables 1 and 2), which is due to the fact that the hydraulic conductivity of the rock limits the flow. A schematic illustration of sampling pump, packers and probe is shown in Figure 2-1.

The water is pumped through the probe and then through polyamide hose up to the ground surface, where it goes directly into a measuring chamber located in a refrigerator. The temperature of the refrigerator is approximately the same as that of the pumped-up water. The temperature, pH, pS and redox potential of the water are registered both in the probe and in the measuring chamber. The conductivity and oxygen content of the water are measured in the measuring chamber. A detailed description of the sampling equipment is provided in SKB TR 86-16.

In the measurements in Kl 1 during Nov.-Dec. 1983, the probe had not yet been put into use.

2.3 SAMPLING FOR LABORATORY ANALYSES AND FREEZING

Sampling is performed via a filter cartridge (Pall/Ultipor 0.45 μ m) and a PVC hose immediately after the water has passed through the refrigerator (2.2). The sample bottles, which are made of uncoloured polyethylene, are filled from the bottom via a poly-

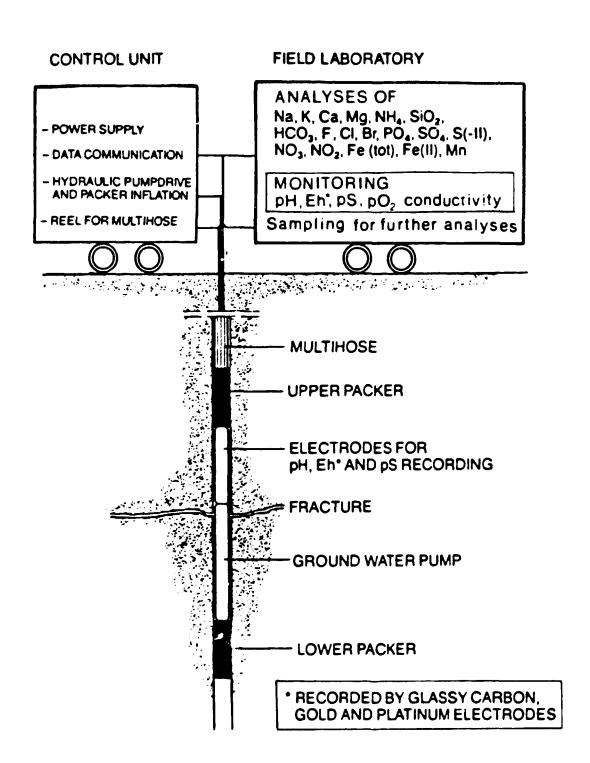


Figure 2-1

ethylene tube. Unpreserved and acid-preserved reference samples are frozen and kept in cold storage to permit supplementary analyses. For the analyses presented in Table 8-16, as well as for the frozen samples, a couple of bottles of water are allowed to overflow before the brim-filled bottle is sealed. The water that is analyzed in the field laboratory is not bottled.

2.3.1 Sampling number

Each sampling occasion is assigned a unique sampling number, which is the same for all samples taken during a 24-hour period. The number, which is given in Tables 1-2, is indicated on each individual sample bottle by means of printed and different-coloured labels. Red labels are used for acid-preserved samples intended for metal analysis (1 ml concentrated hydrochloric acid (superpure) per 100 ml sample).

3 AUTOMATICALLY RECORDED MEASUREMENTS

The measurements of the water's redox properties and pH are reported in Tables 4-7 and the $E^{\rm O}$ values obtained from the field calibrations are reported in Table 3. pH and conductivity recorded simultaneously in laboratory analyses are presented in Tables 8 and 11.

Conductivity and dissolved oxygen are only recorded at the surface. From 1984 onwards Eh, pH and pS are recorded both at the bottom and at the surface. Glassy carbon, platinum and gold electrodes are used for the Eh measurements. A detailed description of the older measuring equipment is provided in KBS TR 83-44 and of the new equipment in SKB TR 86-16.

3.1 CALIBRATION

All calibration solutions, except the one used for the conductivity cell, are prepared freshly from concentrate from ampules and deaerated purified water (ion exchanger). In the calibration procedure, the solutions are circulated through the measuring chamber. Bottom probe and surface electrodes are calibrated separately.

For calibration of the pH electrodes, three buffer solutions are prepared with pH 4, 7 and 10. Quinhydrone is added to the buffer solutions with pH 4 and 7 for simultaneous calibration of the Eh electrodes. For calibration of the sulphide electrode, alkaline solutions are prepared that are 0.01 and 0.05 molar with respect to sulphide ion. Recording during the calibration is done automatically. Calculated $\mathbf{E}^{\mathbf{O}}$ values are presented in Table 3.

The oxygen probe is calibrated against air-saturated purified water (ion exchanger) and the conductivity cell against 0.01 and 0.1 mol/l KCl.

3.2 MEASUREMENT

At least one value per hour is recorded automatically with the aid of a computer.

It takes some time after each calibration before the water in the measuring chambers is representative of the borehole water and then before the Eh and pS values have stabilized. Values measured 72 hours after calibration are reported for Kl 2, 761 m. In other cases, more than a week has passed between calibration and reporting of results. Values resulting from samplings that have obviously failed due to operating disturbances in the field are not reported.

3.2.1 Temperature measurement

The temperature is measured in the measuring chambers in order to permit calibration and calculation of the electrode potentials. Only the temperature measured in the bottom probe is representative of the groundwater. It is reported in Tables 4 and 6.

3.2.2 Measurement of pH, pS and Eh

The pH and pS measurements are presented in Tables 4 and 6 and the Eh measurements in Tables 5 and 7. pH measurements (surface) simultaneous with the laboratory analyses are also presented in Tables 8 and 11. The electrodes are normally cleaned in connection with calibration. The system normally needs to be undisturbed about one week before the Eh and pS values approach stable levels. The pH value normally stabilizes much faster. Periods with very rapid potential fluctuations are not reported in the tables.

3.2.3 Oxygen measurement with probe

The oxygen probe should be calibrated more often than is possible with respect to other electrodes. The quality of the measured oxygen concentrations is therefore always difficult to judge. In this case, however, the values have been considered to be so uncertain that they have not been reported.

4 MAIN COMPONENTS OF THE WATER

The analysis results are presented in Tables 8-13 - pH, conductivity, organic carbon and silicon in Tables 8 and 11, metal ions in Tables 9 and 12, anions and ammonium in Tables 10 and 13. pH and conductivity marked with "y" are recorded in the measuring chamber simultaneously with sampling for laboratory analyses.

The chemical analyses confirm that conditions within the sampling area are uniform. Conductivity varies between 23 and 38 mS/m. The sodium concentration is higher than the calcium concentration in the deep water from Kl 9 and in Kl 2, 741 m and 860 m. The opposite situation prevails in the shallower waters from Kl 2, 326 m and Kl 1, 406 m - as well as in the intervening levels (761 m and 777 m) in Kl 2. In Kl 1, the chloride ions dominate, while bicarbonate dominates in all other waters.

4.1 LABORATORY ANALYSES

Starting in 1984, the analyses have primarily been carried out in the mobile field laboratory. Control analysis of approximately one sample per week has been carried out at AB IVL in Stockholm.

Bromide and the redox-sensitive parameters ion(II), nitrite, sulphide and sulphate have only been analyzed in the field laboratory and aluminium, lithium, strontium, iodide and organic carbon (TOC) only by IVL.

The following analysis methods have been used:

- pH and conductivity. Values marked with "b" and "y" in Tables 8 and 11 have been recorded automatically from the in-situ probe ("b") and the measuring chambre in field laboratory ("y") before it has come into contact with the air (see Section 3). The control analyses, which were performed in accordance with Swedish Standard (SS), are marked with "l".
- Metal ions. In the field laboratory, sodium and potassium are determined by means of ion chromatography, calcium and magnesium titrimetrically in accordance with SS, iron and manga-

nese spectrophotometrically - iron with ferrozine and manganese with periodate oxidation. At IVL, all metals are determined by means of atomic absorption spectrophotometry.

- Fluoride, chloride, bromide and sulphate have been determined in the field laboratory by means of ion chromatography, while IVL has determined chloride titrimetrically in accordance with Mohr (SS) and fluoride by means of potentiometric titration (SS).
- Nutrients and sulphide photometrically in accordance with SS.
- Silicon has been determined at IVL by means of atomic absorption, while the field laboratory has determined SiO₂ photometrically (yellow silicon molybdate complex).
- <u>Bicarbonate</u> has been determined titrimetrically as alkalinity at pH 5.4 in accordance with SS.
- TOC has been determined with a carbon analyzer from Astro.
- <u>Iodide</u> has been determined photometrically by means of the "Leuco Crystal Violet Method".

4.2 SAMPLING

The water samples are taken through a valve immediately after the refrigerator (2.2). All sampling water passes a filter cartridge with a pore diameter of 0.45 $\,\mu m$ before it is sampled except in sampling for determination of iron and manganese where a polycarbonate membrane (0.4 $\,\mu m$) is used as from July 1985. Analysis of the particulate matter (Table 14) shows that a considerable portion of the iron can consist of small particles, which can be smaller than 0.4 $\,\mu m$.

4.3 TRANSPORT OF SAMPLES

Samples to the control laboratory are packed in specially made cases. The cases are mailed "express" on the afternoon of the sampling day and delivered to the laboratory the following morning. No samples were sent on Fridays or Saturdays, since the samples could then not be taken care of by the laboratory until the following Monday.

5 ASSESSMENT OF ANALYSIS RESULTS

The judgement below is given only from an analytical viewpoint based on available information on the analyses - double values, scatter and previous experience. Evaluation of the results from other viewpoints will be performed in connection with their use by experts within different fields.

In general, it can be said that the measurements with the new insitu probe, as well as the analyses in the mobile field laboratory, have succeeded beyond expectation.

5.1 AUTOMATIC RECORDINGS

Equilibrium is achieved in the in-situ probe faster than at the surface, which is probably because there is adsorbed oxygen in lines etc. that affects the water during its transport to the surface. After a few days' pumping, the differences have generally been evened out, and after a longer period of measurement, the agreement between in-situ ("b") and the surface ("y") is very good, as is shown in Tables 4-7. Obviously incorrect results are not reported.

5.1.1 pH and conductivity

The pH of all waters is around 8. The highest value, pH 8.7, was measured in the deepest water (Kl 2, 860 m).

There is a small difference between pH measured at the in-situ and at the surface, which is probably due to differences in the carbon dioxide balance. Laboratory verifications show good agreement with the values recorded at the surface.

5.1.2 Redox potential

The redox potential was measured simultaneously with platinum, gold and glassy carbon electrodes placed in the in-situ probe and in the measuring chamber at the surface. All Eh values are approximately -300 mV. The good agreement between the measurements makes it probable that they reflect the actual state of the water. Observe, however, the unusually high contamination with drilling water at the deeper levels in Kl 2. The extent of contamination with drilling water in Kl 1 is not known (2.1).

5.1.3 pS

The pS value depends on total content of sulphide and pH. However, at low sulphide contents the sulphide electrode measures Eh instead of pS. Therefore pS has to be compared to Eh. It is recommended that the laboratory values of sulphide content are used first hand.

5.1.4 Measurement of conductivity

The conductivity measurements (Tables 8 and 11) have been consistently stable and exhibit good agreement with the control analysis in Kl 2, 860 m (Table 14).

5.2 MOBILE FIELD LABORATORY

In the field laboratory, double analyses are performed of all analysis parameters. Approximately once a week samples are sent to AB IVL in Stockholm for control analysis of the stable ions. Iron(II), sulphate, sulphide, bromide and nitrite are only analyzed in the field laboratory and TOC, strontium, aluminium and lithium only at IVL.

The analyses where the results of the field laboratory and the control laboratory do not agree are commented on below. For the sake of continuity in the measurement series, the results of the field laboratory are given unless otherwise specified.

5.2.1 Potassium

The concentration is uniformly low, around 1 mg/l. For Kl 9, IVL's analyses are consistently 0.1-0.2 mg/l lower than the mobile laboratory's.

5.2.2 Calcium and magnesium

The determination is performed titrimetrically with EDTA in the field laboratory. In the analysis, both the sum of calcium and magnesium and calcium alone are determined. The latter analysis is the more difficult of the two. Magnesium is determined as the difference between the two results.

The scatter in the analysis results is relatively great and the largest relative deviation from the control laboratory is found, naturally enough, in the magnesium concentration. If the mole sum (Ca + Mg) is considered, the scatter is acceptable and the agreement with the control laboratory good.

5.2.3 <u>Iron</u>

The colorimetric determination in the field—laboratory shows that the dissolved—iron is present as ferrous iron, i.e. iron(II). The control analysis of the total concentration performed by—means of atomic absorption—spectrophotometry shows good agreement in Kl 9, but gives roughly twice the value in Kl 1—and Kl 2. The analyses of particulate—matter (Table 14) show that a considerable portion of the particulate iron in Kl 1 and Kl 2 is present in the form of particles smaller than 0.4 μm .

One explanation for the difference in the analysis results is that the particulate matter has not been completely dissolved in the colorimetric analysis. This assumption is confirmed by the unusually great scatter in the results from the field laboratory. The analyses are performed in acid solution, but the sample has not been heat-treated in an autoclave, as is prescribed in Swedish Standard. In other words, the scatter could be due to the fact that a varying portion of the particulate iron has been undissolved during the analysis, owing to the fact that the sample has been acidified for varying lengths of time prior to the analysis.

Another explanation for the scatter in the results could be the column filter (0.45 $\mu m)$ that has been used for all sample water in the field laboratory. The same filter is used a couple of days in succession, and the longer it is used the more particles with pore diameter less than 0.45 μm can be assumed to be retained in the filter. In order to avoid this source of error, water for iron and manganese analysis has been filtered through a polycarbonate membrane with a pore diameter of 0.4 μm since July 1985.

5.2.4 Fluoride

In the ion chromatographic analysis, the fluoride peak comes right at the beginning of the chromatogram and is therefore difficult to evaluate. In cases of poor agreement, IVL's results are therefore reported.

5.2.5 Ammonium and nitrate

The concentrations are too low for the ion chromatogr ph. IVL's results have therefore been reported. As of 85-08-23 (%1 9), the field laboratory also analyzes ammonium photometrically in accordance with Swedish Standard.

6 PARTICULATE MATTER

For determination of the chemical composition of the particulate matter, the water has been filtered through three membrane filters of polycarbonate with successively decreasing pore size – nominal pore diameter 0.4, 0.2 and 0.05 μm . Scandlab in Sollentuna has determined aluminium, calcium, iron, manganese, silicon and sulphur on the membranes. The results are reported as $\mu g/l$ of filtered sample in Table 14.

7 ISOTOPE ANALYSIS

Isotope analysis of light elements in the water is performed primarily in order to permit calculations of the age and origin of the water. The heavy radioactive elements are determined because the natural background levels are of great interest for the SKB project.

The analyses were performed at the following laboratories: Laboratory for Isotope Geology, Stockholm (see Section 7.1 and 7.2), Department of Physical Geography, Uppsala University (see Section 7.3), Studsvik Energiteknik, Nyköping (see Section 7.4).

7.1 TRITIUM

Owing to its short half-life (about 12 years), tritium is an important isotope in hydrological studies. The amount of tritium in the atmosphere has increased drastically due to experiments with nuclear fission. However, the results are becoming increasingly difficult to interpret the longer the weapons tests continue. At the sampling in Kl 1 during December 1983, the tritium concentration lay at or below the detection limit. When the samplings were resumed in June 1985, 6-7 TU tritium was measured.

The results of sampling in Kl 1 and Kl 2 are presented in the Table below. The tritium concentration is given in the unit TU, which is the number of tritium atoms per 10^{18} hydrogen atoms.

Isotopes of hydrogen, oxygen and sulphur

Bore- hole	Length m	Date sampling	D o/oo	Tr TU	0-18 o/oo	0-18* o/oo	S-34 o/oo
Kl 1	406	83-11-30	-85.7	3		-11.96	
Kl 1	406	83-12-02		3			
Kl 1	406	83-12-06	-86.3	3		-12.02	
Kl 1	406	83-12-08		3			
Kl 1	406	83-12-12	-86.5			-12.11	
Kl 1	406	83-12-13					7.0
Kl 1	406	83-12-14		3			
Kl 1	406	83-12-15		3			9.0
Kl 1	406	85-06-26		7			
Kl 1	406	85-06-29			-11.90		
Kl 1	406	85-07-01		6			
Kl 2	326	84-12-06			-12.35		
Kl 2	326	84-12-10		3			
Kl 2	741	84-11-06		13	-11.31		
Kl 2	761	84-10-18		25			
Kl 9	696	85-08-19		3			
Kl 9	696	85-08-29		2			
Kl 9	696	85-09-03			-11.93		

7.2 CARBON ISOTOPES

The determination was used for dating by means of the carbon-14 method. The water's contents of carbon dioxide and carbonate have to be concentrated prior to the determination. It is of the utmost importance that the concentrate not be contaminated by carbon-containing chemicals or by contact with air.

The age determination is reported in the Table below as "age BP" and the age after correction for carbon-13 content as "age BP, corr".

Groundwater age

Bore- hole	Length m	Date sampling	Age BP year	Age BP corr	C-13 o/oo	
Kl 1	406	83-12-06	28375	28500	-17.0	
Kl 9	696	85-09-03	30795	30295	-15.7	

7.2.1 Sample preparation

A polyethylene barrel holding 130 l and filled from the start with nitrogen is filled with water. Hydrochloric acid is added in order to break down carbonates in the water to carbon dioxide. A nitrogen gas stream is then used to drive the carbon dioxide over to a wash bottle containing carbonate-free sodium hydroxide.

7.3 DEUTERIUM, OXYGEN AND SULPHUR

The analyses provide information on the age of the water and on the climatic conditions prevailing at the time of infiltration (see the table in Section 7.1).

The concentrations in the table of Section 7.1 refer to deviations in per mill from SMOW (Standard Mean Oceanic Water).

7.4 URANIUM, THORIUM, RADIUM AND RADON

Ine natural concentration of these elements in the groundwater is of great interest to the project. The analyses are reported in Table 15. The concentrations for U, Ra and Rr. are given in Bg/l. The following relationships apply: 39.4 μ g U per Bq, 2.71x10⁻⁵ μ g Ra-226 per Bq, 1.76x10⁻¹⁰ μ g Rn-222 per Bq.

8 GAS ANALYSIS

In the samples from Kl 1 and Kl 2, nitrogen, oxygen, hydrogen, carbon dioxide, helium, argon and methane were determined in the gas that spontaneously leaves the water on passage through a Horst bottle. AGA SpecialGas, Lidingö, performed the analyses.

Gas analysis

Bore- hole	Length m	Date sampling	Water- vol l	Gas- vol ml	N2 %	O2 %	H2 %	CO2 %	He %	Ar %	CH4 %
K1 1	406	83-12-07	9	105	94.5			.03	.30		
K1 1	406	83-12-15			96.8			.03	.21		
K1 1	406	85-06-29	1	205	97.2	.12	.002	.01	.07	.08	.016
K1 2	326	84-12-09			96.0	.10	.050	.10	.22	1.40	.120

Besides the gas phase's percentage content of the analyzed gases, the table below also shows the amount of water that has passed through the Horst bottle and the gas volume obtained. The concentrations cannot be related directly to the water volume, since the conditions of degassing are uncertain.

Bore-	Length	Depth	Date	Sampling	W.flow	Drilling
hole	m	m		No	ml/min	water,Z
KLN1	0406	0398				
	0.00	0.50	83-11-23	1001	52.0	
			83-11-24	1002	46.N	
			83 11-29	1003		
			83-11-30	1004		
			83-12-01	1005		
			83-12-02	1006		
			83-12-05	1007		
			83-12-06	1008		
			83-12-07	1009		
			83-12-08	1010	50.0	
			83-12-12	1011		
			83-12-13	1012	45.0	
			83-12-14	1013		
			A3-12-15	1014		
			85-06-17	1156	45.5	
			85-06-17	1157		
			85-06-18	1158	25.0	
			85-06-22	1160	35.0	
			85-06-23	1161	28.0	. 03
			85-06-25	1162	26.0	
			85-06-25	1163	32.0	. 02
			85-06-26	1164	20.0	. 0 2
			85-06-27	1165	30.0	. 0 2
VI 00	0.00	0504				
KL09	0696	0581	05.00.13	1170	202.0	0.1
			85-08-13 85-08-14	1170	203.0	. 01
			85-08-15	1171	207.0	
			85-08-16	1172 1173	202.0 208 .0	
			85-08-18	1174	195.0	
			85-08-18	1175	194.0	
			85-08-19	1176	194.0	
			85-08-20	1177	188.0	
			85-08-21	1178	186.0	
			85-08-22	1178	185.0	. 0 1
			85-08-23	1179	180.0	
			85-08-26	1182	205.0	
			85-08-27	1183	205.0	
			85-08-28	1184	197.0	
			85-08-29	1185	204.0	
			85-08-30	1186	203.0	
			85-09-02	1188	202.0	. 0 1
			85-09-03	1189	200.0	
			85-09-04	1190	202.0	
			85-09-05	1 9 1	195.0	

Bore- hole	iength m	Depth m	Date	Sampling No	W.flow ml/min	Drilling water,%
KL02	0326	0320	84 11 15	1099	47.0	5.32
			84-11-15	1100	54.0	1.81
			84-11-17	1101	50.0	. 83
			84-11-19	1103	47.0	. 4 2
			84-11-20	1104	43.0	. 32
			84-11-21	1105	44.0	. 27
			84-11-22	1106	43.0	. 24
			84-11-24	1108	40.0	. 20
			84-11-25	1110	41.0	. 16
			84-11-27	1111	45.0	. 15
			84-11-28	1112	43.0	. 13
			84-11-29	1113	45.0	. 13
			84-11-30	1114	43.0	. 12
			84-12-03	1117	52.0	. 10
			84-12-04	1118	48.0	. 11
			84-12-05	1119	48.0	. n 9
			84-12-06	1120	41.0	. 0.8
			84-12-07	1121	43.0	. C 8
KL02	0741	0727				
			84-10-25	1081	70.0	4.45
			84-10-26	1082	71.0	6.44
			84-10-27	1083	76.0	F.86
			84-10-28	1084	73.0	7.69
			84-10 29	1085	71.0	7.21
			84-10-30	1086	73.0	7.18
			84-10-31	1087	76.0	7.01
			84-11-01	1088	74.0	6.97
			84-11-02	1089	75.0	6 90
			84 11-03	1090	75.0	7.06
			84-11-04	1091	73.0	6.60
			841105	1092	72.0	6.47
			84-11-06	1093	71.0	5.99
KF05	0761	0746				
			84-10-11	1069	170.0	5.32
			84-10-12	1070	165.0	3.15
			84 10-13	1071	175.0	4.29
			84-10-14	1072	175.0	4,74
			84-10-15	1073	172.0	6,02
			84-10-16	1074	172.0	6.87
			84-10-17	1075	173.0	4.78
			84-10-18	1076	170.0	5.23
			84-10-19	1077	170.0	5.09
KL02	0777	0762				
			84-10-08	1066	95.0	
			84 - 10 - 09	1067	170.0	4.20
			84-10-22	1078	186.0	4.56
			84-10-23	1079	187.0	4,39
W1 0 0	0050	00/3	84 - 10 - 24	1080	187.0	5.01
KF05	0860	0843	95 OF 31	1150		4.54
			85 05-20 85-05-21	1150	79.0	₹,3₹
			85-05-21 85-05-22	1151 1152	84 0	4.17
			85-05-23	1153	80.0	1.80
			85 06 0 5	1155		1,50
			07 00 U J	1133		, ,

E^{σ} -values (mV) obtained from the field calibrations

Bore- hole	Calibr date	Used until or from	pH, b	рН. у	С.ъ	Pt.b	Au, b	C.y Pt.y	Au, y	C.y ex	pS. b	p5 ;
ML01												
	83-11-22			435				254 254				- 860
	83-12-19	11-23		435				254 251				- 860
	85-06-13		206	360	179	207	198	256 256	258	221	- 656	- 902
	85-07-03	06-20	213	373	193	191	193	262 262	265	233	E00 -	- 874
NL02												
	84-10-05		28		392	392	392				- 998	
	84-10-09	11-13		366				270 269	273	208		- 915
	84-12-13	11-14	18	370	404	401	402	266 267	259	248	-1009	- 504
	B5-05-09	05-23	21	384	394	391	390	252 251	251	211	-1028	- 893
	85-05-29		-114		389	389	391				- 847	
KL09												
	85-08-09		17	379	382	382	385	259 259	259	240	-1052	- 2 95
	85-09-06	08-55	25	369	386	386	386	266 266	267	268	-1025	- 5-0

FIELD MEASUREMENT - Temp. pH and pS (b = bottom, y = surface)

Bore- hole	Length m	Datum	K1	Temp, b oC	pH, b	pH, y	pS. b	p5. y
KL 01	0406	83-11-30 83-12-01 83-12-02 83-12-05 83-12-06 83-12-09 83-12-12 83-12-13 83-12-14 83-12-15 83-12-16 83-16-26 83-	08 04 08 06 06 35 08 45 08 10 07 57 08 12 10 10 08 15 08 17 08 00 07 58 06 53 07 53 08 12 08 25 08 25 09 21 08 21 08 21 08 21	12 20 12 20 12 21 12 21 12 22 12 22 12 21 12 22 12 21	8 15 8 07 8 12 8 12 8 22	8 42 8 47 8 45 8 45 8 48 8 50 8 48 8 50 8 51 8 51 8 51 8 60 8 51 8 60 8 60 8 60 8 60 8 60 8 60 8 60 8 60	5 62 5 65 5 47 5 40 5 14	11 27 11 38 11 45 11 18 10 96 10 96 10 95 10 71 10 53 10 63 10 38 11 92 11 65 11 64 11 68 11 68 11 68 11 68 11 67 11 67
KI 09	0696	85-08-23 85-08-24 85-08-25 85-08-26 85-08-27 85-08-30 85-08-31 85-09-01 85-09-02 85-09-03 85-09-04 85-09-04	08 00 08 00 08 00 08 00 08 00 08 02 08 00 08 18 08 18 08 18 08 13 08 13 08 13	14 94 14 94 14 95 14 95 14 95 14 95 14 95 14 95 14 96 14 96 14 96 14 96 14 96	7 50 7 52 7 55 7 59 7 70 7 78 7 78 7 62 7 60 7 60 7 60 7 60 7 60	8 04 8 05 8 02 8 04 8 04 8 07 8 03 8 07 8 03 8 07 8 07 8 04 8 04	13 38 13 33 13 21 13 09 12 77 12 53 12 46 12 79 12 80 12 80 12 80 12 84 12 84	12 00 12 03 12 03 12 05 12 05 12 07 12 00 12 00 12 04 12 11 12 13 12 11

FIELD MEASUREMENT - Eh (Lottom, y = surface)

Bore- hole	Length m	Datum	K1	Eh-C.b	Eh-Pt.b mV	Eh-Au, b mV	Eh-C. y	Eh-Pt.y mV	Eh-Au. y aiV	Eh-C.y ex.mV
KI 01	0406									
		83-11-30	08 04				-179			
		B3-12-01	08 06				-217			
		83-12-02	06 35				-232			
		83-12-05	08 45				-300			
		83-12-06	08 10				-303			
		83-12-07	07 57				-308			
		83-12-08	08 12				-308	-389		
		83-12-09	10 10				-306	-335		
		83-12-12	08 15				-310	-283		
		83-12-13	08 17				-313	-295		
		83-12-14	08 00				-312	-271		
		B3-12-15	07 58				-313	-289		
		83-12-16	06 53				-315	-305		
		83-12-19	07 53				-312	-305		-154
	•	85-06-24	08.12				-244 -309	-265		-222
		85-06-25	08 12				-314	-363 -311		-252
		85-06-26	08 25							-308
		85-06-27	08 25	-211	-195	-223	-3:8 -318	-314 -315	-230	-317
		85-06-28 85-06-29	09 21 08 21	-311 -304	-197	-265	-319	-318 -318	-236	-323
		85-06-27 85-06-30	08 21	-304	-273	-295	-320	-318	-295	-327
		85-07-01	08 21	-305	-288	-299	-320	-320	-296	-330
		85-07-02	08 21	-309	-303	-312	-320	-321	-297	-329
		63-07-02	08 21	304	-303	-215	-320	-321	-247	327
KL09	0696									
		85-08-23	00 80	-197	-217	-213	- 35	-126		-111
		85~08-24	08 00	-202	-598	-218	-186	-213		-1.34
		85-08-25	08 00	-207	-274	-224	-213	-223		-149
		85-08-26	08 00	-211	-280	-272	-221	-273		-187
		85-08-27	08 00	-220	-297	-292	-278	-281		-207
		95-08-28	08 02	-558	-324	-322	-281	-284		-250
		85-08-29	00 00	-273	-340	-333	-284	-287		-281
		85-08-30	08 18	-268	-203	-276	-285	-284		-287 -289
		85-08-31	08 18	-268	-274	-271	-287	-291		-287
		85-09-01	08 18	-270	-274	-271	-287	-290		-287
		85-09-02	08 13	-271	-274	-271	-287	-291		-292
		85-09-03	08 13	-273	-276	-273	-287	-290		-293
		85-09-04	08 13	-274	-276	-274 274	-287 -287	-291 -200		-294
		85-09-05	08 13	-275	-278	-274	-287	-290		-274

FIELD MEASUREMENT - Temp. pH and pS (b = bottom, y = surface)

Bore- hole	Length m	Datum	K1	Temp.b oC	pH, b	pH. y	pS. t	pS. y
WF05	0326	84-11-16 84-11-17 84-11-18 84-11-21 84-11-21 84-11-23 84-11-24 84-11-25 84-11-25 84-11-27 84-11-29 84-11-29 84-12-01 84-12-02 84-12-01 84-12-05 84-12-07 84-12-07 84-12-07 84-12-09 84-12-09 84-12-10 84-12-10 84-12-11	08 00 08 00 08 00 08 00 08 00 07 00 08	11 31 11 31 11 31 11 32 11 32 11 32 11 32 11 32 11 33 11 33 11 33 11 33 11 33 11 34 11 34	7 76 7 71 7 71 7 68 7 66 7 66 7 66 7 66 7 66 7 66 7 66	8 16 8 12 8 13 8 14 8 09 8 07 8 04 8 00 7 97 7 99 8 12 8 06 8 03 8 03 8 03 8 05 8 07 8 08 8 12 8 11 8 04 8 07 8 11 8 12	9 66 9 73 9 83 9 92 10 05 10 08 10 15 10 22 10 22 10 36 10 49 10 51 10 66 10 58 10 66 10 77 10 77 10 77	10 94 11 17 11 51 11 80 11 89 11 98 12 00 11 97 11 93 11 96 12 10 11 97 11 97 11 97 11 98 11 98 11 98 11 98 11 99 11 99
KL02	0623	84-11-08 84-11-09 84-11-10 84-11-11 84-11-12 84-11-13 84-11-14	08 00 08 00 08 00 08 00 12 00 08 00 07 00	15 49 15 50 15 51 15 51 15 51 15 52 15 53	7 91 7 99 8 02 8 04 8 05 8 04 8 03	7.69 7.73 7.86 7.68 7.90 8.04 7.96	9 13 8 94 8 82 8 78 8 69 8 69	12 48 11 78 11 49 11 32 11 29 11 30 11 05
KL02	0741	84-10-27 84-10-28 84-10-29 84-10-30 84-10-31 84-11-01 84-11-02 84-11-03 84-11-04 84-11-05 84-11-06	08:00 08:00 08:00 08:00 08:00 08:00 08:00 08:00 08:00 08:00	17 19 17 20 17 20 17 21 17 21 17 21 17 21 17 22 17 21 17 22 17 21 17 22	8 04 9 06 8 09 8 11 8 14 8 15 9 16 8 17 8 17 8 17 8 17	7. 97 8 11 8 16 8 15 8 11 8 17 6 12 8 19 8 24 8 24 8 24	10 17 9 91 9 63 9 39 9 16 8 99 8 96 8 97 8 73 8 70 8 63 8 56	11 82 11 62 11 47 11 32 11 24 11 26 11 21 1. 30 11 29 11 30 11 28 11 27
KL02	0761	84-10-12 84-10-13 84-10-14 84-10-15 84-10-16 84-10-18 84-10-19	08 00 08 00 08 00 08 00 08 00 08 00 08 00	17 51 17 51 17 51 17 52 17 53 17 54 17 53 17 54	7 94 7 87 7 86 7 91 7 96 8 02 8 08 8 11	7 94 7 98 7 96 8 01 8 04 7 99 8 03 8 02	11 43 11 55 11 53 11 41 11 25 11 09 10 92 10 78	13 33 13 25 13 25 13 13 13 08 13 00 12 96 12 87
KL02	0777	84-10-21 84-10-22 84-10-23 84-10-24	08:00 08:00 15:00 11:00	17 77 17 78 17 77 17 78	8 13 8 17 8 18 8 18	8 11 8 15 8 11 8 13	10 60 10 45 10 38 10 29	12 92 12 85 12 72 12 68
KL02	0860	85-05-18 85-05-19 85-05-20 85-05-21 85-05-22 85-05-23	08 44 08 44 08 44 08 56 08 22	18 88 18 88 18 88 18 88 18 88	7 93 8 01 8 07 8 11 8 15 8 12	8 43 8 56 8 58 8 63 8 72 8 73	12 58 12 48 12 30 12 17 12 06 12 10	12 07 11 76 11 34 11 33 11 24 11 08

FIELD MEASUREMENT - En (bottom: y = surface)

Bore- hole	Length m	Datum	+ 1	Eh-C.b	Fh-Pt.b mV	Eh-Au.b mY	Eh-C. y mV	Eh-Pt/y m∀	Eh-Au.y mV	Eh−C.q ex.mV
KL 02	0326									
		84-11-16	08 00	-339	-347	-345	-316	-353	-26:	-314
		84-11-17	08 00	-335	~ 343	-340	-304	-323	-276	-310
		84-11-18	00 80	-330	-340	-336	-288	-300	-272	-306
		84-11-19	08 00	-326	-336	-332	-265	-280	-270	-302
		84-11-20 84-11-21	08 00 08 00	-321 -321	-331 -327	-325 -322	-259 -258	-260 -260	-269 -271	- 301 - 300
		84-11-22	07 00	-318	-323	-317	-258	-279	-271	-300
		84-11-23	08 00	-318	-319	-314	-258	-279	-276	- 300
		84-11-24	08 00	-317	-316	-311	-261	- 780	-277	-302
		84-11-25	08 00	-317	-314	-310	-260	- <u>-</u> 78	-277	- 304
		84-11-26	08 00	-319	-313	-309	-259	-260	-277	-305
		84-11-27	08 00	-319	-312	-306	-261	-279	-274	-302
		84-11-28 84-11-29	08.46 08.00	-311 -305	-306 -298	-302 -296	-260 -260	-281 -282	-277 -276	- 30 5 - 30 <i>7</i>
		81-11-30	08 00	-30 <i>5</i> -30 <i>7</i>	-297	-297	-260	-282	-276	-309
		84-12-01	08.00	-298	-287	-287	-261	-585	-278	-310
		84-12-02	08 00	-301	-287	-288	-261	-282	-275	-310
		84-12-04	08 00	-303	-289	-288	-262	-282	-274	-311
		84 -12-05	00.00	-303	-287	-287	-263	-264	-269	-310
		84-12-07	08 00	-300	-283	-285	-262	-263	-268	-312
		84-12-08 84-12-09	08 00	-300	-282	-283	-264	-285	-270	-314 -314
		84-12-10	08 00 08 00	-302 -303	-284 -284	-285 -286	-263 -263	-284 -284	-265 -266	-313
		84-12-11	08 00	-303	-285	-266	-263	-284	- 263	-313
									200	
KL 02	0623									
NL UZ	0023	84-11-08	08:00	-352	-357	-360	-254	-274	-257	-326
		84-11-09	08 00	-358	-365	-367	-2.74	-344	-274	-333
		84-11-10	08 00	-352	-369	-369	-295	-360	-277	-341
		84-11-11	08 00	-362	-370	-370	-301	-352	-281	-347
		84-11-12	12 00	-354	-371	-372	-303	-357	-280	-351
		84-11-13	08 00	-365	-371	-371	-306	-353	-275	-349
		84-11-14	07 00	-363	-370	-369	-310	-351	-278	-353
KF 05	0741	84-10-27	08 00	-311	-327	-313	-265	-348	-273	-307
		84-10-28	08 00	-320	-321	-315	-275	-345 -367	-2/3	-318
		84-10-29	08 00	-328	-322	-318	-281	-376	-287	-325
		84-10-30	08:00	-337	-325	-321	-289	-382	-292	- 326
		84-10-31	08 00	-345	-328	-325	-289	-386	-294	-333
		84-11-01	08 00	-350	-332	-330	-289	~387	-296	-338
		84-11-01	15.00	-351	-333	-331	-293	-386	-296	-341
		84-11-02	08.00 08.00	-354 -357	-337 -342	-336 -351	-290 -291	-38c -386	-294 -294	-343 -347
		84-11-03 84-11-04	08 00	-357 -359	-354	-358	-292	-386	-295	-348
		84-11-05	08 00	-361	-359	-363	-296	-3 8 4	-292	-351
		84-11-06	08 00	-362	-364	-368	-297	-383	-294	-353
KL02	0761									
		84-10-12		~282	-199	-240	-24 5	-270	19	- 33
		84-10-13	08 00	-284	-249	-263	-252	-275	. 61	-146
		84-10-14 84-10-15	08 00 08 00	-288 -293	-580 -598	-272 -281	-254 -258	-278 -261	-159 -144	-213 -276
		84-10-16	08 00	-298	-290	-289	-259	-282	-169	-288
		84-10-17	08.00	-303	-299	-297	-261	-285	-246	-296
		84-10-18	08.00	-308	-307	-304	-261	-265	-255	- 300
		84-10-19	08 00	-311	-313	-309	-262	-287	-262	-302
KL03	0777			=		_ =	_	_ =	±	5
		84-10-21	08 00	-314		-315	-261	-285	-266	- 300
		84-10-22 84-10-23	08 00 15 00	-31 <i>7</i> -31 8		-320 -322	-263 -265	-286	-270 -274	-303 -305
		84-10-24	11 00	-319		-323	-265	-288 -288	-276	- 307
		J. 10 E7	00	317	-E ,	JEJ	203	£90	-/-	
KL02	0840									
MEUZ	0860	85-05-18	OB 44	-200	-240	-235	-231	-245		-178
		85-05-19	OB 44	-242	-284	-297	-296	-310		-242
		85-05-20	08 44	-278	-291	-306	-309	-314		-359
		85-05-21	08 44	-291	-298	-311	-316	-217	-249	- 340
		85-05-22	08 56	-297 -297	-296 -295	-313 -306	-323 -3 2 9	-325	-30 9 - 31 7	-337 -337
		85-05-23	08 22	-297	-673	-300	-324	-327	- 31/	- 33/
					_					

MLIPPERASEN - Field parameters and sundries

Bore- hole	Length m	Date	pH, y	Cond.y m5/m	Cond.lab mS/m	TOC mg/l	Si .mg/l
KL01	0406	85-06-23 85-06-25 85-06-25 85-06-26 85-06-27 85-07-02	8 2 8 3 8 3 8 4	28 8 30 2 31 0 31 6 31 8	30 9 32 5	3 7	4 1 4 1 4 2 4 4 4 3 4 3
KL09	0696	85-08-14 85-08-15 85-08-16	7 9 7 9 7 9	22 9 22 9 22 9	23 0	5	9 6 9 7 9 7 9 7
		85-08-17 85-08-18 85-08-19 85-08-20 85-08-21 85-08-23	7 9 7 9 7 9 7 9 8 0 8 0	23 0 23 0 23 0 23 0 23 0 22 9	2 2 9	5	10 0 9 8 10 0 10 0
		85-08-26 85-08-27 85-08-28 85-08-29 85-08-30	8 0 8 0 8 0	23 0 23 0 23 0 23 0 23 0	22 9	1 2	10 0 9 7 9 9 9 9
		85-09-02 85-09-03 85-09-04 85-09-05	£ 0 8 0 8 0	23 0 23 0 23 0 23 0	<i>2</i> 2 8	5	9 6 10 0 10 0

KLIPPERASEN - Metal ions

Bore- hole	Length m	Date	Na mg/l	Ķ mg∕l	Li mg/l	Ca mg/1	Mg mg/l	Sr mg/l	Al mg/l	Mn mg/l	Fertot mg/l	F:2+ mg/1
KL01	0406											
		85-06-23	45	9		14	2.6			05	G13	012
		B5-06-25	46	9		14	2.2			04	021	021
		B5-06-25	46	1 1	01	14	2.6	28	01	04	016	012
		85-06-26	47	. 9		14	2 3			03	006	002
		85-06-27	48	. 9		14	23			04	016	007
		85-07-02	48	1 1	. 01	15		35	04	03		
KL09	0696											
REU7	0870	85-08-14	15	1 1	015	28	2		ŭ 2 1	03	074	066
		85-08-15	16	1 4	013	20	-		02.	05	Ū8 4	071
		85-08-16	16	1 4						03	071	063
		85-08-17	16							03	077	069
		85-08-18	16	1 2							081	071
		85-08-19	16	1 3	020				024	03	080	0,7
		85-08-20			020				024	03	085	0 79
		85-08-21	16	1 2		29	3			04	088	082
		85-08-23	16	i 2		28	3				092	094
		85-08-26	15	1 3		29	3			04	092	087
		85-08-27	15	1 3	002	29	3		ŪZ'n	04	100	095
		85-08-28	16	1 3	•	29	3			03	098	097
		85-08-29	16	1 3		29	3			04	396	092
		85-08-30	16	1 3		29	3			04	096	094
		85-09-02	16	1 1	001	29	333333333			. 05	09ē	082
		85-09-03	16	1 0		30	- 2			.04	098	091
		85-09-04	15	1 0		29	3			04	092	(85
		85-09-05	15	1 0		30	2			04	نون	082

KLIPPERASEN - Anions + NH4-N

Bore- hole	Length m	Date	HCO3 mg/l	C1 mg/l	F mg/l	8+ mg/1	I mg/l	PO4-P mg/l	S04 mg/1	S-2, mg/l	NO2-N mg/l	N03-N mg/1	NH4-N mg/1
KL01	0496												
		85-06-23	73		3 3	32		001	2 3	01	001		
		85-06-25	77		3 6	34		001	2 3	01	061		
		85-06-25	78		38	38	906	001	18	15	061	G05	61
		85-06-26	80			39		001	1 5	11	001		••
		85-06-27	80			40		GO1	1 3	13	. 001		
		05-07-02	79		3 9		008			09			
KL09	0696												
		85-08-14	119		3 6		. 002		4 4	01	001	G !	
		85-08-15	120				. 002		4 5	01	001	01	
		85-08-16	120						4 4	01	001		
		85-08-17	120						4 1	01	661		
		85-08-18	120						4.1	Ŏi	001		
		85-08-19	119		3 5		002	003	•	01	001	O1	G1
		85-08-20	121						4 0	Õi	001	• • •	0.
		85-08-21	120		3 2				4 5	01	601		
		85-08-23	119		3 2				4 4	01	٠		61
		85-08-26	120						4 4	01			Ü1
		85-08-27	120		32		. 002	003	4 4	01	001	04	ů 1
		85-08-28	120		3 1				4 3	02	001	_	Ů 1
		85-08-29	120		29				4 1	02			01
		85-08-30	120		3 0	05			4 0	02	001		ΰi
		85-09-02	121		2 9	05	. 002	001	3 9	01	601	02	Ů1
		85-09-03	121			05			4 0	01	001		61
		85-09-04	121		3.0	04			4 3	01	601		02
		85-09-05	119		3 1	05			4 4	01	001		οz

ALIPPERASEN - Field parameters and sundries

Bore- hole	Length m	Datum	pH. y	Cond.y m5/m	Cond lab	TOC mg/l	Sı mg/l
KL02	0326	84-11-15 84-11-16 84-11-17	7 6 7 6 7 6	25 5 27 1 27 7		11 0	
		84-11-19 84-11-20 84-11-21	7 6 7 6 7 6	27 9 27 8 27 9		3 0	7 G
		84-11-22 84-11-24 84-11-26	7 6 7 6 7 6	20 0 20 0 20 1		2 0	7 3
		84-11-27 84-11-28 84-11-29 84-11-30	7 5 7 5 7 5 7 5	28 2 28 1 28 1 28 1		8	7 9 7 5 7 6 7 8
		84-12-03 84-12-04 84-12-05 84-12-06	7 5 7 5 7 5 7 5	28 1 28 1 28 2 28 2		12	7 6 7 6 7 4 7 5
KL02	0741	84-12-07	7 5	28 1			7 6
		84-10-25 84-10-26 84-10-27 84-10-28 84-10-29 84-10-30	8 6 7 9 7 9 8 0 8 0	20 6 24 0 25 0 24 3 24 8			3 4 8 8 6 4 3 8
		84-10-31 84-11-01 84-11-02 84-11-03 84-11-04 84-11-05	8 0 8 1 8 1 8 1 8 1	25 2 25 5 25 8 26 2 26 5 26 8		12 0	4 0 4 3 4 1 4 5 4 4
KL02	0761	84-11-06 84-10-11	8 1	27 0		12 0	4 4
		84-10-12 84-10-13 84-10-14 84-10-15 84-10-16 84-10-17					28 8 7 7 5 5 2 2 2 5 5
KL02	0777	84-10-18 84-10-17	8 C	20 4 20 5			2 4
NLUZ.	0///	84-10-08 84-10-09 84-10-22 84-10-23 84-10-24	8 1 8 1	20 7 20 8			30050
*L02	0860	85-05-20 85-05-21 85-05-22 85-05-23 85-06-05	8 6 8 6 8 7	34 0 35 0 36 6 38 5	33 5	5 3	3 9 3 8 4 0 5 0

KLIPPERASEN - Metal ions

Bore- hole	Length m	Datum	Na mg/l	K mg∕l	Li mg/l	Ca mg/l	Mg mg∕l	Sr mg/l	Ai mg/l	Mn mg/l	Fertot mg/l	Fe2+ mg/l
ML02	0326											
	0340	84-11-15	19	16		29 0	2 0			25		
		84-11-16	_			30 0	2 0		17	14	212	209
		84-11-17	29	1 5		31 0	1 0		-			
		84-11-19	29			3 1 0	1.2			7 ن	231	217
		84-11-20	29	1 5		31 0	2 0		97	ಿಕ	230	200
		84-11-21	29	1 3		31 0	2 0			೦೬	171	176
		84-11-22	29	1 0		31 0	1 0		C8	25	262	_
		84-11-24		_		31 0	1 0				203	162
		84-11-26 84-11-27	33 28	8 9		30 0 31 0	20		Ú9	⊕5 ⊕5	145 147	138 141
		84-11-28	27	9		31 0	1 0		07	35	133	130
		84-11-29	29	1 1		31 0	1 0			۔ ن	140	134
		84-11-30	31	1 1		31 0	10			is.	130	123
		84-12-03	26			31 0	1 0			0.5	128	125
		84-12-04	74	1 1		31 0	1 0		06	05	126	126
		84-12-05	26			31 0	1 0		90	05	107	102
		84-12-06	27	1 1		30 0	1 0		07	24	105	:02
		84-12-07				31 0	1 0			54	0ラミ	388
KF05	07 4 1	04 10 05		2.0		22.0					403	
		84-10-25 84-10-26	14	2 0		23 0 18 0	4 0 4 0			88	199	151
		84-10-26 84-10-27	27	2 0		17 0	3 0			27	113	107
		84-10-28	28	1 1		16 0	20			• /		
		84-10-29	34	1 4		16 0	20			17	oaa	379
		84-10-30	36	20		15 0	10			15		• • •
		84-10-31	35	18		16 0	1 0			: 6		
		84-11-01	35	16		16 V	1 0		15	1.4	058	Ç46
		84-11-02	38	1 1		16 0	1 0			12	045	039
		84-11-03				16 0	1 0			13	045	≎36
		84-11-04	39	16		16 0	1 0			11	066	067
		84-11-05	41	18		16 0				11	0.0	
KL02	0751	84-11-06	41	1 5		16 0	1 0		15	1 G	060	0 59
ALUE	0/31	84-10-11				23 0	5 0			65	430	410
		84-10-12	11	3 1		23 0	4 0			77	365	365
		84-10-13					. •				435	445
		84-10-14	12	3 0		23 0	4 0			73	4 3 C	430
		84-10-15	13	3 3		23 0	4 0			72	435	410
		84-10-16	13	3 4		23 C	4 0			دع	340	320
		84-10-17	13	33		22 0	4 0			63	310	285
		84-10-18 84-10-19	13 13	25 31		22 O	4 0 4 0			57	350 350	345
KL02	0777	64-10-14	13	3 1		22 0	4 0			60	259	253
	0,	84-10-08	9	22		24 0	5 5			1 10		
		84-10-09	ģ	20		24 0	5 5			34		
		84-10-22	15	3 1		23 0	4 0			54		
		84-10-23				22 0	4 0				209	201
KL02	0860	84-10-24	16	3 1		22 0	4 0			51	173	159
		85-05-20	57	16		8 4	1 9			11	043	031
		85-05-21	59	1 7	02	86	1 8	16	09	10	050	045
		85-05-22	63	1 6		8 3	1 8		-	10	043	041
		85-05-23	65	16		8 2	18			07	042	037
		85-06-05	72	1 4		7 9	1 9			ఎం	060	J45

KLIPPERASEN - Anions + NH4-N

Bore- hole	Length m	Datum	нсОЗ mg/l	C 1 mg / 1	F mg/l	Br mg/l	I mg/l	PO4-P mg/l	SO4 mg/l	5-2. mg/l	102−N .rg/l	N G3+N	N∺4-N mg/l
MLOZ	0326												
		84-11-15	113	14	35	08			8	21			
		84-11-16	1 30	15	5 8		010		4	15			
		84-11-17	132 132	14	2 9	09			2	14 11			
		84-11-19 84-11-20	132	16 16	29	04	010		•	07			
		64-11-21	138		• '	02	0.0		2	10	001	0.2	5 2
		84-11-22	138	17	29	05	010		1	09			
		84-11-24											
		84-11-26	139	16	2 9	13			1	08	001		¢8
		84-11-27	135	16	2 B 2 9	12	010		1	08	001	C 1	oa
		84-11-26 84-11-29	137 135	17 17	28	12 12			1 1	06 06	001	C.	00
		84-11-30	135	17	25	13		002	i	05			
		84-12-03	137	16				002	1	04			
		84-12-04	136	16			010	002		07			
		84-12-05	1 34	17				002		05	GG 1	02	08
		84-12-06	1 34	18			010	4.60		07			
KLOZ	0-41	84-12-07	1 32	18				002		02			
NLUZ	0 41	84-10-25	102	8	2 9	01			1 1	04			
		84-10-26	102	14	3 6	08			1	08			
		84-10-27	97	15	4 0	09			1	33			
		84-10-28	97	19	4 2	1 C			1	31			
		84-10-29	98	50	4 3	13			1	56			
		84-10-30 84-10-31	97 9 8	20 21	4 7 4 4	17 17			1	24			
		84-11-01	97	55	4 6	18	002	001	1 1	27 3 9	001	σz	G 3
		84-11-02	97	23	4 4	19	OUE	001	i	41	00.		0.5
		84-11-03	97							41			
		84-11-34	97	24	4 1	20			2	40			
		84-11-05	99	23	4 1	21			1			2.5	
KL02	0761	84-11-06	99	25	4 7		002	001		36	001	CZ	01
ALUZ	0/81	84-10-11	107	6	2 0				8	04			
		84-10-12	106	6		02			8	04			
		84-10-13		6	2 1	03			6				
		84-10-14	106	7	1 9	04			6	03			
		84-10-15	105	6	2 0	03			5				
		84-10-16	106	7	2 3	02			5	04			
		84-10-17	106	8	27	04			4	05			
		84-10-18	106	7	2 5	04			3	05			
MLOZ	0777	84-10-19	105	7	2 4	02			2	05			
MLUZ	0///	84-10-08	105	6	1 3	02			2 4				
		84-10-09	107	6	19	03			1 5				
		84-10-22	103	8	27	05			1	05			
		84-10-23	103	8	28	05			2	05			
#1 0 0	0010	84-10-24	103	9	2 9	03			2	05			
KL02	0860	85-05-20	106	37	5 4	25			1 6	15	001		
		85-05-20	103	37 37	5 4	25	012	002	16	15	001	10	02
		85-05-22	102	49	5 8	35	J.1		1 5	14	001		
		85-05-23	101	51	5 3	42			1 5	12	001		
		85-06-05	97	53	4 8	48			1 3	11	001		

FARTICULATE MATTER - Chemical composition

0 ne- nale	Length m	Date sampling	Fore um	Al≀p ug/l		Cæ,p ug/l		Fe.p ug∕l		Hn. p ug/l	Si. (ug/		S,p ug/.		Fe-tst ing/l	Fe(II) mg/I
ML01	406	85-06-27														
			05	34	3	20	6	100 6	,	4	41	ь	24	5		
			20		1	5		1 3		5 5		3	9	•	:05	100
			40		2	6	5	15 3	3	5	3	1	9	ε	105	096
ML02	325	64-11-27														
			05	58	4	5	4	20 9	7	1 0	10	2	33	=		
			05	26	7	6	3	2	2	16	2	Ü	14			
			20	<	1	3	6	é		< 2	<	1	<			
			40	3	8	6	8	3	3	2	1	7	2	z.		
ML02	860	85-05-23														
			05	3	2	6	2	5 3	3	1	7	5	11	:		
			20		9	4		4		1	2	2	6		043	002
			40	5	5	4	2	25 6	•	2	15	9	6	3	043	00 2
%L09	P 0 P	85-08-15														
			05		3	9	9	3	3	1	3	2	11	2		
			05			4	9	3	3	1	ì	3	6	:		
			20		4		4	< 1		1		2	1	-	657	067
			40		7	3	7	5		1	2	13.57.0	6	=	ం≃ె	067
ML09	595	85-09-05														
			05		1	7	2	< 1	1	1	1	4	4	=		
			05		2	8	0	3 1	1	1		10 10 4	5 2	Ξ		
			20		1		6		3	1		3	2	5	್ಕಿಕ	೦ಕ೦
			40		2	1	3	< 1		1		4		1	\$57	⊙ ⁻ 9

Uranium, thorium, radium and radon

Bore- hole	Length m	Date sampling	U Bq∕1	Th ug/l	R∎-226 Bq/l	£n-222 ₽q/l
MLO1	406	83-12-01	(7 2 + 3 6)E-3	C1 5 E-2	(6 03+0 34)E-2	· 590+50
KL01	406	83-12-06	(1 60+0 32)E+2	<1 6 E-2	(B 14+0 24+E-2	
KL01	406	85-06-29	(4 4+0 7)E-2	(4 1+1 6)E-3	(7 25+0 20)E-2	252+50
KL02	326	84-12-10	(7 0 + 1 1)E-2	(1 0 + 1 B)E-3	(2 87+0 10)E-1	2'10+50
NLO9	696	85-09-03	(1 43+0 05)E-2	(5 9 + 3 B)E-3	(6 3 + 0 3/E-2	221 + 5

List of SKB reports

Annual Reports

1977–78 TR 121

KBS Technical Reports 1 - 120.

Summaries, Stockholm, May 1979.

1979

TR 79-28

The KBS Annual Report 1979.

KBS Technical Reports 79-01 – 79-27. Summaries, Stockholm, March 1980.

1980

TR 80-26

The KBS Annual Report 1980.

KBS Technical Reports 80-01 – 80-25. Summaries. Stockholm, March 1981.

1981

TR 81-17

The KBS Annual Report 1981.

KBS Technical Reports 81-01 – 81-16. Summaries. Stockholm, April 1982.

1982

TR 82-28

The KBS Annual Report 1982.

KBS Technical Reports 82-01 – 82-27. Summaries. Stockholm, July 1983.

1983

TR 83-77

The KBS Annual Report 1983.

KBS Technical Reports 83-01 – 83-76 Summaries. Stockholm, June 1984.

1984

TR 85-01

Annual Research and Development Report 1984

Including Summaries of Technical Reports Issued during 1984. (Technical Reports 84-01–84-19) Stockholm June 1985.

1985

TR 85-20

Annual Research and Development Report 1985

Including Summaries of Technical Reports Issued during 1985. (Technical Reports 85-01-85-19) Stockholm May 1986.

Technical Reports

1986

TR 86-01

- I: An analogue validation study of natural radionuclide migration in crystalline rock using uranium-series disequilibrium studies
- II: A comparison of neutron activation and alpha spectroscopy analyses of thorium in crystalline rocks

JAT Smellie, Swedish Geological Co. AB MacKenzie and RD Scott, Scottish Universities Research Reactor Centre February 1986

TR 86-02

Formation and transport of americium pseudocolloids in aqueous systems

U Olofsson

Chalmers University of Technology. Gothenburg. Sweden

B Allard

University of Linköping, Sweden

March 26, 1986

TR 86-03

Redox chemistry of deep groundwaters in Sweden

D Kirk Nordstrom US Geological Survey, Menlo Park, USA Ignasi Puigdomenech Royal Institute of Technology, Stockholm, Sweden April 1, 1986

TR 86-04

Hydrogen production in alpha-irradiated bentonite

Trygve Eriksen Royal Institute of Technology, Stockholm, Sweden Hilbert Christensen Studsvik Energiteknik AB, Nyköping, Sweden Erling Bjergbakke Risö National Laboratory, Roskilde, Denmark March 1986

TR 86-05

Preliminary investigations of fracture zones in the Brändan area, Finnsjön study site

Kaj Ahlbom, Peter Andersson, Lennart Ekman, Erik Gustafsson, John Smellie, Swedish Geological Co, Uppsala Eva-Lena Tullborg, Swedish Geological Co, Goteborg February 1986

TR 86-06 Geological and tectonical description of the Klipperås study site

Andrzej Olkiewicz Vladislav Stejskal Swedish Geological Company Uppsala, June 1986

TR 86-07 Geophysical investigations at the Klipperås study site

Stefan Sehlstedt Leif Stenberg Swedish Geological Company Luleå, July 1986

TR 86-08 Hydrogeological investigations at the Klipperås study site

Bengt Gentzschein Swedish Geological Company Uppsala, June 1986

TR 86-09

Geophysical laboratory investigations on core samples from the Klipperås study site

Leif Stenberg Swedish Geological Company Luleå, July 1986

TR 86-10 Fissure fillings from the Klipperås study site

Eva-Lena Tullborg Swedish Geological Company Göteborg, June 1986

TR 86-11

Hydraulic fracturing rock stress measurements in borehole Gi-1, Gideå Study Site, Sweden

Bjarni Bjarnason and Ove Stephansson Division of Rock Mechanics, Luleå University of Technology, Sweden April 1986

TR 86-12 PLAN 86— Costs for

PLAN 86— Costs for management of the radioactive waste from nuclear power production

Swedish Nuclear Fuel and Waste Management Co June 1986

TR 86-13

Radionuclide transport in fast channels in crystalline rock

Anders Rasmuson, Ivars Neretnieks Department of Chemical Engineering Royal Institute of Technology, Stockholm March 1985

TR 86-14

Migration of fission products and actinides in compacted bentonite

Börje Torstenfelt Department of Neclear Chemistry, Chalmers University of Technology, Göteborg Bert Allard Department of water in environment and society, Linköping university, Linköping April 24, 1986

TR 86-15

Biosphere data base revision

Ulla Bergström, Karin Andersson, Björn Sundblad, Studsvik Energiteknik AB, Nyköping December 1985

TR 86-16

Site investigation—equipment for geological, geophysical, hydrogeological and hydrochemical charaterization

Karl-Erik Almén, SKB, Stockhölm Olle Andersson, IPA-Konsult AB, Oskarshamn Bengt Fridh, Bengt-Erik Johansson, Mikael Sehlstedt, Swedish Geological Co. Malå Kenth Hansson, Olle Olsson, Swedish Geological Co. Uppsala Göran Nilsson, Swedish Geological Co. Luleå Peter Wikberg, Royal Institute of Technology, Stockholm