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Abstract

Based upon an extensive data base including 100 separate animal studies, anTestimate of the mor-
tality dose-response relationship due to continuous photon radiation Is predicted for 70 kg man.
The model used in this prediction exercise includes fixed terms accounting for effects of body
weight and dose rate, and random terms accounting for inter- and intra-species variation and
experimental arror. Point predictions and 95% prediction Intervals are given for the LDOs. LDi0.
LD2$, LD$0, LDjS' LDm. and LDq5. for dose rates ranging from 1 to 50 R/min.
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Prediction of the Mortality Dose-Response Relationship in Man

The data used in tliis exercise were taken from various animal experiments which were carried out

to examine the effects of continuous or nearly continuous exposures to photon radiation. An

extensive summary of 211 such experiments was reported in Jones, et aL (1986). which served as

our initial data source. Of the studies included in that summary. 104 were published in detailed

enough form to permit estimation of the mortality dose-response curve. Of these, three were not

used due to the apparent presence of excess background mortality. Also, one other study. Cronk-

ite, et al. (1955). was not included because the dose rate used in that experiment (approximately

105 R/min.) was more than 100 times greater than that in any other available experiment. The

remaining 100 experiments span 13 species and dose rates of from .22 R/min. to 800 R/min.: a

tabulation of experiments by species and dose rate is given in Table 1.

For each of the 100 experiments, the mortality dose-response function was estimated using an

assumed probit model, i.e.

r =

where d is the dose in cGy to bone marrow. 4> is the cumulative standard normal distribution

function, and r is the resulting proportion of mortality, y and LD^o are unknown parameters

which uniquely specify the dose-response function; we estimate these from the data for each

experiment. The rationale for use of the probit model is given in detail in Morris and Jones

(1986). In that work, seven two-parameter models used in quantal dose-response analysis were

compared for goodness of fit. using essentially the same data set as in the present work. The pro-

bit model in untransformed dose was shown to be one of the more accurate functional forms,

especially in the tail regions of relatively high and low mortality.

For each experiment, maximum likelihood estimates of LDso and y (i.e.. slope) were computed,

along with their asymptotic standard errors and correlation. In the following, we will describe a

statistical procedure based on these LDS0 estimates to predict LD$o values for man. Since the

probit curve is completely specified by the parameter values of y and LDS0. any other dose

corresponding to a specified level of mortality is a simple function of these two parameters. In
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fact:

LDX = LDSo + Zx/ y.

where x is any value greater than 0 and less than 100. and Zx is the x -th percentile of the stan-

dard normal distribution. By substituting the maximum likelihood estimates of y and LDS0 in

the right side of the above equation, the maximum likelihood estimate of the desired dose can be

calculated, and standard errors of these can also be easily obtained. Besides the LDS0. we have

also modeled values of the LD05. LD10. LD2s. LD7S. LDgo. and LD9S. and calculated prediction

intervals for each of these in man.

Modeling Lethal Dose Levels

In the following, we will describe our modeling and prediction procedure for the LD$o- The same

procedure was followed for the other 6 levels of mortality mentioned above.

In Table 2 we list, by dose rate and species, average values of the LDso estimates from the 100

experiments. Two well known patterns are easily seen in the data. First, within each species.

higher dose rates are generally associated with lower values of LDS0. The exceptions to this pat-

tern in the table can quite easily be explained by small sample sizes and random noise. Second,

species of larger body weight tend to have lower values of LD^ at any dose rate. We have found

that, in this data set, the logarithms of body weight, dose rate, and LD$o a r e empirically well

related through a linear functional form. i.e.

ln(LDS0) ^a + fiw ln(body weight) + /3r ln(dose rate).

If the above equation is fitted to the data by ordinary least-squares, estimates of the three

coefficients are or=6.317. fiw=—.165. and |8r=— .091. (Throughout this discussion, we distinguish

between an unknown constant quantity and its estimate by placing a caret ( ~ ) above the esti-

mate.)

However, linear regression analysis in this form is not an appropriate approach for modeling

LDso's across species and dose rates for at least two demonstrable reasons. First, while a single

equation of the above form passes through the collected data fairly well CR2 is .74). the fitted
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curve tends to over- or under-estimate LDso's for individual species. For example, of the 11

experiments using dogs as experimental units, the model fitted by ordinary least-squares overesti-

mates 10 of the LDso's- Hence, while body weight is a useful surrogate variable for species, it is

clear that some of the intra-species variation cannot be explained by this variable.

A second difficulty is related to inter-species variation. Ordinary regression analysis is based on

an assumption that all values of the observed variable (natural log of LD so) are measured with

equal precision. The standard errors which can .be.computed for each experiment are clear evi-

dence that this is not the case: for example, experiments employing larger numbers of animals

typically have relatively smaller standard errors of estimation. Also, while the standard errors

associated with each ln(LD50) represent the variation in estimation that would be expected if that

experiment were repeated, this does not represent total intra-species variation. For example, the

average standard error of ln(.LDSo^ observed over the 48 mouse studies in this data base is less

than one-tenth the standard deviation of the 48 lniLDso) estimates calculated.

Hence, an appropriate model for statistical analysis of these data should, in addition to including

the terms in the above equation, take into account (1.) inter-species variation not explained by

body weight, (2.) the varying degrees of experimental precision for differing experimental proto-

cols, and (3.) the intra-species variation not included in experimental variation (e.g. due to strain,

specific exposure conditions, measurement techniques unique to an investigator or laboratory, et

cetera.). The model we have adopted to account for all of these items is a mixed linear model

(see, for example. Searle, 1971) including fixed and random terms as follows:

ln(estimated LDSo) ~ « + Pw ln(body weight) + (Jr ln(dose rate) + £Inter + £intra + €,

where |inter is & random variable representing inter-species variation not explained by body weight,

întra *s a random variable representing intra-species variation, and € is the random imprecision,

such as measurement error, which would be observed in repeated executions of the same experi-

ment on the same strain of animal by the same investigator, et cetera.

In the mixed linear model above, a, /3W. and fir can be thought of exactly as in the case of ordi-

nary multiple linear regression. That is. they are fixed, unknown constants, which are presumed
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to be valid across all species and experimental conditions studied. The term representing inter-

species variation, linter- is a random quantity which varies from species to species, but is constant

across the studies of a single species. Hence, it is intended to represent the deviation of an entire

species from the fitted model, as with the dog experiments mentioned above. In our analysis,

is assumed to be a normal random variable with mean of zero and standard deviation of 8

This source of variation plays an important role in quantifying the uncertainty of a predicted

LD50 in man. since it is a measure of inter-species variation after "adjustment" for body weight.

The final term in the above model, s, is the randoBj term included in ordinary linear regression

models. It represents what may be called "measurement error" specific to each experiment

(although in fact more than true measurement error is often represented by this term). In this

case, the variability of € for each experiment is different, depending upon the dose rates used.

number of animals in each group, and other factors. So. we assume that 6 is normally distributed

with mean zero and standard deviation o ^ y . whica Is different for each study. Fortunately, we

have an "external" estimate of 0"^^ for each experiment, namely the computed standard error of

each ln(LDS0).

The intra-species variation not accounted for by € is represented by the final random variable.

ftntra- In the following we shall assume that each experiment has its own value of fintra* and that

these are normally distributed with mean zero and standard deviation Sjntra-

We have written a FORTRAN program to calculate maximum likelihood estimates of the funda-

mental parameters of the above model, namely a. $w. /3 r. Sinter, and Sintrs. under the assumption

that the individual values of o ^ y can be adequately approximated by the standard error of

ln(LDSo) calculated for each experiment. Body weights used are "generic" body weights for each

species, listed in Table 3. Generic body weights may be more consistent with inter-species model-

ing than individual body weights: e.g. Vriesendorp and vanBekkum (1984) have postulated that

species body weight is well correlated with the number of hematopoietic stem cells. The same

model and estimation procedure was also used to estimate the five parameters for modeling each

of LD0S. LDl0. LD25. LD1S. LD<x>, and LD95. Parameter estimates based on the 100 studies in
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our data set. for each of the 7 levels of mortality, are given in Table 4.

Prediction for an Unobserved Species

Based upon the model estimates discussed above, a prediction interval can be established for a

specified level of mortality, given a dose rate and body weight of an unobserved species. We now

briefly discuss what this interval represents, and the assumptions on which it rests.

Prediction intervals and confidence intervals are similar statistical procedures for estimating, with

controlled uncertainty, unknown quantities. However, they are used in different settings, depend-

ing upon the nature of the quantity being^estimated. A confidence interval is an interval estimate

of a single, fixed quantity (generally called a "parameter" in statistical terminology) such as |8W in

our model of LD50. Confidence intervals can also be placed on combinations of fixed quantities

such as a + 0W ln(body weight) + pr ln(dose rate), where a body weight and dose rate have been

specified; this is how the widely-used confidence bands for regression models are generated. In our

case, such an interval would be an interval estimate of the log lethal dose for a specified body

weight and dose rate, averaged over all potential species and subspecies of that body weight.

A prediction interval, on the other hand, is an interval estimate of a quantity which will, itself,

contain a random component. This is snore appropriate for our interests, since our aim is to con-

struct estimates of doses for a particular, unobserved species of body weight 70 kg (e.g. man).

Since our model includes random (unexplained) variation due to species, an interval prediction of

man"s LD 50 must make allowance for the random component in the LD$o of man, i.e. that not

explainable by body weight. For a more in-depth description of the comparison between

confidence and prediction intervals in ordinary multiple linear regression, see, for example. Neter

and Wasserman (1974).

For our purposes, a point prediction of the ln(LDso) in man is

prediction = or + fiw ln(70) + fJr ln(dose rate).

that is, the same as the estimate of ln(Z,Z)50) averaged over all species of that body weight. The

difiFerence between a confidence interval for the latter quantity and the prediction interval for s
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single species is in the uncertainty term which is added and subtracted from this prediction. In

this case, a 95% prediction interval for man's ln(Z,Z>so) is of form

prediction ± 1.96sf ̂ (prediction) + Bjn

where se(prediction) is the standard error of the prediction, which is in turn a function of 8 i

and Sintra. The prediction interval differs from the corresponding confidence interval in the

appearance of Slnter under the radical sign; this effectively widens the interval to account for the

unobservable species-specific deviation for man which cannot be explained by body weight.

Finally, recall that this is actually a prediction interval for the log of the dose which results in

50% mortality; the prediction interval for the dose itself is found by simply taking the antilog of

these interval endpoints.

The interpretation for s rate-specifie LD$o prediction interval obtained as above is as follows.

Assuming that our basic model of 3 fixed and 3 random effects is adequate, that the 13 species

thus far collected are associated with 13 independent values of"ftater. and that man would

represent another similar * random draw" from this collection of species, a prediction interval of

the type described here would contain the true LD^ for man with probability .95.

Table 5 contains point predictions and 95% prediction intervals for doses corresponding to seven

levels ©f mortality, at varying dose rates for a 70 kg man. At first glance, these intervals may

appear to be surprisingly wide. This is due to the appearance of the Sinter term in the prediction

interval formula. As sample sizes increase, the terms which constitute ^(prediction) become

small, approaching zero in the limit. Thus, for confidence intervals, the width of the interval can

be reduced without bound by increasing sample sizes. This is not true for prediction intervals,

where uncertainty due to the random component of the predicted quantity must continue to be

considered, and is not reduced by Increasing the amount of available data. Of the species

represented in our data set. goats, sheep, and swine have body weights closest to that of man

(each is 60 kg). As shown in Table 1. none of these species appeared in experiments with dose

rates of over 50 R/min. Therefore, we suggest that our model, based upon the present data, not be

used to predict doses for man outside of the range of dose rates from one to fifty R/min.
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Table 1: Individual Studies by Species and Dose Rate.

Dose Rate (R/min.)

^ 1 and < 5 ^ 5 and < 10 s» 10 and <50 >50 and < 100 MOO

Burro
Cattle
Chinchilla
Dog
G.Pig
Goat
Hamster
Mouse
Primate
Rabbit
Rat
Sheep
Swine

3
1
0
0
0
0
0
2
0
1
0
0
1

0
0
0
0
1
0
0

16
2
0
1
0
0

1
0
0
5
0
1
0
2
0
0
0
2
1

0
0
1
5
2
1
1

13
5
0

11
1
2

0
0
0
1
0
0
0

13
0
0
0
0
0

0
0
0
0
0
0
0
2
1
1
0
0
0
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Table 2: Average LD50 (cGy to marrow) Estimates by Species and Dose Rate.

Species

Burro
Cattle
Chinchilla
Dog
G.Pig
Goat
Hamster
Mouse
Primate
Rabbit
Rat
Sheep
Swine

<»

295
159.^
-
-
-
-
-

1288
-

907
-
-

379

^ 1 and < 5 \

-
-
-

251
-
-

981
342

_
550

-
_

Dose

180

_
287

-
215

-
917

-
-
-

180
277

Rate (R/min.)

MO and <50

_
494
244
296
232
556
722
528

_
590
177
186

> 50 and <100

_
_

230
_
_

647
_
_
_
-

708
366
838
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Table 3: Body Weights used in Modeling.

Species

Mouse
Hamster
Rat
Chinchilla
G.Pig
Rabbit '
Primate
Dog
Goat
Sheep
S^ine
Burro
Cattle

Body Weight (kg)

0.025
0.125
0.225
0.430
0.500
3.0
5.0

10.0
60.0
60.0
60.0

155.0
375.0
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Table 4: Parameter Estimates for Lethal Dose Models.

Lethal Dose

LDos
LDlQ
LD2S •
LDSo
LD1S
LDgQ
LD95

a

6.052
6.090-
6.218
6.352
6.470
6.567
6.621

Parameter Estimates

-.185
-.175
-.173
-.173
-.172
-.173
-.173

-.134
-.126
-.114
-.100
-.091
-.087
-.086

Sinter

.368

.358

.306

.282

.284

.294

.302

.280

.264

.244

.224

.210

.200

.194
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Table 5: Predictions of Lethal Doses (cGy to marrow) for 70 kg Man *.

Lethal Dose Dose Rate (R/min.)

1 2 5 10 20 50

LDQS 88 80 71 65 59 53
194 177 156 143 130 115
427 388 343 312 284 251

LD1Q 98 89 80 73 67 60
210 192 171 157 144 128
451 413 367 336 308 274

LD2% 125 115 104 96 89 80
240 222 200 185 171 154
463 427 3S4 355 328 295

LDs® 151 141 128 120 112 102
275 257 234 2i8 204 186
503 459 427 398 371 338

LD1S 169 159 146 137 129 1̂ 9
310 291 26$ 251 236 ail
569 - 534 490 460 431 j '396

LDW 1S3 172 159 150 141 130
341 321 297 279 263 243
639 601 554 521 490 452

LD9S 189 178 165 156 147 136
360 339 313 295 278 257
684 644 595 560 527 487

•Note: Entries are (1.) Lower 95% prediction limit. (2.) Point prediction, and (3.) Upper 95% pred-
iction limit.


