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ABSTRACT

The hyperspherical coordinates have been applied to study several new

types of atomic and molecular problems. In this review, we will

discuss the application of hyperspherical coordinates to the solution

of some of the typical problems and present the new phys'ic&l insights

obtained from such studies. In particular, we will illustate how

correlations between two excited electrons can be conveniently under-

stood in terms of the surface harmonics at a constant hyperradius and

visualized by displaying the surface charge densities on the angular

coordinates that describe radial and angular correlations. It is shewn

that a new set of correlation quantum numbers K, T and A for any

two-electron states can be deduced by analyzing the surface harmonics;

here K and T describe angular correlation and A»(+l, -1 or 0) describes

radial correlation. Because of the isomorphic correlations, states

which have A-+1 or —1 are shown to exhibit supennultiplet structure

while states which have A»0 are shown to behave like singly excited

states. Therefore this classification scheme includes the independent

particle approximation as a subset. The relations of these quantum

numbers to the collective vibrations and rotations of molecule-like

normal modes are also discussed. Applications of hyperspherical

harmonics to the three-body breakup and linear triatomic collisions are

also discussed briefly.

CISTHIUiTiM Of Trifc UbLM&tT K> U^



1. INTRODUCTION

Since the birth of nonrelativistic quantum theory, the independent

particle approximation has been served as the basis of almost all areas

of microscopic physics. In atomic, molecular and nuclear physics, the

Hartree-Fock model or its equivalents have been used to explain a

wealth of experimental data. Deviations from the predictions of the

independent particle approximation are often treated in some form of

perturbation theory.

Over the years, both physicists and chemists have been aware of

the limitation of the independent particle approximation. When dealing

with multi-particle excitations or scattering with three or mor.e

particles in the final state, there are fundamental difficulties in

adopting the formulations based upon the independent particle approxi-

mation. These difficulties arise mostly because of the lack of a proper

procedure for solving the general class of multi-particle excitations

and scatterings.

In this review, we will focus on the progress made in the use of

hyperspherical coordinates in solving several classes of atomic and

molecular"three-body problems. Particular emphasis will be given to

the classification of doubly excited states of two-electron atoms where

hyperspherical coordinates have been used to reveal the correlations

of two excited electrons and to derive a set of correlation quantum

numbers. Other discussions will include: (1) vibrational modes of

linear triatomic molecules and collinear reactive scattering; (2) dia-

magnetism. of atomic hydrogen. We will also mention briefly the thres-

hold breakup of three charged particles, including electron impact

ionization and proton impact ionization. The use of hyperspherical

coordinates in solving these problems is responsible for our increasing

understanding of these three-body systems. Several recent review

articles on somewhat related works are by Fano, Lin, Rau on two-

electron atoms and by Manz on molecular dynamics. More detailed

references can be found in these articles. Reviews on the group

theoretical approach on doubly excited states by Herrick and experi-
— 6ments on doubly excited states of H by Smith can be found in this

volume.



We will start in Section II with a discussion of the different

choices of hyperspherical coordinates and the dependence of the

potential surfaces on the relative angles for several systems. In

general, a hyperspherical coordinate system is defined for an

N-dimensional space by retaining only one radial coordinate, with the

rest the angular coordinates. In Section III, hyperspherical harmonics

and the methods of solving the Schrcedinger equations in hyperspherical

coordinates are discussed. For bound and resonance states, we will

show that a quasi-separable approximation of the hyperradial functions

from other angle-dependent functions provides a first-order estimate of

the full wave function. In section IV, we will address the applica-

tion of hyperspherical coordinates to the classification of doubly

excited states of two-electron atoms. From the analysis of the wave

functions in hyperspherical coordinates a set of correlation quantum

numbers are derived. These quantum numbers are then used to order the

spectra of doubly excited states which exhibit new spectral regularity.

Applications of hyperspherical coordinates to other three-body systems

in atomic and molecular physics are then discussed in Section V. A

brief sumriary and future perspective are given in Section VT.

2. HYPERSPHERICAL COORDINATES AND POTENTIAL SURFACES

The basic feature of hyperspherical coordinates is that there is

only one radial distance which measures the size of the system under

consideration; the rest of the coordinates are all angles. In prin-

ciple, three of these angles are the Euler angles describing the

overall rotation of the system, and the rest are angles measuring the

relative orientations among the particles. In this section, we will

address several different choices of hyperspherical coordinates that

have been used in the- literature in the calculation of special physical

systems.

2.1 Doubly Sxcited States Of He

Historically hyperspherical coordinates were first used to study

the wave functions of helium atoms in the limit of r^—> 0 and r 2—> 0-

By replacing r^ and z^ by



a - tarr1{^2/z1) (1)

it was shown that the expansion of the ground state wave function near

R«0, the Fock expansion, contains terms which are powers of lnR. This

was later employed by Frankowski and Pekeries to show that if the Fock

expansion is adopted, the variational calculation for the ground state

energy of He converges much faster. The hyperspherical coordinates

were used also by Wannier to examine the threshold electron-impact

ionization of atoms.

The renascence of applying hyperspherical coordinates to atomic

three-body problems occurred after the discovery of doubly excited

states of helium in 1963. Fano has been the crusader for promoting

this approach. Although it is difficult to identify a single paper by

Fano on this subject, his influence on his students and his associates

is responsible for our present-day understanding of doubly excited

states. The most fruitful application of hyperspherical coordinates to

actual physic?! problems to date is probably in the area of doubly

excited states of. He and H~.

There are several different ways of choosing the angles in the

hyperspherical coordinate system for the two-electron atoms. We will

assume the mass of the nucleus to be infinite and discuss the motion of

the two electrons only. For simplicity, we will adopt ' o, r, and

r-, where ri denotes the usual spherical angles of electron i, as the

five angles of our coordinate system. We can also adopt three Euler

angles anl two internal angles. The Euler angles describe the rotation

of the whjle atom, the two angles, a and 6.-, describe the relative

orientation of the two electrons. The angle a, as defined in eq (1),

measures the relative radial distances of the two electrons from the

nucleus. The angular dependence of the wave function on a will be

called radial correlation. The angle 9,5 measures the angle the two

electrons subtended with repect to the nucleus. The dependence of the

wave function on a,, will be called angular correlation. In terms of

hyperspherical coordinates, the Coulomb interaction among the three

charges is given by C/R where the effective charge C is
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Fig. 1 The potential surface of two electrons in a Coulomb field of a

nucleus of charge Z on the (a, 9,-) plane for z=l at R=l. The ordi-

nates represent the potential in Rydbergs.

C - - _Z
cosa

_Z
since (l-sin2a cos©,,)1/2

(2)

and Z is the charge of the nucleus. In Fig. 1 we show the effective

charge C(<x,912) on the (a,912) plane for Z-l, or equivalently, the

potential surface at R-l for z-l. We notice that the line along a -

45° is a potential ridge and there are two valleys located near a • 0°

and a - 90°. Each valley corresponds to the case in which one electron

is near the nucleus and the other is far out. The sharp spike near a »

45° and S 1 2 - 0" corresponds to the two electrons being nearly on top

of each other. We also point out that a - 45° and 912 • 180° is a

saddle point. This point plays an important part in the Wannier theory

of threshold ionization. ' It is often called the Wannier saddle

point.



There are other possible choices of angles for the study of He.
An alternate set was used by Klac and Klar. Their coordinates are

18similar to the "Delves coordinates" for three particles of different
masses. In Delves' treatment, the coordinates are chosen democrat-

ically in that all three particles are treated on equal basis. Such a

choice makes the transition from one type of system to another easier.

Klar and coworkers have used this democratic coordinate system to

study doubly excited states and wannier threshold law for electron

impact ionization.

2.2 The H~ Problem

The H_ problem is traditionally treated in the Born-Oppenheireer
approximation. In Fig. 2 we show the potential surface in the usual
configuration space. We notice that the potential along the inter-
nuclear axis is unstable, similar to the a-coordinate in Fig. 1, while
the potential along the perpendicular direction is stable, with the
midpoint as the "Wannier saddle point." This aspect of the ut poten-

19tial surface was emphasized by Winter and Lin in the study of proton
impact ionization of hydrogen atoms at low energies. A mechanism

similar to the Wannier theory for electron impact ionization was empha-

sized to be the dominant mechanism for proton impact ionization of H at

low energies.

Hyperspherical coordinates have been used by Greene in an

Fig. 2 The potential surface of an electron in the field of two

protons. The midpoint along the internuclear axis is a saddle point.



exploratory study of the ground adiabatic potential curve of H^. It

was shown that the results are nearly identical to the Born-Oppenheimec

adiabatic potential curve.

2.3 Collinear Triatomic Molecules

Hyperspherical coordinates have been used by quantum chemists to

study the vibrational spectra and reactions of model collinear tri-

atomic molecules in recent years. The three particles, with masses

m., m_, and nu, are confined to a collinear configuration. One

'standard' coordinate system is the measure of r^ BC, and rBC. By

defining

CA,BC

where m - m_c, the Schroedinger equation is given by

2 2 2
[-— ^-y +^-r) + V(x,y) - E] Y(x,y) - 0 (4)

2m dx dy
If we define hyperspherical coordinates as

R - (x2 + y 2 ) 1 / 2 0 < R < «

a - tan" (y/x) 0 < a <

where

tt • tan ' m '*** J"ftl J"*fl ^ Stm m \ 1 '

max
then eq(4) becomes

[-
;2 i j j i *4

1_ (i d_ (Rd_} + 1 d } + V(Rra) - E ] Y(S,a) - 0 (7)
2m R dR dR IT da J

Equation (7) is similar to the equation describing a particle confined

in a two-dimensional space (R,a). We note that the potential V(R,a)

depends both on the radial distance as well as on the ' hyperangle ' a.

As an example, consider the potential of a linear model IHI molecule.



Fig. 3 Contour plots of the potential surface of a model linear

triatomic IHI molecule in a mass-scaled Cartesian coordinates. (From

Ref. 56.)

The potential surface is given in Fig. 3 on the (x,y) plane. The
maximum angle, e^^, as given by eq. (6), is quite small (amax - 7.2°)
for the IHI sysystem.

2.4 Quadratic Zeeman Effects

The potential surface shown in Fig. 3 is not only characteristic

of a model linear triatoraic molecule. In fact, if we look at the

spectra of a hydrogen atom in a very strong magnetic field_ in the usual

spherical coordinates, its potential surface is quite similar to Fig.

3. In recent years, it has been recognized that a neutron star is
Q

usually surrounded by an intense magnetic field as strong as 10 to

10 G. This strong field 'squeezes' the Bohr orbitals along the

perpendicular direction such that the atomic spectroscopy is quite

different from the terrestrial one. Consider a hydrogen atom in such a

strong magnetic field, by choosing the z-axis along the direction of

the magnetic field, the potential surface is given by

V(r,e) - - \ r2 sin2e (8)

where the second term is the potential energy from the quadratic Zeeman

effect in appropriate units. This surface is displayed in Fig. 4. We

notice that the potential at small r is dominated by the Coulomb term

8
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Fig. 4 Contour plot of the potential surface of a hydrogen atom in a
strong magnetic field in spherical coordinates. (From Ref. 44.)

and is nearly independent of the angle 9 at small r. At larger values

of r, the quadratic Zeeraan term dominates and the potential shows two

valleys near © » 0° and 9 • 180g. For a given r, the potential at 9 -

90° is a maximum. This is similar to Fig. 3 where a » oemax/2 is also a

maximum for a given R. The locus of these maxima is called a potential

ridge. -We will see that this behavior of potential surface quite

commonly occurs when many atomic and molecular systems are.examined in

hyperspherical coordinates. This general behavior of potential

surfaces not only helps to bring about the unity of many seemingly

unrelated problems, but also shows that similar theoretical approaches

can be applied to different problems.

For a summary of the present section, we emphasize that the

potential surfaces for a large class of atomic and molecular problems

show evidence of a potential ridge and two potential valleys when

expressed in hyperspherical coordinates. In the next section, we

discuss the "common" 'theoretical approaches used to solve these

problems.

3. SOLUTION OF SCHROEDINGER EQUATIONS IN HtfPERSPHERICAL COORDINATES

The Schroedinger equation for each physical system can be easily

expressed in hyperspherical coordinates. For the collinear triatomic

molecule, for example, the IHI system, the Schroedinger equation is



given by eq. (7). For the two-electron system like He, the equation is

V 2 2C . ̂ 1 (R5/2^ . Q (9)jV ^ A,15
dir ir R

where C/R is the total Coulomb interaction, with C defined in eq (2)

and A is the grand angular momentum operator, defined by

2 I d 2 2 d I- I-
A " " 5 2 (sin a cos a — ) + —±»- + — = y - (10)

sin a cos a da da cos a sin a

The explicit form of the grand angular momentum operator depends on the

specific choice of angular coordinates. Using eq(10), the eigensolution

of A2 is

[A2-v(v+4)] u, . (ct,r.,r9) - 0 (11)

where v • I1-fl2+2m and

The a-dependent function f is given by

^1 lia' a ! " N l 1 m(cosa) (sino) F(-m,m+l1+l2+2|l2+5-jsin a),

where N is a normalization constant and F is proportional to a Jacobi

polynomial. The angular function

i^iV %

is the coupled angular momentum function of the two electrons. The

solutions'in (11) are usually called hyperspherical harmonics. They

are the solutions of the system in the condensation limit at R«0. A

properly symmetrized hyperspherical harmonic with respect to the

interchange of two electrons is given by



if lx4l2

if lx - 1 2 - 1.

(14)

In the early application of hyperspherical coordinates, the wave

(15)

functions are usually expanded in the form

l 2 F X 1 (R) U X 1

1.i-m 1 Z 1 2

where the functions U, , _ are the hyperspherical harmonics (14) of the
i l i 2 m

given problem. This expansion allows one to reduce the partial differ-

ential equation such as (7) or (9) to a system of coupled ordinary

differential equations. This approach has been used in several studies
24 25of atomic and nuclear problems, where the expansion has been

truncated to a limited number of terms. The method turns out to be not

very useful since the asymptotic region is not well represented by only

a few terms of hyperspherical harmonics and thus (15) converges very

slowly.

The great progress made in the last few years in the application of

hyperspherical coordinates in atomic and molecular problems lies in the

recognition that the Schroedinger equation can be solved using a quasi-

separable approximation. We will write down the explicit expression

for the two-electron case" below. By denoting all the angles collect-

ively as 2»(o, t,, ?,)» we expand the total wave function as

VJ (R,Q) - 21 F£(R)yR;2)/(R5/2sin«COSa) (16)

where p identifies the 'channel', and n denotes the n-th state within
that channel. The channel function satisfies the differential equation

11



1 V V
da cos a sin o

(R)# (R;9) (17)

and the hyperradial function F(R) satisfies the coupled equations,

- V R ) + V R ) + 2 E n ]

where the coupling terms W (K) are defined as

v
By dropping the channel couplings and keeping all the diagonal terms,

eq. (18) reduces to

(R)+W/y//(R)+2En] F"(R)-0
 (18f)

This equation allows for an estimate of the energy of a given state for

a given channel. The potential curve U (R) and the channel function

serve to identify the important physics for all the states belonging to

that channel.

4. DOUBLY EXCITED STATES OF HE AND H~

In this section we will illustrate the solution of two-electron

atoms in hyperspherical coordinates in the quasi-separable approxima-

tion. The method is applied to study the Feshbach and shape resonances

of H*. It is then applied to doubly excited states of He where we

discuss: (1) the analysis of channel function to extract approximate

quantum numbers for describing correlations of the two electrons; (2)

the existence of supermultiplet structure of the energy levels of

doubly excited states; and (3) the analysis of correlation quantum

numbers in the body frame of the atom...

12



4.1 Solution Of The Channel Functions

The partial differential equation (17) for the channel functions

* and channel potentials U (R) can be solved by various meth-

ods. ' ' ' One straight-forward approach is to diagonalize the

equation using the hyperspherical harmonic basis. This method is

relatively easy to do, but the convergence of the method is not very

satisfactory at large R when the state is confined to one of the

potential valleys. This is because the asymptotic solution is a linear

combination of hydrogenic functions which is not easily expanded in

terms of hyperspherical harmonics. One of the more efficient method is

to employ some set of analytical basis functions which approach the
27large R limits correctly. Together with the hyperspherical

harmonics, these basis functions are used to diagonalize eq (17) to
obtain the potential curves U (R) and the channel functions. This
method was found to be quite efficient and only a small basis set is
needed.

—28
4.2 Feshbach and Shape Resonances In H

The potential curves for different L, S and rt can be calculated
using the method mentioned above. In Fig! 5, we show the three
potential curves for P° symmetry of H~ that converge to the M=2 limit
of H. The two lowest curves cross at R » 13.5 a.u. The origin of such
a crossing will be discussed later. For the moment, we note that the
curve designated as "+" has an attractive potential well at small R,
but it has a repulsive potential barrier at large R. A potential
which has this shape usually gives shape resonances. This is indeed
the case. By solving the one-dimensional hyperradial equation (18')
with such a potential, a shape resonance with energy 32 raeV above the
threshold and width 28 meV was obtained. Experimentally this resonance

29has been observed in electron-hydrogen atom scattering, but the most
. elegant data were taken by Bryant et al. through the photodetachment

of H~. The lack of a suitable intense light source in the desired
energy region (>12.6eV) made experiments with lasers or synchrotron
radiation impossible. Bryant et al. solved this problem by using the
800 MeV (v/c~0.83) relativistic H~ beam from the LAMPF facility at

13
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Fig. 5 Effective potential curves for the three P

that converge to the hydrogenic N=2 limit.

channels of H~

Los Almos, by intercepting the H~ beam upstream with a laser. By

adjusting the incident angle of the laser beam, the laser is blue-

shifted to the desired energy range in the H~ frame. The result of

their experiment is shown in Fig. 6. The shape resonance was found to

have a width of 23+6 meV. The calculated results quoted above are in

reasonable agreement with these data. In Fig. 6 we also notice that

there is a very narrow resonance lying below the N-2 limit at photon

energy of 10.95ev. This type of resonance is called a Feshbach

resonance and is quite common in atomic physics.' This resonance

belongs to the "-" channel and can be calculated from the v-" potential

curve of Fig. 5. The result of such a calculation gives an energy 26

roeV below the N«2 limit. The separation between the shape and the

Feshbach resonances was measured to be 53 fteV, which is to be compared

with the value of 58 meV obtained from the simple calculation using

quasi-separable approximation in hyperspherical coordinates.

It is interesting to mention that the shape resonance discussed

above is the only known shape resonance in H~; all the rest are

Feshbach resonances. Historically when resonances were first observed

in e-H scattering, they were interpreted to be shape resonances. It

14
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Fig. 6f Photiodetachment cross sections of H~ hear the N»2 excitation
threshold of H. Experimental data are from Ref. 30 and the solid line
represents the calculation of Broad and Reinhardt (Ref. 57).

took several years until close-coupling calculations showed that most
of these resonances were Feshbach resonances.

31 3?

4.3 Isomorphic Potential Curves and Isomorphic Correlations '

The greatest contribution of the use of hyperspherical coordinates

in atomic physics so far is probably in the classification of doubly

excited states. In Fig. 7 we show the potential curves for ' Se,
1' 3P°, l f 3 D e of He that converge to the N«3 limit of He+. The curves

are labelled with quantum numbers which will be explained later. One

first notices that the curves that have been labelled with identical

15



I I I I ! I

\\ V4.w Z

10 16 22 28 34 40 46 16 22 28 34 40 46 16 22 28 34 4046
R(o.u.)

Fig. 7 Effecuive potential curves for the l f 3 S e , ' P° and ' De

channels cf He that converge to the N-3 limit of He+. Curves are

labelled in terms of correlation quantum numbers K, T and A. Reduced

units with Z-l are used.

quantum numbers are quite similar in shape and in values. To under-

stand this quasi-degeneracy, we have to examine the channel, functions.

Ihe channel functions * in the quasi-separable approximation

evolve smoothly from the small R region to the large R region, we

first examine the channel function in the large R limit. In this

asymptotic limit, one electron is moving far outside and the other

stays inside, corresponding to the limit of *— >0 and R — >•, and the

wave function is represented by the product of two independent-electron

functions. In this limit, it is easies.* to transform eq (16) to the

16



independent particle coordinates, r2 "
 Rsina, r- « Rcosa =R where the

asymptotic potential for the outer electron is

2r-
a 1 2 12 2

Cl rl

In the traditional dipole approximation, the potential (20) is

diagonalized within a given hydrogenic N-manifold and the channel is

represented by the eigenvalues of (20). This does not provide a set of

convenient quantum numbers for labelling the channels in the asymptotic

limit. A more convenient approximate basis was introduced by
34Herrick. In this 'zero-order dipole basis', only the dipole term

2r2cos9,2/r, of (20) is diagonalized. In this basis, each channel for

a given N, L is characterized by two quantum numbers, K and T, The

eigenvalue of r2 cos9,2 in this JNKTL> representation is

<NKTL|r2COS912|NKTL> - -3NX/Z (21)

*

We notice that this' zero-order dipole operator is degenerate with
respect to T. This degeneracy is removed when the centrifugal poten-
tial t, is included in a perturbation calculation. In a perturbative

34calculation, Herrick has shown that the dipole potential in the
2 '

asymptotic limit is given by oVr, with

a. « -3NK/2 + L(L+1) + i

-(KZ/12N) [SLfL+U+N^l-l^-lST2] +... (22)

in the |NKTL> basis space.

Equation (22) provides the basis of labelling the channels in the

asymptotic region. Accordingly, the effective dipole potential is most

attractive for large K and for a given K, for large T. Since K is

proportional to cos812, it gives information on angular correlations

only. No information on radial correlations is provided.

17



From the potential surface shown in Fig. 1, it is evident that the

potential surface does not depend very much on the angle 0,2« We thus

expect that the dependence of the channel function on Q^ does not varv

significantly with R. This has been proved also from the result of

numerical calculations. We thus expect to use K and T quantum

numbers to label angular correlations in the whole range of R. To

account for radial correlations, a new radial correlation quantum

number A was introduced. The only values assigned to A were +1, -1 and

0.

The value of A was first assigned semi-empirically by examining

the wave functions in the angle a. There are channels which are

similar to S e states which exhibit an antinode at a - 45°, while there

are others which have a node at a - 45°; the former are assigned to

have A-+1 and the latter A — I . There are still other channels where

the electrons are always confined in the potential valleys. For these

channels, the electrons never reach the plateau region (see Fig. 1)

along o • 45°; these channels are assigned A-0. All the singly excited

states are assigned to have A=»0.

The quantum numbers K, T and A described above can be obtained
36 *

from the following rules:

T-0, 1, 2, ,min(L,N-l)
K-N-l-T, N-3-T, ..., -{N-l-T) (23)

where T»Q is not allowed if n - (-1) . For the radial correlation
quantum number A, an empirical rule is:

A « H ( - l ) S + T - n ( - l ) S + N - K + 1 if K > L - N
A - 0 • if K < L-N (24)

These two equations allow us to enumerate all the possible combinations
of allowable (K,T) labels. An alternative derivation of the quantum
numbers T and A will be given in subsection (4.5). For the moment we
discuss the consequence of this new classification scheme.

18



Referring back to Fig. 7, we notice that channels which have been

assigned for the same quantum numbers have nearly identical shape and

values. In connecting the diabatic curves, we first assign K and T

quantum numbers to each curve in the asymptotic region, with the larger

K to the lower curve and for a given K, the larger T to the lower

curve. In this outer region, the value of A does not matter. In the

inner region, the lower or more attractive curves belong to the A»+l

channels. Among the '+' channels, the larger K goes with the lower

curve and for a given K, the larger T with the lower curve. First all

the A-+1 curves are assigned, then the A — 1 channels, and last the A-0

using the same rule for each A group. By connecting channels in the

two regions for curves with identical K and T, the potential curves

shown in Fig. 7 are obtained. Notice that only + and - channels

cross. These crossings are due to the fact that radial correlations

are more important than angular correlations at small R while at large

R only angular correlations are important.

4.4 Isomorphic Correlations

Two important consequences resulting from the assignment of

correlation quantum numbers are: (1) Isomorphic correlations of

channels with identical (K,T) quantum numbers; (2) Supermultiplet

structure for levels with identical correlation quantum numbers. In

the remainder of this subsecuon, we discuss the isomorphism.

In Fig. 8 we display the surface charge densities of the (2,0)+

channels of the Se, P°, D9, and F° symmetries of He below

He+(N-3) at R*20 a.u. We notice that the correlation patterns for all

these channels are very similar despite that the L, S and it are

different. At e^-lSO0, a ^ these channels have large charge densities

which are characteristic of channels with the largest allowed K-N-l for

the given N-manifold'. The charge density also peaks along o • 45° for

any value of 9,3• The a » 45° line is an antinodal line. This is

consistent with the assignment or A-+1 for all these channels.

In Fig. 9 we display the surface charge densities of the (1,1)+

V 5 , (1,1)+ 3D e
/ (1,1)"

 3P° and (1,1)" XD e channels of He at the R

values indicated. We note here that the angle between the two

19
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Fig. 8 Surface charge densities for the (2,0)+ channel of Se, P°,
lDe, and 3F° of He at R-20 bohrs.

R=20 \- lr\« R=27

R=20

Fig. 9 Same as Fig. 8 except for the (1,1)+ and (1,1)"* channels shown.

20



electrons, 9i2» tends to stay near 120° and that the nodal structure

near a • 45e for each channel is consistent with the + or - values of A

assigned for that channel.

4.5 Supennultiplet Structure

In Fig. 7 we gave an example which shows that potential curves
labelled by the same correlation quantum numbers K, T and A are nearly
identical. Under the quasi-separable approximation, the energy levels
for a given channel are obtained by solving the one-dimensional hyper-
radial equation (18')• Since the potentials with identical (K,T)
designations are nearly degenerate, we expect that the energy levels of
these channels are also nearly degenerate. Thus by grouping the energy
levels according to the correlation quantum numbers, a regular rotor

structure is observed. This behavior was first discovered by Herrick
38

and coworkers for intrashell doubly excited states and examined by
39Berry and coworkers in their model study of the spectrum of two

electrons on a spherical surface.

In Fig. 10 we plot the effective principal quantum numbers n* of

helium doubly excited states below the He+ (N̂ -3) limits for the first

few low-lying states vs the correlation quantum numbers (K,T) . The +

and - groups are displayed separately. Two spectral regularities are

evident:

(1) The existence of rotorlike structure for states which have

the same (K,T) but different L, S and n. The string of each rotor

series is determined by the possible values of L, S and n which give

the required (K,T)A (see eqs. (23) and (24)]. The larger the value of

N is, the longer is the string. In fact, for a given K, T and N, the

allowed range of L for a rotor series is L-T, T+l, , K+N-l.

Whether the rotor series is + or - is governed by eq.(24).

(2) There is a repetition of the (K,T)+ and (K,T)~ rotor struc-

ture. This is not surprising in view of eqs. 23 and 24. Note that the

allowed K and T do not depend on the spin. A (K,T)+ channel for spin

singlet(triplet) becomes a (K,T)~ channel for spin tripelt(singlet)

with fixed L and n.
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4.5 -

(2.0)* (0.2)* (0,0)* (-1,1}* (-2.0)

{2.or d.ir (0.2)* ©.or c-i.ir (-2,0)-

Fig. 10 Effective quantum numbers n* grouped according to the (K,T)A

scheme. The A»+l and A — 1 groups are displayed separately. Along each
column, the rotor structure is obvious. Energy levels.are taken from
Ref. 40.
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The energy levels shown in Fig. 10 were taken from the extensive CI
40calculation of Lipsky et al. Some of the levels shown have been

reclassified to preserve the regular rotor structure shown. We also
notice that for channels with T=fO , there are two series for each
(K,T)A, one with parity given by (-1)L and the other by (-1)(L+1). The
energy levels of the latter group is always slightly lower than the
former. This near-degeneracy is called T-doubling. The radial and
angular correlations between each pair of groups are quite similar. It
can be shown that the wave function for each member of the group with
parity (-1) has a nonzero amplitude near 9«2 • 0° while for members of
the other groups the amplitude at 9]o*0° vanisnes* T n i s results in
slightly different Coulomb repulsion between the two electrons.

The rotorlike structure shown above is expected only for doubly
excited states which have been assigned with A-+1 and -1. States where
A«0 behave like singly excited states. Their energy levels are such
that for a given (K,T)° channel, the triplet state always lies lower
than the corresponding singlet state, similar to the familiar level
ordering of singly excited states of He. For more details see ref. 32.

414.5 Body-Frame*Analysis Of The Channel Functions

The quantum numbers assigned empirically from analyzing the
channel functions in hyperspherical coordinates can be better under-
stood by looking at the solution in the body frame of the system.
Starting with a given wave function in the laboratory frame expressed
in the conventional independent particle coordinates,

i<i« J. t* x 2 (25)

one can rewrite the wave function in the body frame by invoking a
rotation. Suppose that we define the body frame to be formed by the
three particles, with the interelectronic axis as the z'-direction of
the body frame. The transformation from the laboratory frame to the
body frame is represented by a rotation matrix, D (w),

(26)
Q
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In (26), w represents the Euler angles, r,' and IJ are tne spherical
angles of the two electrons in the body frame. Using (25) and (26),
the wave function is expressed in the body frame by

Y < W " 21 *Q(R,«re12) D Q M ) ( ^
 (27)

where

2 1 *\ , (Rcosa, Rsina)
U1A2 ' i l 1 2 M } 2 2 (28)

and -L< Q < L. Thus Q is the projection of L onto the body-frame axis

Let us consider the symmetry of the function Yl under particle

exchange. A careful analysis shows that under or+̂ -a, each rotational

component satisfies

, Jt/2-a, 912) - !t(-l)
S+Q ^{R,a,912) (29)

By introducing a phase factor A as

A - K ( - 1 ) S + T (30)

where T«|QJ, the index A determines the reflection symmetry of the

radial wave function with respect to the a » it/4 axis. Thus A serves

as an index for radial correlation. In the special case when L-0, and

T-0;, A- (-1) . This is the simple symmetry requirement for singlet and

triplet S states. For L not equals to zero, there are more than one

rotational component in (27). If there is only one rotational com-

ponent T, then T and A are good quantum numbers (they are related by

eq. 30). Small admixture of different T components would then make T

as an approximate quantum number which also makes A an approximate

quantum number. Thus the purity of +/- radial correlation is reflected

in the purity of rotational states.

To check the purity of rotational states, we show in Fig. 11 the

decomposition of the (1,1)~ P° and (1,1)+ P° channel functions of He

at the values of R where their respective potentials bottom out. The
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T - 0

9%

T« I

91%

TOTAL

10% 90 %

Fig. 11 Decomposition of the (1,1)+ 1P° and (1,1)" 3P° channels of He
at the R values shown into rotational components. Percentage repre-
sents the contribution to the normalization from each T component.

asymptotic limits

N,

10

R (in reduced a.u.)

Fig. 12 The percentage of the T»l component for all the five Pc

channels of He(N*3) as a function of the hyperradius R.
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percentage represents the contribution to the normalization from each T

component. For P°, the T»l component is 91%, while for P°, it is

90%. According to eq. (30), the A values are +1 and -1 respectively.

These A and T values are consistent with the assignment described in

eq. 24. The purity of rotational states maximizes roughly in the range

where the potential is near its minimum. To illustrate the dependence

of the purity of the rotational states on R for each channel, in Pig.

12 we show the percentage of the T-l component for all the five P°

channels that converge to the He (N»3) thresholds. The dashed lines

represent the interpolated region where the potential curves exhibit

diabatic crossings. By referring to the (K,T)A classification, we note

that the purity of T is not very good for the higher channels. These

channels are classified with A-0. We further note that the rotational

quantum number is ill-respected in the asymptotic region.

Each rotational component wave function also exhibits symmetry

with respect to the ©TO*** axis. In fact, it can be shown that

£ 1 2 £ 1 2 ) (31)

Thus channels with T odd exhibits a nodal line at ©,, " n*.

The body-frame analysis does not provide information about

K-quantum number. One can relate the quantum number K to the nodal

structure in 912. This is understood by looking at the wave function

in the asymptotic region. Take the axis of the approaching electron to

be the z-axis of the laboratory frame. In this frame the two electron

wave function is P? (cos912) where Q»L.f\,. The number of nodes in 9,2

(0 < 9^2 < i) is 1-—|Q| which varies between 0 and N-l-T. The trans-

formation from the laboratory to the body frame is identity at large

r«. Thus for a given T, we can use the number of nodes in 0-- to label

the vibrational motion in 9,2. The vibrational quantum number v is

related to the number of nodes n by

v-2n +T (32)

Ths quantum number K used for labeling hyperspherical channels is

related to n and v by
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K»N-2n-T-l (33)
-N-v-1

From Fig. 11 we can see the number of nodes in e,2
 is consistent with

the equation above. Since the angular correlation dees not vary

significantly with R. this analysis in the asymptotical region is valid

also in the inner region.

To summarize this section, we point out that the analysis of the

channel functions in hyperspherical coordinates allows us to obtain a

complete classification scheme for all doubly excited states. The new

correlation quantum numbers K and T provide information on the vibra-

tional and rotational motions of the two correlated electrons, while

the radial correlation quantum number A provides the in-and-out

stretching of their radial motion. In terms of these quantum numbers,

new spectroscopic regularities can be easily established. The super-

multiplet structure is a consequence of the heirachial order of the

rotational (UT), the vibrational (UR), and the stretching (UA) energies

which follow the approximate order

U A >> UR » U T (34)

There are other schemes of ordering doubly excited states. By ordering
states with increasing number of vibrational nodes, a d-supermultiplet

a.
41

38structure with the shape of a diamond can be obtained. Such a

structure exists for the + as well as for the - states.

Other aspects like T-doubling and the systematic of widths will

not be discussed here but can be easily anticipated or interpreted in

hyperspherical coordinates. The reader is referred to Ref. 41. We

conclude this section by pointing out that hyperspherical coordinates

do provide a systematic method for the analysis of internal motions of

two-electron atoms and for a new classification scheme of doubly

excited states.

5. VTBRATIONAL MODES OF LINEAR TRIATOMIC MOLECULES AND DIAMAGNETISM

OF ATOMIC HYDROGEN

The quasi-separable approximation in hyperspherical coordinates
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has been used in several other areas. In this section, we give two

other examples: (1) Hyperspherical nodes for a linear triatomic

molecule and; (2) quadratic Zeeman effect.

5.1 Hyperspherical Modes Of Linear Triatomic Molecules

An example of model potential used by quantum chemists for a

linear ABA molecule was given in Fig. 3. By using a separable
42approximation, a normalized wave function is expressed as

S ( R ; a ) (35)

where the ' channel fucntion' * satisfies the equation

f- h ̂  t ? + V(R'°°] S ( R ? a ) " V R )*v 3
( R ; a ) (36)

The potential V is usually assumed to be of Morse-oscillator type,

V(rAB'W " D U-

with suitable parameters for different systems. Examples of the effec-

tive potentials E (R) are given in Fig. 13 for the ABA system.
V3

Because there are two identical particles in the system, for each
vibrational level v, of AB in the dissociation limit, there are two

effective potential curves which converge to each v3-limit, the lower

curve corresponds to the gerade (A-+) symmetry and the upper one to the

ungerade (A«-) symmetry. Because of the lack of rotational motion, the

+/- symmetry in a in linear triatomic molecules is exact. Therefore,

each effective potential curve or channel is labelled by a quantum

number v, and a gerade or ungerade symmetry. By solving the vibra-

tional energy levels for each channel each state is labelled by another

vibrational quantum number v.. Thus, each state can be designated by

(v«, v 3 ) - where the +/- indicates the symmetry of the total wave

function with respect to the hyperangle at a «
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Fig. 13. Effective potential curves for a model linear triatomic ABA
molecule calculated in the adiabatic approximation. (Prom Ref. 42.)

Each of the vibrational state (v., v,)- above becomes unstable when the

channel couplings are included if the state lies above the first vibra-

tional state in the dissociation limit. These couplings can be in-

cluded by solving the coupled differential equations in the hyperradial

coordinate. The vibrational states calculated above are then shown as

resonances. The widths of the resonances reflect the strengths of
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Fig. 14 The a polarization absorption spectrum of hydrogen in a
magnetic field of 47 KG. Frame (e) shows the net oscillator strength
distribution in this energy range; frames (a)-(d) depict the principal,
second, third and fourth series, respectively. {From Ref. 45.)

channel couplings. Model calculation for the reaction such as

F + H2 -* FH + H (38)

has been carried out by Launay and Le Dourneuf. Their results showed

30



that the reactive cross sections display many resonances; some of these

are narrow and others are quite broad. The broad resonances are asso-

ciated with + channels and the narrow ones with - channels. This situ-

ation is similar to that of the doubly excited states of He except that

the model problem here is simpler and only two coordinates are used.

Unlike the two-electron problems, the +/- symmetry in this problem

is exact.

5.2 Quadratic Zeeman Effects In Atomic Hydrogen
As a last example, we consider the diamagnetism of atomic hydro-

gen. For a recent review on the subject of the effects of magnetic
fields on atoms, the reader is referred to Ref. 44.

In Fig. 14 the calculated partial photoabsorption spectrum of
hydrogen in a magnetic field of 47kG is shown. The light is polarized
linearly perpendicular to'the field axis. These results are obtained ^
by using a large basis set of Sturmian functions to diagonalize the
Hamiltonian of a hydrogen atom in a magnetic field. The entire
calculated spectra are shown at the bottom frame, while the principal,
the second, the third and the fourth series, respectively, are dis-
played in frames (a)-(d). One can clearly see that the oscillator
strengths, after being regrouped into series, become very smooth as a
function of the total energy and the strength varies systematically
from one group to the next. This difference in oscillator strength
among different series can be attributed to the nodal structure of the
wave function in the angular part of the 'hyperspherical coordinates'.
In the present case, the hyperspherical coordinates are the usual
spherical coordinates. By displaying the wave function on the angular
coordinate 9 (the <fr - dependence is factored out easily), the wave
functions along the turning surface for various states are shown in
Fig. 15. Along tine first row, the angular dependence of the wave
functions for the 1st, 5th,10th and 16th states of the principal series
are shown. First we note that all the functions exhibit an antinode at
G *»n/2, with no nodes anywhere. For the second, third and fourth rows,
similar functions for the corresponding states for the second through
fourth series are shown. One notes that each higher series is
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Fig. 15 Wave functions along the turning surface for various states of
Fig. 14. (From Ref. 44.)

characterized by an additional node in the angle 9. Thus each series

is distinguished by the number of angular nodes.

By comparing with the potential surface in Fig. 4, we also note
that the functions displayed in Fig. 15 show large amplitudes near the
potential ridge. Because only <J polarization is considered in Fig. 14,
all the functions shown are symmetric with respect to 9 » n/2, i.e.,
they are all + states.

It should be mentioned that the wave functions displayed in Fig.
15 are along the classical turning surface. Such a surface is the
locus of the equation

(52 r2 sin29 - c (39)

where e is the energy of the state involved.
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VI. SUMMARY AND FUTURE PERSPECTIVE
In this article we gave a few examples of the applications of

hyperspherical coordinates to atomic and molecular problems. We empha-
sized that the potential surfaces of a large class of problems, when
expressed in hyperspherical coordinates, exhibit valleys and potential

ridges. The potential ridges play an important role in determining the
23physical characteristics of resonance states. The symmetry of the

wave function along the coordinate perpendicular to the potential

ridge, that whether it has + or has - character, largely determines

whether the state is to be excited or not. Our documentation in this

article emphasizes doubly excited states of two-electron atoms as well

as simple two-dimensional problems from model linear triatomic mole-

cules and diamagnetic effects in hydrogen.

In the last few years we have witnessed the success of applying

hyperspherical coordinates to many problems in atomic and molecular

physics, particularly in the understanding of resonances. This field

is just in its infancy. Progress will be accelerated as better compu-

tational methods are developed. Extension of hyperspherical coordi-

nates to two-valence-electron atomic systems have been applied by

several workers where a similar classification scheme as for two-
49electron atoms has been established. Extension of the method to the

situation where both electrons are highly excited is also in its begin-

ning. There are the threshold electron impact ionization studies

under the umbrella of "Wannier theory" where hyperspherical coordinates

are the base of most investigations. There are also some initial

application of hyperspherical coordinates to three-electron atoms and

some analysis of hyperspherical harmonics in the N-electron atomic sys-

tems. All of these investigations are still in the very early stage.

In the area of quantum chemistry, the application of hyperspher-

ical coordinates in the last few years had also been quite fruit-

ful, ' Most of these studies are confined to model problems. It

has been shown that the different vibrational modes are better

explained using hyperspherical coordinates than traditional

coordinates. Applications of hyperspherical coordinates to reactive

scatterings in collinear systems have also shown that the rearrangement
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reaction is more conveniently formulated in hyperspherical coordinates.

Extension of the foethod to real three-dimensional collisions will be

desirable in the future.

There are few applications of hyperspherical coordinates to

electron atom scatterings so far. In describing resonances as well as

the situation when the particles are close together hyperspherical

coordinates are superior to independent particle coordinates. In

scattering problems, the problem in the asymptotic region is better

formulated in terms of the independent particle picture. To' treat the

whole scattering problem, it is necessary to develop propagation or

matching methods that transform the solution from one region using one

coordinate system to that in another region using another coordinate

system. Preliminary studies along these lines are being developed

and progress can be expected in the near future. Progress in this area

will also allow us to forsee a unified treatment of electron-atom

scatterings and reactive scatterings.
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