ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО ИСПОЛЬЗОВАНИЮ АТОМНОЙ ЭНЕРГИИ СССР ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

S117.108220

こうちょうちまたい おちょうしょう

ИФВЭ 86-217 ОНФ ***

N. S. S. S. S. S. S.

Р.Н.Краснокутский, Л.Л.Курчанинов, В.В.Тихонов^{*}, Н.Н.Федякин, Р.С.Шувалов

О ВЫБОРЕ ГОЛОВНОГО ЭЛЕМЕНТА ДЛЯ МАЛОШУМЯЩЕГО УСИЛИТЕЛЯ НА БИПОЛЯРНЫХ ТРАНЗИСТОРАХ

Направлено в ПТЭ

ж) Иркутский государственный университет.

Серпухов 1986

УДК 539.1.074.22

Аннотация

Краснокутский Р.Н. и др. О выборе головного элемента для малошумящего усилителя на биполярных транзисторах: Препринт ИФВЭ 86-217. - Серпухов, 1986. - 10 с., 4 рис., библяогр.: 11 назв.

Приводятся результаты измерений эквивалентного шумового заряда (ENC) для транзистора КТЗ82 в зависимости от емкости детектора С_D, длительности формировки г и коллекторного тока I_C. Показано, что результаты измерений хорошо согласуются с расчетом по простой шумовой моделя, поэтому трудоемкие измерения ENC могут быть заменены предварительной отбраковкой транзисторов по г_{вв}, β и несложными вычислениями. В приложениях в области ядерной электроники транзистор КТЗ82 позволяет получить такие же шумовые параметры, как и японские NE578, NE021, и может быть рекомендован для использования в качестве головного элемента усилителей.

Abstract

and the state of the

Krasnokutsky R.N. et al. On Choosing Head Element for Low Noise Preamplifier on Bipolar Transistors: IHEP Preprint 86-217. - Serpukhov, 1986. - p. 10, 4 fig., refs.: 11.

The dependence of the preamplifier equivalent noise charge on the detector capacitance C_D , shaping time τ and collector current I_C of the head transistor is presented. The measurement results are in a good agreement with calculations based on a simple noise model, so tedious ENC measurements may be replaced by a simple selection of transistors (r_{BB} , β) and unsophisticated calculations. Soviet KT382 - type transistors have the same noise performance as the best Japan transistors NE578 and NE021 and it is possible to use it as a head transistor for nuclear electronics applications.

Институт физики высоких энергий, 1986

В последние годы в физике высоких энергий интенсивно развиваются методы регистрации частиц детекторами без внутреннего усиления. Естественно, что амплитудное и временное разрешения таких детекторов в значительной мере определяются шумом усилителя. Характеристики сигналов детекторов и требования к шумовым характеристикам усилителя приведены в/1/.

В работе^{/2/} сравниваются усилители на полевых и биполярных транзисторах (ПТ и БТ) и показано, что при высоких скоростях счета целесообразно использовать БТ. Общие рекомендации по выбору типа БТ сводятся к следующему: необходимо использовать СВЧ БТ с малой величиной распределенного сопротивления базы r_{BB} , = 10 Ом и высоким значением коэффициента усиления по току β . На практике лучшие приведенные в литературе результаты^{/2-4/} получены с БТ типов NEO21, NE578, NE734, NEO2133, BFT25. Естественно, возникает желание сравнить их с транзисторами отечественного производства. Судя по опубликованным данным, конкурентоспособными могут быть БТ типов КТ382, КТ391, КТ3127, КТ3115, КТ384 (во всяком случае, известно, что эти БТ имеют малое r_{BB} , r_{5-8}), но важнейшая для приложений в ядерной электронике величина – эквивалентный шумовой заряд (ENC) – для этих БТ не исследовалась.

В настоящей работе мы приводим результаты измерений ENC в зависимости от емкости детектора С., длительности формировки т (использовался фильтр RC-CR) и коллекторного тока I_C для транзистора КТЗ82. Результаты измерений хорошо согласуются с расчетом по простой шумовой модели БТ. Так как опубликованные в работе /2/ результаты также хорошо согласуются расчетом, это дало нам основания сравнить ENC для KT382 И NE578 пересчетом данных^{/2/} к нашим условиям измерения. Peзультаты такого сравнения оказались очень близкими. Так как ЕNC усилителя не зависит от его конфигурации, а определяется шумами головного элемента, резистора обратной связи и типом фильтра, то согласне эксперимента и расчета позволяет сделать оптимистичное заключение: усилитель может быть спроектирован на основании измерений в и г . Простая методика определения

г, по результатам измерений спектральной плотности шума вв описана в работе^{/5/}.

РАСЧЕТНАЯ МОДЕЛЬ, ИЗМЕРЕНИЯ, ОБСУЖДЕНИЕ

Принятая для расчета эквивалентная шумовая схема БТ показана на рис. 1а. Спектральные плотности источников шума для -∞< ω <∞ есть

$$\overline{\mathbf{e}_{\mathbf{B}\mathbf{B}'}^2} = 2\mathbf{K}\mathbf{T}\mathbf{r}_{\mathbf{B}\mathbf{B}'}, \quad \overline{\mathbf{i}_{\mathbf{B}}^2} = \mathbf{q}\mathbf{I}_{\mathbf{B}} = \mathbf{K}\mathbf{T}\mathbf{r}_{\mathbf{B}}^{-1}, \quad \overline{\mathbf{i}_{\mathbf{C}}^2} = \mathbf{q}\mathbf{I}_{\mathbf{C}} = \mathbf{K}\mathbf{T}\boldsymbol{\beta}\mathbf{r}_{\mathbf{B}}^{-1}, \quad (1)$$

где I_B, I_C - токи базы и коллектора, $r_B = \frac{KT}{qI_B}, q$ - заряд электрона.

Полагая сигнал бесконечно коротким $i_{D} = \delta(t)$ и представляя источник шумов в виде пуассоновской последовательности δ -функций, получим вклады в ток БТ от каждой δ -функций этих потоков:

$$I(i_{D}) = H_{o}(p) = \beta K_{1}(p); \qquad I(i_{B}) = H_{1}(p) = (1 + pr_{D_{1}})\beta K_{1}(p);$$
$$I(e_{BB'}) = H_{2}(p) = pr_{D_{1}}\beta K_{1}(p)\cdot r_{BB'}^{-1}; \qquad I(i_{C}) = H_{3}(p) = 1, \qquad (2)$$

где ρ - переменная Лапласа, $r_{\rm B} = t_{\rm B} \cdot C_{\rm B}$, $r_{\rm D_1} = t_{\rm BB} \cdot C_{\rm D}$ $r_{\rm D_2} = t_{\rm B} \cdot C_{\rm D}$, а передаточная функция сигнала имеет вид $K_1(\rho) = \frac{1}{\rho^2 r_{\rm B} \cdot r_{\rm D_1} + \rho(r_{\rm B} + r_{\rm D_1} + r_{\rm D_2}) + 1}$ (3)

В работе^{/5/} показано, что высокочастотный корень K_1 можно не учитывать, а низкочастотный с точностью несколько процентов принять равным $p_2 = -r_{D_2}^{-1}$.

Используя наглядное представление функций (2) в виде диаграмм Боде (рис. 16), можно еще более упростить анализ шумов. Из рис. 16 видно, что, во-первых, при частотах выше $r_{D_1}^{-1}$ вкладом тока i_B можно пренебречь по сравнению с вкладами от $i_C + e_{BB}$, и принять, что спектральная плотность тока i_B пропорциональна ω^{-2} , т.е. такая же, как квадрат фурье-образа сигнала (пунктир при $\omega > r_{D_1}^{-1}$); во-вторых, при частотах ниже $r_{D_2}^{-1}$ вклад от источника шума e_{BB} , значительно меньше, чем от источников i_B и i_C , поэтому без заметной ошибки можно считать его белым во всем частотном диапазоне. Тогда схема рис. 1а перейдет в упрощенную схему рис. 1в с двумя – параллельным и последовательным – источниками шума:

$$\overline{i_{p}^{2}} = \overline{i_{B}^{2}} = qI_{B} = KT \cdot g_{m}\beta^{-1}, \quad \overline{e_{S}^{2}} = 2 KT [r_{BB}, \frac{C_{D}^{2}}{(C_{D} + C_{B})^{2}} + \frac{0.5}{g_{m}}], \quad (4)$$

где $g_m = I_C \cdot \phi_T^{-1}$ есть крутизна БТ, $\phi_T = KT \cdot q^{-1}$, термический потенциал $\phi_T = 25$ мВ при T=300 К. Такая эквивалентная схема идентична общепринятой шумовой схеме для $\Pi T^{/9-11/}$, поэтому можно воспользоваться методами, развитыми для анализа шумов ПТ.

Рис. 1. Эквивалентная схема шумящего транзистора с физическими источниками шума (а); квадратные корни из спектральных плотностей шума выходного тока БТ, обусловленные различными источниками: распределенным сопротиплением базы - е в , током утечки базы - i , током коллектора - i фурье-образ сигнала детектора - S. (б); упрощенная эквивалентная схема шумящего транзистора с источниками шума, пересчитанными на вход (в).

Вклады от источников параллельного и последовательного шумов ПТ могут быть представлены в виде /9, 11/

$$ENC_{p}^{2} = A_{1} \cdot \overline{i_{p}^{2}} \tau, \qquad ENC_{s}^{2} = A_{2} \cdot \overline{e_{s}^{2}} (C_{D} + C_{B})^{2} / \tau,$$
 (5)

где A_1 , A_2 - константы, зависящие от типа формировки, τ - ха-рактерное время формировки, $i_p^2 = 2 \text{ KTR}_p^{-1}$, $e_s^2 = 2 \text{ KTR}_s$, R_s и R_• - последовательное и параллельное шумящие сопротивления. Для БТ по аналогии можно ввести

$$R_{s} = \mathbf{0.5} \, \mathbf{g}_{m}^{-1} + r_{BB} C_{D}^{2} (C_{D} + C_{B})^{-2}, \qquad R_{p} = \mathbf{0.5} \cdot \beta \cdot \mathbf{g}_{m}^{-1}. \tag{6}$$

Спектральные плотности параллельного и последовательного шумов сравниваются при

$$\tau_{\rm C} = C_{\rm D} \sqrt{R_{\rm p} R_{\rm s}} \,. \tag{7}$$

Можно показать 9 , 11/, что минимум ENC достигается при $r = r_{c}$; при т < т_ шум определяется последовательным источником, при *т > т* – параллельным. Полагая источники шума е_s и i_p независимыми и используя соотношения $C_B = g_m \omega_a^{-1}$, $\tilde{I}_B = \beta^{-1} I_C$, можно получить из (5), (6)

$$ENC^{2} = ENC_{p}^{2} + ENC_{s}^{2} = KT[(C_{D}^{2}\frac{\phi_{T}}{I_{C}}+2\frac{C_{D}}{\omega_{a}}+\frac{I_{C}}{\phi_{T}\omega_{a}^{2}}+2C_{D}^{2}t_{BB}),\frac{A_{1}}{r}+\frac{I_{C}}{\beta\phi_{\tau}}A_{2}r].$$
(8)

Как видно из (8), даже в упрощенной модели необходимо задать четыре параметра, характеризующие транзистор (I_{C} , $\beta(I_{C})$, r_{BB} , ω_a), и четыре параметра, характеризующие условия эксперимента (r, C_D, A₁, A₂), что практически делает невозможным оптимальный выбор головного транзистора усилителя и его режима экспериментально, а при вычислениях всегда есть сомнения в применимости используемой модели.

Ниже мы сравним экспериментальные данные с результатами расчета по модели рис. 1а. При вычислении ENC мы пользовались не упрощенной формулой (8), а численно интегрировали спектральные плотности шума^{/5/}. В процессе измерений выяснилось, что параллельный шум не описывается соотношением $I_B = \beta^{-1} I_C$; лучшее согласие с экспериментом получается, если источником параллельного шума считать ток базы, измеренный в статическом режиме, т.е. $\overline{i_p^2} = q \cdot \beta_{CT}^{-1} I_C$, а для вычисления передаточных характеристик по-прежнему использовать соотношение $I = g_{m}U_{m'm}$. Величина с , определялась по измеренной спектральной плотности 4

шума^{/5/}, а β - по осциллографу. Значения ω_a - справочные. Таким образом. ENC вычислялся по формуле

$$(2\pi \cdot \int_{0}^{+\infty} e^{j\omega t} |N(j\omega)F(j\omega)|^{2} d\omega |_{t=0})^{1/2}, \qquad (9)$$

$$= 2,35 \cdot \frac{-\infty}{\int_{-\infty}^{+\infty} e^{j\omega t} S(j\omega)F(j\omega) d\omega |_{t_{max}}}, \qquad (9)$$

где $S(j\omega) = H_o(j\omega) \cdot i_D$ – передаточная характеристика сигнала, $N^2(j\omega) = |H_1(j\omega)|^2 \cdot \overline{i_B^2} + |H_2(j\omega)|^2 \cdot \overline{e_B^2} + |H_3(j\omega)|^2 \cdot \overline{i_C^2} - cnek-$

тральная плотность шума, приведенная на выход БТ. Частотная характеристика усилителя-формирователя типа RC - CR всюду в расчетах принималась равной

$$\mathbf{F}(\mathbf{j}\,\boldsymbol{\omega}) \approx \frac{\mathbf{j}\,\boldsymbol{\omega}}{\mathbf{j}\,\boldsymbol{\omega} + \mathbf{a}} \cdot \frac{\mathbf{a}}{\mathbf{j}\,\boldsymbol{\omega} + \mathbf{a}} \cdot (10)$$

Рис. 2. Схема измерений ENC: G - генератор импульсов точной амплитуды, F - фильтр типа RC - CR, SO - стробоскопический осциялограф, SW - ключ на микросхеме НЕ F4066A, MCA - амплитудный анализатор, D - задержка на одновибраторах.

Сравнение расчетной модели с экспериментом было проведено по схеме рис. 2. В качестве исследуемого транзистора T_1 был выбран КТЗ82 как наиболее перспективный из исследованных ранее⁷⁵⁷. Во втором каскаде усиления ($T_2 \div T_4$) транзистор T_2 был включен по схеме ОБ для уменьшения миллер-эффекта. Транзисторы T_2 и T_3 тоже имели малое значение t_{BB} , = (20+30) Ом. Стробосковический осциллограф работал в режиме ручного сканирования, положение развертки "Х" устанавливалось на максимум

импульса, так что на выходе ключа мы получали прямоугольные импульсы длительностью ~ 10⁻⁶ с на пьедестале, величина которого определяется смещением "Y". Использование стробоскопического осциллографа и ключа вместо линейных ворот (ЛВ) дает следующие преимущества:

- это есть практически идеальный пиковый детектор при любых длительностях формировок;

- при применении ЛВ необходимо всякий раз подбирать задержку в канале запуска при изменении постоянной времени фильтра r = RC = CR, тогда как при использовании стробоскопического осциллографа это достигается плавной регулировкой без нарушения коммутации измерительного тракта.

Результаты измерений приведены на рис. 3. Рис. За показывает, насколько критичными оказываются шумовые характеристики усилителя к выбору транзистора. На нем приводятся зависимости ENC (C_D) для двух CB4 БТ – КТЗ16Д ($\omega_a = 5 \cdot 10^9 c^{-1}$, $\beta = 343$, r_{BB} , = 346 Ом) и КТЗ82 ($\omega_a = 3\pi \cdot 10^9 c^{-1}$, $\beta = 130$, r_{BB} , = 18 Ом) при одинаковых режимах работы ($I_C = 3$ мА, $U_{CE} = 5B$) и формировках (r = RC = CR = 20 нс). На рис. 36 зависимость ENC(C_D) показана при различных r = 20, 100, 200 нс. Сплошные кривые – расчет, черные точки – результаты измерений. Светлые точки при r = 20 нс получены квадратичным вычитанием вклада шума второго каскада. Шум второго каскада измерялся при запертом T_i , для чего ко входу параллельно t_{BE} подключалась заглушка 50 Ом. При r = 100 и 200 нс шумом второго каскада можно было пренебречь всюду, за исключением $C_D = 0$.

Как видно из рис. Зб, расчет хорошо согласуется с экспериментом. Выборочно (для 1-3 значений Ср, Іс, г) измерения были сделаны и для нескольких других экземпляров КТ382. Всюду достигнуто хорошее согласие расчетных и экспериментальных данных. Поэтому мы делаем вывод, что простая шумовая модель транзистора рис. 1а может быть использована для вычисления ENC. В работе^{/2/} приведены результаты измерений ENC(C_D) для транзистора с параметрами r_{BB} , = 15 Ом, $\beta = 100, \omega_{\alpha} = 4\pi \cdot 10^9$ рад/с и треугольного фильтра с длительностью по основанию 2Т и = 50 нс. Там же приведена расчетная кривая, хорошо совпадающая с экспериментальными точками. Поэтому возможно сравнить КТ382 с использованным в работе /2/ транзистором (его марка в работе /2/ не приводится, но из сопоставления с работой /4/ можно заключить, что это NE578 или аналогичный ему). Результаты пересчета данных^{/2/} на фильтр типа RC = CR = 20 нс и вычислений ENC для КТ382 показаны на рис. Зв. Можно видеть, что транзисторы практически эквивалентны. На рис. 4а, б приведены зависимости ENC(I_{C} , r) и ENC(β , f_{T} , t_{BB} , C_{D}). Видны следующие закономерности:

Рис. 3. ЕКС для транзисторов типа КТ316Д и КТ382. Кривые - расчет, точки - эксперимент. Для обоих транзисторов I_C = 3 мА, U_{CE} = 5 В, r-RC - CR-20 ис. но ^г_{BB} · = 346 Ом и 18 Ом, β = 343 и 130 для КТ316 и КТ382, соответственно (a); зависимость ЕКС от C_D для КТ382 при разных длительностях формировок r = 20, 100, 200 нс (помечено цифрами у кривых). Сплощные кривые - расчет, темные точки - ЕКС без поправок на шум второго каскада, светлые точки для r = 20 нс - с учетом шума второго каскада. Пунктирияя кривыя проведена через измеренные точки от руки. Режим и параметры транзистора T1 те же, что и на рис. За (6); зависямость ЕКС от C_D при r = 20 нс, I_C = 1 мА для транзистора КТ382 (кружки) и NE 578 (квадраты). Пояснения в тексте (в).

7

ŗ

Рис. 4. Зависимость КИС от времени формирования r = RC = CR при $C_D = 100$ пФ и различных токах коллектора $I_C = 0.25$; 0.5; 2; 4 мА (шифры у кривых). Вычисления сделаны для $\beta = 100$, $r_{BB}' = 20$, $\omega_a = 2\pi \cdot 10^9$ рад/с (a); зависимость КИС от емкости детектора при $I_C = 3$ мА, r = 20 нс и различных β , f_T , $r_{BB'}$. Для кривых 1, 2, 3 соответственно $\beta = 50$, 100, 200; $r_{BB'} = 50$ Ом; $f_T = 10^9$ Ги. Для кривых 4, 5 и 6 $r_{BB'} = 10$ Ом, $\beta = 50$, 100, 200; $f_T = 10^9$ Ги (6). Для зависимостей, отмеченных индексами а и b. $f_T = 0.3 \cdot 10^9$ и $3 \cdot 10^9$ Гц, осталькые параметры те же, что у кривых 4 и 6.

- при увеличении β (другие параметры фиксированы) кривая ENC (C_D) смещается вниз без измерения наклона;

- крутизна кривой ENC(C_D) уменьшается при уменьшении (ВВ' но значение ENC при нулевой емкости детектора от (ВВ' не зависит;

- увеличение граничной частоты f_{T} существенно уменьшает ENC при $C_{D} \leq 20$ пФ; эффект относительно больше при меньших β ;

- изменяя коллекторный ток, можно в широких пределах варыровать уровень шума и величину оптимальной длительности формировки. Необходимо, правда, учитывать, что от коллекторного тока зависит и β.

ЗАКЛЮЧЕНИЕ

1. Показано, что простая модель шумящего транзистора хорошо согласуется с экспериментом. Входящее в расчеты распределенное сопротивление базы измерено простым методом, описанным в работе^{/5/}. Таким образом, трудоемкие измерения ENC могут быть заменены предварительной отбраковкой по г_{вв}, и β и несложными вычислениями.

2. В приложениях в области ядерной электроники транзистор КТ382 позволяет получить такие же шумовые параметры как и японские NE578, NE021 и может быть рекомендован для использования в качестве головного элемента усилителей. Необходимо продолжить поиски малошумящих транзисторов, особенно бескорпусных, используя методику^{/5,8/}.

Литература

- 1. Manfredi P.F. and Ragusa F. NIM, 1985, v. A235, p.345.
- 2. Gatti E. and Manfredi P.F. NIM, 1984, v. 226, p. 142.
- Heijne E. and Jarron P. IEEE Trans. on Nucl. Sci., NS-29, N 1, 1982, 405.
- 4. D'Angelo P., Hrisoho A., Jarron P.et al.-NIM, 1982, v. 193, p. 533
- 5. Краснокутский Р.Н., Курчанинов Л.Л., Тихонов В.В. и др. Препринт ИФВЭ 86-5, Серпухов, 1986.
- Корнильев Г.Э., Кузьмин В.В. В сб.: Микроэлектроника и полупроводниковые приборы. - М.: Сов. радио, 1977, вып. 2, с. 126.
- Андрюхов И.П., Докучаев Ю.П., Корнильев Г.Э. и др. В сб.: Микроэлектроника и полупроводниковые приборы. - М.: Сов. радио, 1980, вып. 5, с. 43.
- 8. Курчанинов Л.Л., Тихонов В.В., Шувалов Р.С. Препринт ИФВЭ 86-102, Серпухов, 1986.

- 9. Radeka V. IEEE Trans. on Nucl. Sci. NS-21, N1, 1974, 51.
- 10. Краснокутский Р.Н., Федякин Н.Н., Шувалов Р.С. Препринт ИФВЭ 86-37, Серпухов 1986.
- 11. Gatti E. and Manfredi P.F. Processing the signals from solid - state detectors in elementary-particle physics. La Rivista del Nuovo Cimento v. 9, Bologna, 1986.

Рукопись поступила 26 ноября 1986 года.

1Ç

Р.Н.Краснокутский и др.

О выборе головного элемента для малошумящего усилителя на биполярных транзисторах.

ź

記録なり 時かり 日本 とう

;

2

いたとき

Редактор Н.П.Ярба. Технический редактор Л.П.Тимкина. Корректор Л.Ф.Васильева.

Подписано к печати 17.12.86. Т-23977. Формат 60х80/16. Офсетная печать. Печ.л. 0,62. Уч.-изд.л. 0,73. Тираж 230. Заказ 1227. Индекс 3624. Цена 10 коп.

Институт физики высоких энергий, 142284, Серпухов Московской обл. 10 коп.

;

and the state of the state of the second

and a start a second of the second

Индекс 3624

:

ПРЕПРИНТ 86-217, ИФВЭ, 1986