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INTRODUCTION

In this paper. the problem of cumulative beam
break up in a periodic linac for a genera! impedance is
discussed, with the effects of acceleration included. The
transverse equations of motion for a set of identical point
like bunches moving along the length of the linac are cast
into a simple form using 2 smooth approximaticn. This
results in a working formula that is used to analyze beam
breakup. Explicit expressions for the transverse motion
in the case of a single resonance impedance are found
using saddle point integration. This is done first with no
external focusing, and again in the strong focusing limit.

EQUATION OF MOTION

Consider a sequence of equally spaced point like
bunches moving down a linac with positions defined by

oy = ct - Mer, M =g, 1 . R N ()

Here r is the bunch separation in seconds. ¢ is the speed
of light, and M is a bunch labelling index.

The equation of motion for the transverse displace-
mert zy; of bunch M is given by
¢ dru)
d dz
Here ~ (= ) is the beam energy in units of the rest energy.
The function K () describes the external transverse
focusing and is equal to ~ times the focusing function
used in :ircular accelerator theory.

Fy {2} is the transverse wake field force resulting
from the passage of earlier bunches:

. e B .

Fuylzy=1¢e*Ng 2 Y 6z -NL) Sy 7miz) (3)
m=0 N

where ¢ is the clectroric charge, Ng is the number of

particles per bunch, and

Syom = G {(M-m)7]. (4)

G {t ) is the transvers: wake function. vanishing for { <O
due to causality.

Formula (3) assumes that the accelerating cavities
are placed periodically al positions
s =NL, N =0.1, -+ . and that they have
infinitessimal length, acting like thin lenses.

220, ()

+ K (2)zy(z)=Fy(z)

THE SMOOTH_APPROXIMATION

In the case of a coasting beam (v = const.}. a for
mal solution of eqn. (3) can be found for the case where
K {z) is periodic with period L. This is not easily done
when acceleration s included, and certain simplifving
assumptions arc useful. First, assume that the sum of
delta functions in eqn. (3) can replaced by 1/L . This
serves 0 smooth vut the effect of the transverse kicks of
the cavities. Second, assume uniform acceleration, i,
7=+ ' 2, where agand v’ are constants.
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\With the above assumptions, a change of indepen-
dent variable from z to u = vy alisws eqn. (2) to he
rewritten as

L2
+|:—7—} K(u)ry(u)=
a 2\
2 2 efNg o
L Sxfom Tm (1) (5}

m =0

Because we are dealing with an initial value prob-
fem, the sum on the right hand side of eqn. (5) extends
from m == 0to oo, For the case of an infinite number of
equally spaced bunches extending from z == -oc to o
(i.e. steady state), it would bz replaced by a convolution
sum from -oc to +oc. Considering the convolution sum
as the product of an oo - dimersional matrix Sy _p Wwith
a vector z,,, the matrix can be diagonalized using eigen-
functicns

m= -o0, o0, 0L 8K r. (6)

The solution of the initial value problem can be
expressed as a superposition of these sigenfunctions:

2%
:,,,(u)z.‘;?{dﬂ S (u.f) e, (7)
or, equivalently,
[as]
S(ud)= Y e™tr (v) (&
w =0

Inserticn of eqn. (8) into the equation of moticn (3)
results in a differential equation for the transformed func-
tion E (v ,8),

—:‘—-;i%-u—d:i(u.ﬁ)ﬁ-
H W) A =0 )
where
A(6) = 5—1;,\—"- mﬁéo LY (10)

Equations (9) and (7} nre the working fornsulae from
which the tranaverse treajectocies zy(u ) enn be found
given n focusing function N (¥) and wake Tunetion

S\ e

INITIAL_CQNRITIQNS

The initial conditions for transverse bunen position
and angle are translaced into initial conditions for £ (v ,#)
using eqn. (8). Constder the cnse where the leading
bunch (M == 0) is lnitially offset by an amount ry, with
successive  buanches  entering &u- finae  on axhe
(xar(#g) == O, M 5£0). Assuming that all the bunches
start out moving parallel e the aceeleration direction
(dzyy [d2 == 0), it is seen that

T(ng,8) = 24, (Ieading bunch initially offuet),  (11)
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Here ug m /45, with ¥, heing the injection energy in
units of the particle rest energy,

Because the equation of motion is finear, the solu.
tion f a more general initial value problem ean be writ.
ten an & superposition of solutions using an ieitinl condis
tion of the form of sqn (11}, provided that an appropri-
ate permutation of indices is made,

A aecond ease of [aterest ia the situation whepe all
o)

bunches are initially offset by an amount £, In this
case, the initial vadue of 2 fs given by
- \; im
:("o.”) s M0

m

To

- rxs Cd (2l bunches initially offirr), {12}
¢ .

This correspondds to a hapaverse teanslation of 1he
injeetor selntive to the linae by an amnunt g,

 SOLUTION.FOR SMOOTH FQCUSING

Foensing an a finae 1x nauadly done with quadripols
magnets placed at fierd potitions along the zeaxi=, o that
the foousing funetion K {n) ix a piscs wise continnons
futietlon, In the spitit of the amooth approximation, the
forntag hiere i axagiod o vary simoothly with the varie
abie w o having no step dlacontinultisn, The most grneral
form of focosing funetlan I (i) for which eqn, (0) <un be
gonelily wolved i3 given by

' %
Niuw)= Ky» ‘I" X ,‘,) . (1)
" n?
wheye W Wy, aind 0 are copstiunts,

Thie Tunetion vlmmnn- with inereaning  enrrgy,
neaming the aonstants A, nre pesltive (eeenll v - ),
Thiv ix reanonnble behnvionr for K (v ) hacanse for con-
stant foonsleg,  the  trnnsverse beain slze naturally
deepnnzes with inersasing sneegy dus to mlinbatle Jdamp:
i, o that o constant benm size conled in prineiple be
indstatumd WK (6 ) wers to ddeerstae with inereaaing
u,;u[gt“.‘.

The solutlon o eqn, (03 ustng the foensing funetion
SEeagn, (3 e he weitten na

Bon o) oen Uomfwagnd) (14)
AvHern
l Ny
YA : ' “s’))
Tola
o

“""n_: W, {1n)

g Vo
~ Yoram v ()

wned (a0, 8 3 o molution 1o AWhittnkee's atandured form
of the ronfiuent hypergesinet fe sqiintion:
H " x 14wy
n 1(‘1’/."‘ ] ‘t}b L - {1 . {l“)
d ! ;
1€ the aonntnnt &) diege, (18) s assnmed o vaniah,
the funetion B {u 8) enty be wpittan i tnpms of Hasanl

funetions:

E(w f)mA (ugd) HM (an) + B(so ) H IV (av), (10)

where the #f {*) are Hankel functions of order nu,

o Sy - a0 (20)
and
2 - 2l K
17 - (,,'rl K, (21)

The quantities A and /7 are determined from the Initial
conditions acenrding to

A itoug [ IV (nvg) ”m("o)] Ef'o.')
)T AT e i )L 2, 2)

SINGLE BRESQNANCE MQDEL

When the deflecting wakeflelds Inslde the accelerat-
ing envitien are modelled by a single resonance, the wake
function ¢ (1), using (4) In given by

1 RS
Ssn v ? 3
Sy o 2".” 3 ] sin(m wr) {23)
whare m, is the particle mnse, ¢ the speed of light, R
the ahunt. impedance, and @ the mode guality factor,

Using eqn. (10), It lu deen Lhat

A(f) m ———tOiRfur) (24)

con(f 4 2. '2‘;' . con(wr) .
whers
QN n

For the case whare K (v ) == 0, the function B (v .#)
tadsicen 10 A linear combination of modified Bessel fune-
thn of ardsr sero, An saymptotie formuln weing Lhe sin-
gle resanance model ean bhe found by expanding the
Pemel furietiona for inege argumant, and ueing aadidle
puint Integratlon. The methad of Glurkstern, Cooper,
and Channell [1] is folinwed haee,

Uning the laltial eonditiona of eqn (11) (lending
hinch offset). and expanding the Besss! functions, nne
arrives at the [allnwing:

LT = " i
Iy (% %g/0
: w(’ﬂﬂwn/-}fd $o U [v oy 2 ) ] {8)
if,) LLJ " .

where o [ glvan by sqn. (20), with K 4 st egqual to gero,

Uning the function &(#) of the pressding eaction,
the ‘axpanant giving the |argeat contribution to the
integral, and Ite et «lnrivnrlvu #an he written wa

7 (0) = ALE -,-3?.) v, (47)
"o (" "o) n(teiwr/3¢ ) R
ARSI .m:,f) L a



Saddle points sre located by setting 4/ /d 8 equal
to zero. In this way one obtains

- | Man’ sin{w?)
VB, s-%g Mn(?, ¥ iwr/2Q)

The root having the largest positive real part is the most
important, since it appears In an exponent.

Asuming |4/, | << 1, one can estimate the
value of #, from eqn. (24):

1/3
(29)

$ wr q
WALt ~T N el (]
4, 4+ 39 W 'y {30}

Inserting this result into aqna. (20) and (27), one
finds the value of the exponent at the dominant saddie
point. finally arriving at the rasult

Ty (w VN Tu oMt MEL g
LALRRS e VE ¢ q + ce (M)

v e

1, 2M3n

where
R
£ - [.“_"_JL..L‘ILJ cive (32)

e second term in (31) results from the solution where

right hand slde of eqn. (30) changes sign. The
uponam (32) n the result statad by Helm and Losw [2|
uaing & technique of Panofsky, in ths limit v >> w,,.

A necemaary conditlon for the valldity of the solu-
ton {31) 1s that the higher neder termn In tha Taylnr
sxpannion of f (#) are small compared to thoas which are

kept, Fimt write
sf@) e L iy [I 0

/"’(.)
Fapmasiteo s (33)

The sscond tarm in square hracketa ln (17) must be

anntl comparsd to onm over the reglon whera the

Integrand Is non-negliglhle (1o, nanr the saddle polnt), In

thlu r-%m 4.4, ) han n magnitude laan than or squal to
. )i 5 that the condition becomen

" 1/8
A - K| et (34)
Ma (n un)’

One musl aleo requlre that the argumants of the

Peswal functions near the aaddle point be Inrge compared
to unity, This given

2wy .
W R (28)
2 .
o EREE AR (26)

The mwumption | a /A8, | €< 1, used to derlve
s, (W), reducen to :

;f |k | e (a7)

It K{u) = conat. = Ko an symplotle solution
enn he ohtained using eqn. (28), with n glven by enn,
(20), Strong (aeusing will he takan to menn that K, in
Ineger in mingnitude than &(#) over the ;eglon of Integra:

tion. Procesding as before, the saddle points are deter-
mined from

_Mq'(Kea,) sin{w?) (a)
T nn{d, +iwr/2Q)
In the strong focusing limit, the evan’ily A, can be
dropped relative to K o on the right hand side.
Using eqn. {30) as before, one m’ivu al t.hc result

:H(l) m‘\/r M wtei ¥ - —6-

A) w

7, s (39)
where
¥ - _Qif_:‘:o)\/x-o ' (40)
and

1/2
ER.ra “)

Here the second term In sqn. (39) comes from the
(a = ) term In ogn, (28).

The condition snaiagous to (34) s that
| Ey| Y% << 1. Relations (35) and (38) become

;"',- Se >> 1, (42)

:,‘zr'm > 1, (43)
and (37) has the sume form, but with £ =X,
NIECTION OYFEET EMBOR

If alt of the bunehes were assumed 10 anter the linne
offiey by an smount 54 in the preceding examples, the
Integrand 1n eqn. (26) wouwld have o be multinlied by
Sl-c i*1, weing (13). To fiewt spproximstion, the reeults
(31) and (39) cam e .nonﬂnd o this situation simply
by multiphestion by (1-¢'% )%, since the Integrand In
(26) to presumably s highly peaked function of # uesr 7, .
This spproximation will break dowa If 4, le nesr
2k w,k = inmteger,

In the case of seroc focwsing, the first term In egn.
(31) must be multiplied by

-1
[l-¢m‘ﬁ‘-§] . (44)

The second term le the complex conjugate of the first, s
hefore,

For strong focusing, the same is done to sqn, (),
but with £ =X,
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