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INTRODUCTION '<

Here is a fresh attempt, following a few others, to demystify

the PS beam control system. The writer'is making this attempt on

his own account, hoping thereby to convince himself that he has in-

deed understood how "his" system works, and he hopes it may also

prove helpful to others. So the point here will not be to do original

work, but rather to give a rundown of what has been written on the

subject from time to time, and I am thinking especially of the course

written by H.G. Hereward for PS operators, which has been the di-

rect inspiration for this description.

The engineering specifications used to build the equipment have

been omitted in this paper; they would fill a bulky file, perusal

of which would be too laborious for the non-specialist.

Actual talks on the subject at the PS have already served as a

proving ground for this presentation, and the writer has benefitted

as much as anyone from the interest shown by many on the occasion of

those gatherings.
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1. THE FREQUENCY PROGRAM

The simplest RF system Imaginable consists of an oscillator whose

frequency can be controlled by means of an outside voltage. The

oscillator acts on the RF cavities, and a function generator con-

nected to the magnetic field (frequency program) controls the fre-

quency of the oscillator (Fig. 1). For, this Is connected with the

guiding field by the relationship

(1)

In which:

h is the harmonic number Ch « 20)

c is the velocity of light (3 . 10* m/sec)

R is the mean radius of the machine (R * 100 m)

is the magnetic field (in teslas)

is the proton rest energy, Eo • 938 10" eV

Is the radius of curvature of the magnets (70 m)

B
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oscillator

cavities
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Fig. 1. The simplest of all RF syst

In the case of the PS, the frequency program is obtained by

a digital function generator using a particular train B derived from

the voltage induced in a coll placed in the reference magnet. The

function is approximated by nine segments whose termini are defined

by the coincidences between the train B and preregulated values.
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Note that for a given machine, the function (1) depends only on the

field; the coincidences are regulated once for all.

What Is the precision required for the accelerator frequency?

For a given magnetic field, an error in the accelerator frequency,

the frequency of revolution, that is, manifests Itself by a devia-

tion in radial position given by the relationship

* Y* '±£ C2>

In which Y is the usual relativistic parameter and Yt !• its

value at the transition <Y* : 37 in the PS).

For example, at high energy (y » y ) an error of 0.1% on the

frequency becomes a radial displacement of 10 cm, which is obviously

unacceptable. But then the error of linearity of the oscillator

alone is on the order of one percent!

The conclusion is that it is necessary, at least for the PS,

to find a method of reducing errors of the frequency program. Note -

that this requirement applies to the PS, but is not universal (ISR

or Si's cases where th« relative frequency variation is very small).

Remark

The relationship (2) is valid for an equilibrium state. This

Is not the case, in particular, at the transition, or we should have

an Infinite position error for the slightest frequency deviation.

2. ATTEMPTING TO CORRECT THE FREQUENCY PROGRAM

To avoid the need for prodigies of technology in order to obtain the

required precision, we could conceive of a feedback correcting system.

The most obvious idea would be to detect any deviation in the radial

position of the beam and use this signal, duly amplified, to correct

the frequency program (Fig. 2).
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Fig. 2. First attempt at correcting the frequency program.

The.radial position of the bean is obtained by one or more PU

station* (3, in the PS). The signals froa the PU station are pro-

cessed to convert them into a quasicontinuous voltage proportional to

the radial displacement (zero reset of baseline, integration, refer-

ence to the Intensity, combination of the several PU stations). These

operations are represented by the black box Processing in Fig. 2.

By the way, we may want to locate the beam elsewhere than in the

center of the chamber. This can be done by applying a voltage to the

Reference input, which in t'jrr. S K C ™ * ? ?« sMfMng the electrical zero

of ths PU stations. This signal applied to the reference input is tra-

ditionally referred to at the PS as the perturbation signal.

Note in Fig. 2 that our loop system is closed by the beam, whose

characteristics we must know in order to determine whether the system

is stable or unstable. For purposes of the problems with which we are

concerned at the moment, the beam can be represented by a black box:

a change Af • 6w/2ir in accelerator frequency is applied to the input,

and a change AR in radial beam position Is picked up at the output.

We shall now try to determine the transfer function of this box.



3. BEAM TRANSFER FUNCTIONS

We try to find the input-output transfer function of the black box

representing the beam.

One way to get it Is to start from the synchrotron equations

(3)
^
!•>«

- linearized - where A$ is the phase deviation of a particle from

the phase of the synchronous particle and AR is the deviation of

position froa the synchronous orbit.

The first of these equations is siaply an expression of the

frequency deviation

at
Af • 2T H- «f • 2*f ("^-3 ) 4r (ef« »qu«tion 2)

* \ y i •»

whence

with:

The second equation expresses the deviation In energy gain. A phase

deviation A$ yields a gain deviation per revolution of eV cos 6fl At

(V is the accelerator voltage), or an energy deviation per unit time

of:



This energy deviation becomes a radial deviation

which finally gives:

e'V cos •' c

Now if the accelerator frequency suffers a perturbation &i>, only

the first of these equations is affected; the equations (3) are

then written

where A$ is now the change in phase between beaa and accelerator

voltage.

Replacing the derivatives with respect to tine, «s in electric

circuits, with aultipllcations by Ju, we obtain

ju 4) • » ill + jbi

[ju AR » b Ad

whence, eliminating A*, and putting ab - -(2* (fi/2ir is of course

the synchrotron frequency):

(8)
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We can also calculate the quantity

(9)

Thus the beam is represented by the following black box (Fig. 3),

in which the output A<|> has also been shown (being none other, except

for a factor 1/b, than the derivative of &R).

Fig. 3. Bean represented by equivalent black box.

The reader faailiar with the notation of transfer functions will

easily recognize the characteristics of an oscillating circuit without

damping (for u • ft, the amplitude of the oscillation becomes infinite).

Remark

The so-called adlabatic damping of oscillations, due to the

fact that the parameters of the oscillation vary with time, is here

neglected. It in fact has much less effect than the one we are

seeking to create by the beam control system.

We may also represent the black box of Fig. 3 by an equivalent

electric circuit:

A* -»

Fig. 4. Oscillating circuit equivalent to the beam.
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For we have:

voltage at terminals
of oscillating circuit

current in
Inductance L

ft* - w* (10)

- putting fla - 1/LC. If we take the correspondence (v, A<ji) and

, AR), we indeed coae back to the form of equations (8) and (9).

Another way to get the transfer functions is to start out from

trajectories in the longitudinal phase plane. The synchrotron oscil-

lation of small amplitude is represented in the phase plane by an

elliptical trajectory (Fig. 5a).

to)

«(
nmt origin

(b)

Fig. 5. RF frequency step represented in the phase plane.

The origin corresponds to the synchronous particle, and the ver

tical axis is graduated in energy, or radial position, or frequency,

which for given magnetic £l«ld comes to the sane thing. Applying a

frequency step Au/2ir thus amounts to shifting the origin along the

vertical axis. The particle Initially in equilibrium at 0 will then
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oscillate on the elliptical trajectory around the new origin (Fig.

5b). If we represent this oscillation as a function of time for

the two variables A$ and AR, we obtain Fig. 6.

Aft*

44 j

Fig. 6. Beam responses to a frequency step.

We indeed come back to the behavior of an undamped resonator as

described by the equivalent diagram of Fig. 4 when acted upon by a

step in current.

RESPONSE OF LOOP SYSTEM

Having obtained the transfer functions of the beam, we can.now deter-

mine the response of the servo mechanism of Fig. 2. For the diagram

of our servo principle is the following:

Acu

program error
_

bean

Fig. 7. Diagram of principle corresponding to Fig. 2.



The gain G converts the r a u l displacement of the beam Into

a change in frequency of the oscillator. We are looking for the

deviation in radial position corresponding to an error Aui in the

frequency program. We have

AR • in <5w « u2 (Aw - GAR) ,

whence

AR = -a ̂  J? T Au . (11)
W + bG - or "

For static program errors (cu « 0), we reduce the deviation in radial

position considerably if bG is large and positive (bG » ft2). In

that case, we have substantially

AR - ~ Ah)
G

- a familiar result for servo mechanisms. Note that the quantity

cos

changes sign at the transition. For as a changes sign, owing to n,

b must also change to -b ($ •* IT - 4 ) so that we will still have

-ab « n8, a positive quantity. Hence ve must change the sign of G at

the transition so that we still have a negative and not a positive

feedback.

How does the servo mechanism behave in transient mode? We can

answer this question immediately by comparing equation (11) with equa-

tion (8). We see that they have the same form; ft3 has simply been

replaced by fia + bG, a much greater quantity. Hence the response is

still that of an undamped resonator, but one resonating at a much

higher frequency this time.
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We may also say - which comes to the same thing - that the servo

mechanism is just at its limit of stability, as one may convince one's

self by drawing the Nyquist diagram of the curve of complex open-loop

gain as a function of frequency CFig. 8).

UiaA
COaO

be

Fig. 8. Nyquist diagram for servo mechanism of Fig. 7.

The open-loop gain is

CUa
bf,

fl" -

For zero frequency (w • 0), we find the abscissa point bG/fl2.

The representative point then travels along the axis of reals through

increasing values, goes to Infinity, and changes sign for u> - 8, then

passing through the point -1 for u - -v/wFTTF . So we are just at

the limit of stability for a pure real gain G. If we allow for the

unavoidable delay in the electronics between PU station and cavity,

the complex gain curve will pass slightly above the point -1, and in

that case, as we know, Nyquistfa criterion tells us that the system

is unstable.

While it is always possible to avoid this catastrophic situation,

for example by means of a phase advance network, we see that the tran-

sient response will still be highly oscillatory, and this of course
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i« not very aatisfactory for a servo mechanism.

It is interesting to follow up the electrical analogy of Fig. 4

in the case of the looped system. The loop amplifier adds a current

into the circuit, of value -G i (Fig. 9). This generator In turn is

equivalent to an induction of value L' * L/G. For in both cases, the

voltage V at the terminals of the dipole will cause a current GV/JLOJ

to flow. The two inductances in parallel are equivalent to another

of much smaller value, which explains why the apparent resonance fre-

quency of the circuit is considerably increased.

/ • • I i.
cobiVA lanf

equivalent to

Fig. 9. Electrical equivalents of the servo of Fig. 7.

5. A FREQUENCY PROGRAM DERIVED FROM THE BEAM

When the beam is already bunched, that is, some time after injection,

we can easily measure the frequency of revolution of the beam, for

example by connecting a frequency-voltage converter to the output of

a so-called phase PU (suitably filtered) (Jig. 10). In this way, we

manufacture a frequency program that can have better precision than

the digital program. For we free ourselves from the approximation to

the theoretical function by straight-line segments.- Only the non-

linearities of the oscillator and frequency-voltage converter remain.
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Fig. 10. A frequency program derived from the beam.

In the PS, this so-called beam-derived program is used instead

of the digital program a few msec after Injection. By doing this,

we introduce a new negative feedback loop, as may be seen in Fig. 10.

Note that this loop acts in the same way as the one in Fig. 2. Thus

it converts a change in beam frequency Cor, what amounts to the same

thing, a change in radial position! into a change in frequency of

the oscillator. These two changes will of course be equal, so that

the frequency program will be correctly calibrated. Hence the gain

of this loop (between beam and oscillator) is unity.. If this gain is

expressed in the same units as 6 (unit frequency/unit radial position),

we obtain fi2/b. This is in fact simply the conversion factor between

radial displacement and frequency change (see for example equation (8)

at the point of equilibrium u - 0}.

Thus we can simply allow for this auxiliary loop by replacing 6 with

G - Q2/b in the preceding results. Having just chosen G » ft2/b, we

see that the change is minute. For example, the new resonance fre-

quency is now to • -%/6G instead of to « VbG + fi*.

Note that since the information is taken from the frequency and

not from the position, the gain does not change sign at the transition

(the s*in of the radial loop is always decreased).
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6. HOW TO DAMP THE SYSTEM? THE PHASE LOOP

We should like our equivalent oscillating circuit of Fig. 9 to be

strongly damped, by placement of a small resistance between its ter-

minals (Fig. lla). By the same technique we used to manufacture the

fictive self induction L', let us add a current generator of value

G*v, which is exactly equivalent to placing a resistance 1/G* in par-

allel in the circuit (Fig. lib).

in CV J

(a)
mquivmlent to

Fig. 11. Dt nping the oscillating circuit with a resistance
or an equivalent current generator.

This additional generaLor of a current proportional to the voltage ex-

presses itself in terms of feedback by an additional loop acting on the

oscillator from the phase of the beam relative to the accelerator

voltage (Fig. 12).

phmsa
dlscria

OscHaiM
oscillator

xTIZmr

C S J J
c*vities

•J. |
i« i" "*•

(b) phase PV

Fig. 12. Damping the system by means of an auxiliary loop.
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For in our analogy, a source of current corresponds to a change

In frequency of the oscillator, and the voltage v at the terminals

of the circuit Is proportional to a phase deviation between beam and

RF. The Information on the phase of the beam is taken by means of

a suitably filtered phase PU. The phase of the beam and that of the

accelerator voltage are compared in a phase discriminator whose out-

put, amplified by G', corrects the frequency of the oscillator.

A variation on this scheme is indicated in Fig. 13. The radial

correction signal now acts on the oscillator through a dephaser, the

phase discriminator and the gain amplifier G', and this does not change

the principle of the circuit in any way. We now define a gain G" of

the radial loop (in degrees or radians per unit radial displacement),

and of course we get the relationship ,2)
" G'G".

* T !• *s •*-£«•

filter

Fig. 13. Variation on the scheme of Fig. 12.

This in fact is the scheme used at the PS, and the one with which we

are going to continue. First we shall verify more directly that the

analogy of the oscillating circuit does give us the damping we are

looking for.
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Tue frequency shift £u> applied to the oscillator is written

«w - Au - G'(A* • CAR) (12)

or, observing that A$ - (Ju/b) AR (equations (8) and (9))

«w - Au - O'(O" • 4r> AR (13)
o

and this combined with

AR • Ui 5w • jtj * 6w

gives finally

Q* - u* + •bO'O"

So by aeans of this additional loop, the phase loop, we have trans-

formed equation (11) by adding to the denominator a term juG', which

is nothing other than a damping term (the amplitude never becomes

Infinite, no matter what the frequency). By choosing G1 large enough,

we can damp the resonance as much as we like. On the other hand, the

correction of static errors (w • 0) is not affected by this new loop.

As before, let us plot the Nyquist diagram in this new configura-

tion. The open-loop gain is the product of the beam transfer function

(Ui) by electron transfer function: G'(G" + ̂ ) (see equation (13)).

We thus find:

open-loop gain - - y V j " 6 • (15)
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The plot of this function in the complex plane is traced
in Fig. 1*.

• /

asymptote of

slop*

«»••*. b C C *

and G" real

Fig. 14. Nyquist diagram for servo mechanism of Fig. 13.

We observe in this diagram that the curve is tangent to the ver-

tical axis for large values of Ji), and consequently distant from the

point -1. The effect of the phase loop has been to shift tha curve

about 90* in the neighborhood of the critical point, and therefore to

damp the resonance strongly. Rather than continue to reason in terms

of the over-all system, we shall now examine the behavior of each loop

separately, which comes down to the same thing in principle but gives

us a more physical interpretation of the phenomena.
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7. STABILITY OF THE PHASE LOOP

In Fig. 13a, the phase loop i« the upper loop. The loop gain is

•imply G'Ui:

W« must now take account of the real transfer function of the ampli-

fier G*. The latter Involves unavoidable delay* due to the propaga-

tion time along the cables (about 1.5 Msec in the PS). Besides, we

must take account of the limited pass band of the accelerator cavities,

which for a small frequency modulation behave like a low-pas* filter.

Furthermore, the amplifier itself has a-non-infinite pass band.

Thus the curve of the complex gain G\ij, a pure Imaginary if G'

is real, will be rotated clockwise because of all these delays

(Fig. 15).

J«,

phamm margin

Fig. 15. Nyquist diagram of the phase loop alone.
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Th« cable delay corresponds to a rotation proportional to the

frequency. For a delay T, the rotation is 90* at frequency

f - 1/4T (160 kHz in the PS). At this frequency, the loop gain,

which is substantially G'/o>, mist necessarily be less than unity

to ensure stability, or in our case, 6' < 160 kHz/rad. To main-

tain a sufficient margin of safety, considering the other possible

phase shifts, the choice for the PS was G1 = 30 kHz/rad CO.5 kHz/*)

at the frequency of 30 kHz. At this frequency, the loop gain

Is unity, but the phase margin is sufficient (Fig. 15). Besides,

the total gain G'G" must be great, at least for the low frequencies,

for proper correction of the static errors in the frequency pro-

gram. We are thus induced to Increase the gain G' considerably

towards low frequencies (we shall see later why it is rather un-

desirable to Increase G"), and In the FS the static gain of the

phase loop is SO kHz/*, or 100 times more than for 30 kHz. This

result is obtained by means of a suitable corrector network placed

in the loop amplifier.

Now that we have a stable phase loop, we can calculate its

input-output transfer function. We shall take the reference phase

$ as input parameter and the radial'position of the beam am out-

put parameter (Fig. 16).

input

Ve write the circuit equations

»• - A* +

Fig. 16.

A4>

Aft
Output

C16)
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whence

(17)

Froa this we find

C18)

To illustrate these results, we can plot the response to a

unit step applied to th» input • . Throughout a frequency band

centered around fl, the quantity (fla - U2)/G' is negligible, giving

us a unit response for the phase, and an integrator response for

the radial position (Fig. 17). The frequencies neighboring upon

30 kHz (loop gain G'/u * 1) determine the initial transient (re-

sponse tine on the order of 100 usec).

Aft

<00u*

>•—*
I 1

. -

Fig. 17. Transient response of phase loop.



20.

Thus the phase loop imposes the reference phase between beam and

W after a transient period that Is short compared to the synchro-

tron period, which again means a radial displacement of the beam

at constant velocity. Likewise, an abrupt program variation (fre-

quency error) gives the same result.

STABILITY AND RESPONSE OF THE COMPLETE. SYSTEM

Having determined the closed-loop transfer function of the phase

loop ($r •+ AR), we can at once write the open-loop gain of the com-

plete system. It Is simply

-. (see equation 18)

(see equation (13)). The corresponding Nyquist curve is shown In

Fig. 18 for a pure real radial loop gain 6V

Fig. 18. Nyquist diagram of complete system
for various values of G" (with G'G" constant).
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Several curves have been plotted In this figure* corresponding to

several values of G", the total gain G'G" being held constant,

(For that Is what serves to correct the static errors in the fre-

quency program.) We indeed see that the stability of the system

is the better assured, the smaller the gain G", thus justifying our

correction network for G*. In this case, the gain curve approaches

a semicircle, characteristic of a system with just one time con-

stant. This enables us to obtain the transient response of the

system directly. Zt is simply an exponential response (Fig. 19),

the approximate time constant of which Cl/bG") is obtained by neg-

lecting the terms of second order in equation Q 4 ) .

At

Fig. 19. Transient response of complete system.

Now if we take account of the limited pass band of the amplifier

G", we see that we have a response with two time constants, namely

a transient with overshoot and damped oscillation Cdotted curves).

However, there are here no such technical limitations as for the

phase loop, since the frequencies Involved are much lower.
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An interesting limiting case is where the gain 6" is a pure

imaginary (pure integrator). This is In fact the situation that

arises when the beam is synchronized on an outside oscillator

(see Appendix I).

Note that from the expression Q we can calculate the closed-

• loop response of the system, for example the transfer function

6u * AR. He find quite simply

• • •

which is none other than equation (14).

9. BENEFIT OF A PHASE PROGRAM

When we introduced the phase loop in section 6, we implicitly as-

sumed that the output of the phase discriminator (Fig. 12) vanished

when the beam is in equilibrium (synchronous phase), so that the

correction applied to the oscillator would vanish. In reality, the

circuits acting on the phase discriminator do involve errors, are

sensitive to the Intensity, to the frequency, and introduce unavoid-

able deviations. Besides, the equilibrium phase (stable phase)

between beam and cavities depends on the state of the machine (ac-

celerator voltage and derivative of the magnetic field). For we

have the relationship

V sia * - 2-r R o || C20)
S aw

expressing the energy gain per revolution in two ways. (V is the

accelerator voltage and $s the stable phase.)

He see in Fig. 12 that all the phase errors are equivalent to

frequency errors of the program, except for a factor Gf, and that

they will finally manifest themselves as errors of static radial

position, which are easily calculated from equation (14) (with

a) - 0):
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AR
0* + bG'G" 0* + bG'G11

Since we cannot increase G", for reasons of loop stability, as we

have just seen, we oust try to reduce the static phase errors as

far as possible. In particular, we can already take account of those

resulting from equation (2Q) By programming the dephaser of Fig. 13b

using the function: Arc sin J2ir R p (dB/dt),'V]. This work is done

by the phase program, the purpose of which is to reduce the varia-

tions in radial position corresponding to variations in V or dB/dt.

It should be noted that according as we'are above or below the tran-

sition, we choose the one or the other determination of the Arc sin

function. Besides, we also use this phase program for particular

operations (for example, the 180* leap on the unstable phase, for

"debunching").

The residual phase errors, due to the electronics, difference

in length of cables, errors in the phase program itself, have now

been corrected at the cost of a radial displacement, which in the

PS is of the order of 1 mm for a phase error of 2*.

The following question may now be raised. After all this work,

we have succeeded in properly correcting the deviations of the fre-

quency program, but we have had to introduce a phase program whose

errors (including those of the electronics) likewise affect the radial

position. So It seems that we have only shifted the problem, and we

cannot be sure that with present techniques it will be much simpler

to create a phase program correct within a few degrees rather than a

frequency program with a precision on the order of 10"*. Then why a

"beam control" system? The technological justification that led us

to enter upon this project (see section 2) seems much less serious,

and we nust now see whether we have gained anything with all our

machinery.
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10. C0WSERVATI0M OF LONGITUDINAL EMITTANCE

In the equilibrium state, the beam, which we have hitherto repre-

sented by a point (Fig. 5), occupies a certain area in the phase

plane, bounded by a particular trajectory (Fig. 20). Measured in

suitable units, this area, the longitudinal emittance of the beam,

is preserved if we vary the parameters of the oscillation (f, V R F

etc.) slowly relative to the synchrotron period. This is what we

call the adiabatic condition. We nay also say that the beam remains

always adapted to the trajectories, which is to say that its front

permanently remains a particular trajectory in the phase plane.

In the case of the linearized oscillation we have so far been

considering, this adaptation is achieved if the center of gravity

of the beam (moment of 1st order) is located in the center of the

phase plane, and if the ratio of the axes of the trajectory ellipse

(moment of 2nd order) corresponds to the ratio of the axes of the

beam ellipse. If we are to take account of the non-linearity of

the oscillation, it will of course have to satisfy other conditions

upon the moments of higher order.

Mow let us apply a strongly non-adiabatlc perturbation to the

synchrotron c*cillation, for example a unit step on the accelerator

frequency. We know that the center of gravity will then oscillate

at the synchrotron frequency, as is seen in Fig. 6. If we apply

this same perturbation to our loop system (namely a unit step on the

frequency program, or what amounts to the same thing, on the phase

program), the center of gravity of the beam will follow an exponen-

tial trajectory (Fig. 19), from which the synchrotron frequency com-

ponent has disappeared entirely. It is all as though the process

had become completely adiabatic for the motion of the center of

gravity of the beam.
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at the synchrotron frequency, as is seen in Fig. 6. If we apply

this same perturbation to our loop system (namely a unit step on the

frequency program, or what amounts to the same thing, on the phase

program), the center of gravity of the beam will follow an exponen-

tial trajectory (Fig. 19), from which the synchrotron frequency com-

ponent has disappeared entirely. It is all as though the process

had become completely adiabatic for the motion of the center of

gravity of the beam.
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sipQ rm.hr*
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' * particular trajectory

'2>e«m boundary

Fig. 20. Representation of the beam
in the longitudinal phase plane.

Note that the variation of the frequency applied to the beam through

our loop system is not necessarily very slow relative to the synchro-

tron period (otherwise the process would be adiabatic, wen for the

moments of higher order).

We can say, in other words, that the "beam control" system al-

ways imposes placement of the beam at the center of the trajectories

In the phase plane. That ia what we noted before in section 7: the

phase loop imposes the reference phase between beam and accelerator

voltage, and so eliminates any possible oscillation at the synchro-

tron frequency. This reference phase is therefore nothing else but

the stable phase (the one for which a particle does not oscillate)

of our loop system.

Let as go back to our step <$• applied to the phase program.

The phase loop reacts quasi-instantaneously and shifts the phase of

the accelerator voltage relative to the beam by the amount 6o>. We

now have a new equilibrium situation, but with a different stable

phase, which means that the beam will drift radially, as we already

know. To this new situation, a new separatrix and a new family of
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trajectories correspond (Fig. 21). However, these new trajectories

are still constructed around the center of gravity of the beam,

because of the phase loop. To be sure, the stable phase is after-

wards slowly restored to its initial value by the radial loop

(Fig. 19).

11. PROBLEMS OF SECOND ORDER

Now let us examine the evolution of the initial ellipse, after ap-

plication of our step 6$, in aore detail.

«CUK*4

new trajectories )
adapted bunch

Fig. 21. Influence of an abrupt variation of the
stable phase in the phase plane.

The new trajectories around it are slightly different because, the

synchrotron frequency having varied, the axial ratio of the trajec-

tory ellipses, which is proportional to it, is likewise altered

(dotted curves), which means that our beam is no longer exactly

In equilibrium (no longer adapted). It will execute oscillations
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of shape, as indicated in Fig. 22, where the deviations have been

deliberately exaggerated.

(o)
plan

phase plan*

(after h turn) (h turn)
signal picked

up on PU

Fig. 22. Shape.oscillations of the beam.

These deviations in bunch length are easily observed at a sun

PU station (specifically, the wide-band station), the crest amplitude

of which is detected. We thus obtain a response of the type of that

in Fig. 23. Note that we have tentatively assumed the radial loop

to be without effect, since the deviation 6<p has not been corrected.

owe.
synchrotron period

Fig. 23. Transient response of moment of second order.



28.

If wa arc Interested only In the variation of the FU signal,

we obtain something very much like the curve in Fig. 6 for the

deviation AR, which we can express In the following mathematical

form (same •* equation (8) representing the curve of Fig. 6):

In this equation £ is the signal variation picked up by the

detector from the PU station, which is nothing else but the mea-

sure of the de-adaptation of the beam to the trajectories, or

again a quantity proportional to the moment of second order. Note

also that, in the denominator, we have replaced fl.with 2fl, since

the frequency of the shape oscillation is double the synchrotron

frequency, as we can gather from Fig. 22. Thus we have estab-

lished a new transfer function linking the second order moment

of the beam to an excitation of the stable phase.

We can apply the same argument to a variation In the accel-

erator voltage. Assume an abrupt variation of V in the form of

a unit step. The phase loop keeps th* RF - center of gravity of

beam phase constant, so the beam drifts radially. The stable and

unstable points of the "fish" do not move, only the height of the

fish varies, so the axial ratio of the new trajectories is modi-

fled. We eventually find the same result as before, namely another

transfer function linking the second-order moment to a variation

of the RF voltage.

(22)
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12. CORRECTING THE MOMENT OF SECOND ORDER. "HEREWARD DAMPING"

As for the oscillations In radial position, or phase (first-moment

oscillations), we shall try to transform the oscillatory response

of the beam into a strongly damped response. We have already seen

how this result was reached for the first moment (movement of cen-

ter of gravity), and we shall now apply the same technique. An ad-

ditional negative feedback loop of gain H is introduced, which, from

the detected wide-band PU, corrects the stable phase (Fig. 24a).

to dephaser
V*r> »e

Fis. 24. "Hereward damping" acting on the stable phase.

The equivalent diagram of this additional loop has been indicated

in Fig. 24b, and we can write its equations Immediately:

(23)

We immediately infer

flJ - w* (24)

If a non-oscillating response is wanted, it suffices that H have

an imaginary component (of suitable sign). Since we are interested

in variations of £ only, we take H to be an amplifier with alter-



30.

natlng coupling, having a differentiator characteristic in the

frequency range (around the synchrotron frequency) with which

we are concerned. Thus we have substantially

H - jidk

vhich gives the desired damped response. For example, for the

critical damping:

k - Ail/a

As a matter of fact, in our diagram of Fig. 24b we forgot

the radial loop, which also acts upon the dephaser and tends to

oppose the perturbation introduced by H: The equations of the

complete system are written:

(25)

(cf. equation 18)

We infer the exact expressions for £ and AR:

-r-: (26)
OK

We can verify, taking account of the orders of magnitude of th*

parameters, that the functioning of each of these loops is not much

altered. For the radial loop, of which only, the response at very

low frequencies concerns us, the additional term -w2ka/Wfl2 - w 2 ) ,

of the second order in U) is negligible. Contrariwise, the response

at frequencies on the order of (2R)/27r determines the damping con-

tributed by the Hcreward damping loop, and we see that the radial

loop has a negligible effect in this frequency range.
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13. COBRECTICH ON THE ACCELERATOR VOLTAGE

Another possibility of damping is suggested to us by equation (22).

This Is to close the loop by way of the accelerator voltage, as in-

dicated in the diagram of Fig. 25.

** £

Fig. 25. "Hereward damping" acting on the
accelerator voltage.

The equations of the system are

whence

6*

c"V« -H'S

- C"iR
a<56 * (27)

. qf&6 - G A a ) .
* " Ufl* - w* + ft'H'

C28)

As before, we give H* the characteristic of a differentiator, which

Introduces the desired damping in the response. The numerator simply

represents the response of the radial loop. In reality, the pertur-

bation 6V of the RF voltage likewise yields a perturbation of the

stable phase, because of the relationship (20). We can very readily

take account of this effect, at the cost of a notational complication,

and we find that the results remain qualitatively identical.
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Why two types of negative feedback? Only because the first

type, the one acting on the phase, does not work on the plateaus

of the Magnetic field. This is because the quantity a in equa-

tion (21) characterizes the variation of the axial ratio of the

trajectories when the stable phase is changed. Now the axial ratio

is nothing else, except for a scale factor, but the synchrotron

frequency

(29)

The quantity dfR/d4s, proportional to the variation of the axial

ratio, hence to a, vanishes for •, • 0 or ir, that is, when we are

on a plateau of the magnetic field. The negative feedback loop

is then open and no longer functions. Note also that we wist change

the sign of R according as the beam is accelerated or decelerated

(sign of sin $s) and according as we are above or below the transi-

tion (this does not show explicitly In (29)).

To illustrate how the Hereward damping loop works, we choose

the following simple case. We are on a plateau of the magnetic

field, so the loop acting on the voltage is the one that operates.

We suddenly perturb the amplitude of the KF voltage by an amount

AV (Fig. 27). Since we are on a plateau, the stable phase does

not change (•, " it), enabling us to use the simplified diagram of

Fig. 26.

Fig. 26. "Hereward damping" on voltage
(plateau of magnetic field).



Its aquation* ara:

From this we get

f6V - AV - H'S with

1 +
AV

33.

j<ukf (30)

(31)

The form of the transient response of 6v is given in Fig. 27. For

the very.high frequency components, we have 6V - AV, whereas below

the synchrotron frequency the response is substantially exponential

and tends asymptotically towards AV.

Fig. 27. Transient response of "Hereward damping"
on RF voltage. The time constant is substanti-
ally I/ft for the critical damping (It'a1 > 4ft).

The very brief transient (much quicker than 1/28) has no effect

on the beam; on the other hand, our step AV has been transformed

into a much slower rise, in the same way as a frequency step had

been transformed into an exponential rise. Now it is all as though

the variation In accelerator voltage were adiabatic for the moment

of second order (although this variation is not very slow relative

to the synchrotron period).
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This result cai be extended to the other type cases by more

Heated calcula ions. If for example an abrupt RF voltage Jump

>plled when the phase loop is working, this will instantly shift

stable phase to keep the trajectories adapted to the beam.

LUSIOK

le close of thi study, we learned that the essential function

ie beam control system was to preserve the longitudinal emit-

3 during accele ation. This function has been performed for

first- and seco d-order moments of the beam by means of the

3 loop and the Hereward damping" loop. Note that for pertur-

3ns external to the system, the first and second orders suffice

he case of a li ear oscillation? When we are dealing with a

ly non-linear o dilation (as is the case for example if the

h" is almost fu 1), another damping mechanism, completely for-

to this descri tion, intervenes. This is Landau damping, re-

.d to the fact that the synchrotron frequency is not the same

all the particl s In the bunch. So it would not seem very worth

e to extend our system in the direction of orders higher than

second, since s me other mechanisa might take over.

We have assume throughout that the perturbations came from

outside - vari£ ions of frequency, of stable phase, of RF volt-

amplitude - and have tried to reduce these perturbations. It

be realized tfc X this approach is only a method of presenting

problem. We al . know that in a looped system, the perturbations

rnal to the sys em are likewise corrected by the negative' feed-

effect. This :s true here also, and we can regard the "beam

rol" system as i method of correcting the possible beam oscli-

ons (related fc : example to parasite elements in the machine)

he absence of c itside excitation. By way of example, the
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"Hereward damping" loop was installed In the PS, not to limit

the rapid variations In RF voltage (which could be done directly),

but to suppress an Instability (negative damping) the precise

cause of which has still not been determined.

Another hypothesis, implicitly entertained in this exposi-

tion, is that the notion of all the bunches is the same (coherent

oscillations). This is more or less the case if we are dealing

with an outside perturbation not too rapid relative to the period

of rotation. However, experience with the PS has shown us that

the bunches can oscillate relative to each other because of para-

site elements present in the machine. Our "beam control" is help-

less In these cases; it simply corrects the mean oscillation of

all the bunches. One could indeed wish to have a system that might

act on each of the bunches more or less individually. But that

is another story!
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APPENDIX I

SYNCHRONIZATION OH AN OUTSIDE FREQUENCY

The static radial position of the beam in a system such as

has Just been described depends on the frequency and phase errors

of the programs used, as well as on the quality of the electronics.

We can try to free ourselves of this difficulty by indefinitely

increasing the gain of the radial loop for low frequencies, in

other words by giving 6" the characteristic of a pure integrator.

One.way to achieve this objective is to compare the frequency

of the beam (which is equivalent to its.radial position for a given

magnetic field) and an outside reference (reference oscillator)

in a phase discriminator. Such a discriminator yields a voltage

proportional to the phase deviation, that is, to the integral of

the frequency (or radial position) deviation. The corresponding

diagram is that of Fig. 28 (compare with Fig. 13b).

reference
oscillator
o»*UUr«u«-

phase
- discrim.

TU

•

d«

\

Oiciilartor
oscillator

r
CavJPcts
cavities

— î

\

dephaser

i

phase
discrim.

Fig. 28. Synchronization on an outside frequency.
(Note that the two PU's may be merged; they
have both been shown here only for the sake of
clarity of the diagram.)

Now we must calculate the value of G" corresponding to this

diagram. First of all, a frequency deviation must be converted
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into « deviation of position: factor fl2/b (cf. equation (8)),

then introduce the Integrator (1/jto). We thus obtain

Referring to Fig. 18, we see that the Integrator will rotate

the entire figure by 90* (K is assumed pure real). In particu-

lar, the poiat located on the axis of imaginarles (ti) - fl) will

be shifted to the negative real half-axis. The condition of

stability obviously is that the abscissa of this point be within

the segment [0, -1], which gives immediately

whence

{—•! < 1 , for u = a

£ <

We finally obtain a limiting stability condition that is ex-

pressed very simply by the Inequality K <1.


