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ABSTRACT 

This talk describes recent three-dimensional self-consistent 
Hartree-Fock calculations. After an introduction providing the 
basic approximations and the different symmetries, we present an 
application to quadrupole deformation. We pursue with a study of 
octupole deformation properties of 2 2 2 R a and 1 4*Ba nuclei for 
which states of good (positive and negative) parity are projected 
out. Finally we discuss.an extension to the study of rotation and 
high-spin states with the cranked self-consistent Hartree-Fock 
method. As an exemple, the 2 4Kg nucleus is studied as a function 
of angular momentum from ground state up to fission. 

The work presented below has been done in collaboration with 
H. Flocard and P.-H. Heenen. 
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INTRODUCTION. 

The analysis of tue behaviour of nuclei subject to various 
constraints provides a useful testing ground both for effective 
nuclear forces and for different theoretical descriptions ranging from 
phenomenological, such as the liquid drop, to fully microscopic, like 
Hartree-Fock. The following question still remains a challenge: 
assuming one knows the correct effective force, how much microscory is 
needed in the description of the nuclei in order to describe 
accurately a given set of physical properties? Although effective 
forces are always somehow model dependant, this question remains 
relevant as most models have in common the physical picture of 
indépendant particle motion of each nucléon in the mean-field created 
by the average interaction with all the others. In this talk, we 
present a description of nuclear deformation properties by means of 
the microscopic self-consistent Hartree-Fock (H.F.) method which is 
presently the most successful of the available microscopic models. 

In the H.F. ..proximation, contrary to Strutinsky-type 
potential-energy calculations [1] for instance, the potential shapes 
are not constrained a priori to conform to simple analytical shapes. 
As a result one avoids all the sometimes tedious work of optimization 
with respect to parameters of the mean-field potential, like 0. or 0,, 

considered as physically irrelevant . Furthermore, the nuclear energy 
is not split in bulk and microscopic contributions and the solution of 
the Hartree-Fock equations, with appropriate constraints, gives the 
total energy. In a single calculation it provides the single-particle 
wave functions and spectrum, as well as the optimal shape for the 
nucleus subject to the chosen constraints: quadrupole, octupole 
deformation or rotational frequency. By optimal shape, we mean that 
the energy is minimized with respect to variations of all uncontrained 
degrees of freedom (Yu , Y5 , Y6 , . . . ). An additional difference with 
Strutinsky-like calculations lies in the fact that the deformations 
are defined with respect to the intrinsic state rather than the 
potential and are therefore in closer contact with experimental 
information like that provided by electromagnetic transition. 
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AS described above, the H.F. approach, when tractable, is a much 
better candidate to the description of nuclear properties than the 
presently used methods, which anyhow are in general established by 
introducing approximations on the Hartree-Fock model. There are 
however several technical limitations which render H.F. calculations 
difficult and time consuming. In the sixties and the early seventies, 
H.F. equations were solved by expanding the self-consistent 
single-particle wave function on a basis. This necessarily truncated 
basis introduced artificial constraints on either the shape of the 
nucleus or the asymptotic behaviour of the wave functions. To overcome 
this difficuly we have chosen to discretizu the H.F. equations on a 
regular mesh in coordinate space [2]. The number of points of the mesh 
required for an accurate description of nuclei is rather large and 
constitutes the price one has to pay to avoid the limitation generated 
by the basis. This technological improvement is made possible by the 
present availability of large vectorized computers. An other 
difficulty arises with some proposed nuclear effective forces which 
produce non-local mean-field due to exchange terms in the interaction. 
With such forces, the computation time would be so large that 
calculations are not presently feasible. To circumvent this difficulty 
we use Skyrme-type forces which produce local mean-field and which, 
despite their simplicity, have turned out to be very successful. For 
completeness however, let us -nention an alternate approach where 
the H.F.-Bogoliubov equations are solved in a basis with a two-body 
force which produces a non-local mean-field. The latter method of 
solution has not been used to study rotations yet, but rather to 
analyse extensively the fission properties of nuclei [3]. 

This talk is organized as follows. First we review the H.F. 
method in coordinate space with Skyrme forces and present some results 
for nuclei with quadrupole deformations. Then we discuss results for 
the octupole deformation of 2 2 2 R a and U 4 B a nuclei. In these cases, a 
restoration of the broken parity is also performed by projection of 
the intrinsic state onto states with good parity. Finally we turn to 
the problem of the self-consistent cranked H.F. equations with a 
calculation of the 2 4Mg Yrast line up to fission. 



CONSTRAINED H.F. EQUATIONS IN COORDINATE SPACE 

Let us first focus on time-reversal invariant intrinsic states 
with the Skyrme interaction. The H.F. energy can be written as the 
integral of a local hamiltonian density <G(r): 

E - j X(r) d3r, (1) 

where 3G(r) depends on the single-particle wave functions through 
various local densities (kinetic energy, mater and spir densities) 
[2]. In our calculation, the direct tern; of the coulomb energy is 
treated exactly while we use the Slater approximation for the exchange 
one. 

For nuclei which do not present odd multipolarity deformations, 
two additional symmetries can be imposed on the single-particle wave 
functions: the parity and the signature, the latter corresponding to a 
rotation of IT around the z-axis. It is then possible to impose that 
each of the four components (real and imaginary part, spin up and down 
component) of each single-particle wave function has a given parity 
with respect to the three symmetry planes x-0, y-0 and z-0 (see 
ref [2] for a complete discussion). The H.F. equations derived from 
the variation of the energy (eq. 1) can then be solved in a 
rectangular box covering only one eigth of the full space. 

As in this section we restrict our discussion to time-reversal 
invariant wave functions, the single-particle orbitals can also be 
arranged in time-reversed pairs fy and 4^ such that 

4>r(r,a) - (r^r.cr) - a «P \{r, -a), (2) 

where T is the time-reversal operator, so that it is sufficient, to 
solve the H.F. equations for only one member of the paired states. 
This provides an additional reduction of the computational task by a 
factor two. 

Pairing correlations are included in an approximate manner 
within the BCS formalism using a simple seniority force. We use a 
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constant pairing strength G with cut-off factors fi which prevent the 

unrealistic pairing of highly excited states of the continuum [2]. The 

pairing contribution to the energy reads as: 

EP--GH fifjimvOlujVj), (3) 
i,j>0 

where the paired states are the *"wo time-reversed orbitals «P.- and •£-. 
i 

Deformation energy surfaces are obtained by means of an external 

constraint on the mass quadrupole tensor Qij - \3xiXj - r 2^^] with 

adequate Lagrange mutipliers. All other unconstrained degrees of 

freedom (hexadecapole,...) are fully relaxed. The symmetries discussed 

above impose that the principal axes of inertia lie along the axes. 

All the results presented below have been obtained with the 

Skyrme interaction Sffl. This interaction has some deficiencies (mostly 

regarding its rather large modulus of iucompressibility), but has been 

extensively tested over the whole mass table. At the present stage, 

none of the Skyrme parametrizations proposed to cure the SŒ 

déficiences does it without introducing other problems. 

The first application of the discretized version of the H.F. 

approximation has been an extensive analysis of the Zr isotopes [2] 

from the proton rich 7 6 Z r toward the neutron drip line. Exotic 

isotopes of neighbouring nuclei (Sr, Kr and Mo) were also 

investigated. Our calculation reproduces the experimentally well 

established transitions from spherical to well-defined rotor. A 

comparison with earlier works [4-7] using the Strutinsky method shows 

a good average agreement. We find a triaxial stability of the deformed 

ground states in the N~38 and N~60 regions in good agreement with the 

observed trends. 

Heavier nuclei have also been studied with a similar success. 

For instance, A. Coc has studied the possibility of triaxial shape in 

the Cs region 18], whereas N. Redon has calculated the 1 3 8Sm, 1 9 2 0 s 

and 1 8*Pt nuclei, also looking for triaxial stable deformations [9]. 

Proton-rich exotic nuclei recently discovered at SARA in the Sm region 

( 1 3 4' 1 3 6Sm) have also been investigated by N. Redon et al. [10]. We 

will not elaborate on these works which are already published. 

file:///3xiXj
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Let us only mention the recent study by F. Naulin [11] who has 
made a extensive analysis of the properties of the neutron-rich even 
isotopes of C, 0, Ne and Mg nuclei. One of his findings is that it is 
possible to get for these ligth nuclei binding energies with an 
accuracy of the order of ±0.75 Mev. This precision is comparable to 
that of semi-empirical mass formulae [12,13], and even better in 
some cases. Figure 1 shows a comparison of his H.F. calculations of 
the 2-neutrons separation energies S 2 n with experimental numbers, when 
available, and with the predictions of Uno and Yamada [12] or of 
Môller et al. [13]. 

i i I i i i i 1 i i i / / i i 1 i i i i I i i i i / / l i i i i I i t i i 
10 20 10 20 TO 20 N 

Fig. 1. Separation energies S 2 n for different isotopes of C, 0, Ne 
and Mg as a function of the neutron number N. a) H.F. 
calculations; b) Uno and Yamada mass formula [12]; c) Môller 
et al. [13] predictions. Experimental numbers are indicated by 
crosses, the solid lines join calculated values. 

This result is quite interesting as these microscopic H.F. 
calculations are based on an effective two-body interaction involving 
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a very small number of parameters which are the same for all nuclei, 
contrary to semi-empirical formulae. The strength of the pairing force 
may need to be readusjted for different mass regions, however the 
results of Naulin have been obtained with the pairing strength used 
for the Zr region in ref. 2. 

OCTUPOLE DEFORMATION. 

Quasi-molecular rotational bands characterized by spin states of 
alternating parity connected by enhanced El transition [14] have been 
observed in several regions of the periodic table such as the 
barium [15,16] and the radium-thorium regions [15,17]. These bands can 
be understood by assuming that the corresponding nuclei have no 
intrinsic parity and that they have a pear-shape deformation in their 
ground states. 

To explore the corresponding H.F. deformation energy surfaces, 
we include an additional constraint on the octupole moment Q3 - r^Yjg 
of the nucleus. The symmetry associated with the parity operator is 
broken by the Q 3 operator so that the single-particle wave functions 
keep only one good quantum number: the signature. As compared to the 
above calculations, it is necessary to double the size of the box by 
suppressing suppressing parity with respect to the z-0 plane, at the 
cost of a factor two increase in the computational task. 

The first nucleus selected was the 2 2 2 R a [18]. In view of the 
available data, it is not the best candidate for a study of permanent 
octupole deformation in the ground state. In fact, our choice was 
motivated by the discovery of the natural radioactive decay of this 
isotope by emission of 1^C [19]. Figure 2 summarizes our results. The 
symmetric (Q3-0) minimum as a function of quadrupole deformation turns 
out to be a saddle point when both octupole and quadrupole degrees of 
freedom are introduced. The intrinsic state has an octupole moment of 
about 2000 fm3 and a quadrupole moment 1310 fm2. This value of Q 2 is 
slightly larger than that at the saddle point (1020 fm2).Since the 
intrinsic state breaks the reflection symmetry while the saddle point 
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Fig. 2. Octupole deformation energy of z z z R a for fixed values of 
Q 2 . The curves corespond to Q^fbarn) - 6, 8, 11.5, 14.5 and 16. 
The contour lines (up-right corner) are drawn for the mass density 
of the intrinsic (I.S.) state with a density increase of 0.02 fm3 

between lines. 

does not, one can expect that the band heads for both parities will 
have different quadrupole moments. To check this point, it is 
necessary to project H.F. wave functions onto good parity states. This 
requires going beyond the mean-field approximation and the calculation 
of matrix elements of the interaction between different H.F.+BCS 
states. We have developped a program for that purpose and used it for 
the z 2 zRa. After projection, the energies and positions of the band 
heads of both parities are given in table 1. As expected, the negative 
parity state has a larger quadrupole moment. It should induce a larger 
moment of inertia for this band, in agreement with experimental 
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Table 1 

Q2 03 E £• E. 

fa2 fm3 Mev Mev Mev 

1020 0 1703.33 1703.33 - saddle point 

1151 1010 1703.38 1704.06 1702.48 minimum of E + 

1310 2008 1703.52 1703.57 1703.46 minimun of E(I.S.) 

1320 2410 1703.49 1703.50 1703.48 minimum of E. 

E(MeV)» 
-1702 

-1703 

-170 A 

E (MeV) 
-1702 

-1703 

-1704 

Q^SOOfm' / Q,=l000fm2 

• • • • * . . . i . . i . . . . i . . . . i • . • • i j i i , , i i , i i i i i i i i i i -
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222_ 
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M- *..« 3Î03 

(E-
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3) 

Figure 3. Energy c r v e s for 2 2 2 R a as a function of the octupole 

deformation Q3 for several values of the quadrupole moment. The 

different l ines represent the H.F. calculation of the unprojected 

state (HF+BCS), the positive parity state (E^), and the negative 

parity state (E. ) . 
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findings. The experimental 1" state has an excitation energy of 
0.24 Mev. The energy difference between the calculated intrinsic 
states (0.6 Mev) has the right order of magnitude although larger. A 
complete dynamical calculation by mean of the generator coordinate 
method for instance, may improve significantly the agreement. 

The set of results we have obtained for this nucleus is shown on 
Fig. 3, where the minima listed in table 1 can be seen on the 
different curves. The absolute minimum of the negative state (E.) is 
observed on the curves labeled Q2-1300 fm2, it has a slightly larger 
value of Q 2 (1320fm2 ) as the response of a system to a constraint 
takes into account the restoring force: the system is driven to the 
minimum of the unprojected state. The other minima are deeper and 
numerically easier to get. These calculations have been performed for 
a value zero of the asymmetry angle. The '''-stability of these minima 
remains to be checked. 

The Z~56 isotopes have also been found to be good candidates for 
permanent octupole deformation in their ground states. Indeed, nuclear 
properties of neutron rich barium nuclei have been measured [20,21], 
and evidence for octupole bands in this mass region has been 
established experimentally [22] . Strutinsky-type potential-energy 
calculations [15,23] have shown that below AS200, the nuclei U 4 « 1 4 6 B a 
are the best candidates for having a ground-state octupole 
deformation. 

We have performed a similar calculation with the microscopic 
self-consistent H.F. method, choosing U 4 B a as a test case. Figure 4 
shows that there is undoubtedly an octupole shell effect for this 
nucleus. With our present choice of the pairing strength, the 
intrinsic state is very soft with respect to octupole deformation, but 
the minimum in energy is obtained for Qz-500 fm2with Q 3-0. Within the 
uncertainties in the determination of the pairing strength, it is not 
possible to conclude wether or not a permanent octupole deformation is 
to be ruled out. However, when the intrinsic state is projected onto 
good-parity statej, the minimum of the positive-parity band acquires 
an octupole deformation of 600 fm3 for a quadrupole moment of 400 fm2 . 
Our calculations do not extend to large enough quadrupole deformation 
so that we do not know the exact position of the minimum of the 
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negative-parity band. From the figure, we can only infer that it will 
have a much larger quadrupole moment: at least 800 fm 2. In the upper 
part of Fig. 4 the overlap between the intrinsic state and the state 
obtained by parity reflection is given as a function of Q 3 . Fcr 
extreme octupole deformation, this overlap goes to zero and the 
projected energies become equal to that of the intrinsic state. For 
Q 3 - 0, the energy spliting due to projection is maximum. 

A further investigation of the quadrupole-octupole energy 
surface of this nucleus is necessary in particular for higher 

•1186 

-1187 

j i i ; 

E 
-1185 

-1186 

- \ 

•1187 

_ i _ — J I L , 

\ Q2=600fm2 E 
-1185 

•1186 

10 JQ 3 0 

(HF+8CS) 

•1187 

\ Q2=800fm2 

• 

'"Ba °' !0 3 Q 3ffm 3) 
IE+) IE.) 

Figure 4. Energy of the intrinsic state (HF+BCS), the positive-
parity state (E +) and the negative-parity state (E.) of the U 4 B a 
nucleus as a function of Q 3 for three values of the quadrupole 
moment. The upper part of the figure shows the overlap between the 
unprojected state and its parity reversed state. 
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quadrupole deformations. In addition we should pursue by the study of 
neighbouring isotopes such as 1 Ba or cerium isotopes in order to 
delineate the contour cf the octupole deformation zone on the chart of 
elements. In the near future, we plan also to analyze the f-stability 
of these shapes. 

Finally, let us emphasize that we obtain for both nuclei a 
smaller quadrupole moment for the positive-parity band. From 
the first results, one can expect that this band will have a 
smaller moment of inertia, which seems to be the case for 2 2 2 R a and 
1 4 4 B a [23]. 

SELF-CONSISTENT CRANKED HARTREE-FOCK 

In this section, we present a generalisation of the discretized 
H.F. equations which incorporates rotations by mean of the crankad 
approximation. As a first application of this method we have studied 
the properties of a light nucleus, 2 4Mg, from the ground state up to 
the fission limiting angular momentum {24}. 

The cranked approximation is based on the assumption that a 
nucleus with spin J can be described in terms of an intrinsic state at 
rest in a frame rotating with some anrular velocity ca around a given 
axis. The optimal intrinsic state is determined by minimization of the 
Routhian S 

S- E - (AJZ, (4) 

where E is the expectation of the H.F. energy defined in eq. 1 and Jz 

the expectation value of the third moment of the angular momentum Jz. 
The choice of the z-axis (contrary to the customary choice of the 
x-axis) simplifies the formulation of the symmetries of the single-
particlt wave-functions. As the cranked hamilton^ is no longer 
time-reversal invariant, the degeneracy of the single-particle wave 
functions does not hold anymore and we have to solve the cranked H.F. 
equations f^r each individual state, doubling therefore the size of 
the calculation. Furthermore, the structure of the mean-field is more 
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i — i 1 1 — I 1 1 1 — I 1 1 — i r 

Figure 5. Excitation energy (in Hev) versus angular momentum 
(in fi) of various bands of Z 4Mg. in the top left part of the 
figure is shown a comparison of the calculated and experimental 
spectra of the ground state band. 

complicated, it includes spin-vector and current potentials which are 
usually neglected in semi-microscopic approaches. 

For a nucleus as ligth as 2 4Mg, pairing is not expected to play 
a significant role so that we use the simple BCS method. When 
time-reversal symmetry is broken, we follow the prescription proposed 
by Marshalek [25] to define paired states (see ref, 24 for a complete 
discussion of this approximation). 

Low lying states of 2 4Mg are known experimentally up to the 
Yrast 12*, and possibily 14* (26). Strutinsky-type calculations have 
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been done for this nucleus [27,28]. Shell model calculations [29] are 
also available up to spin J-12. 

The various bands generated by the rotation are displayed on 
Fig. 5. We will not elaborate on the details of these bands which have 
been adequately presented elsewhere [24]. Let us only recall the main 
differences with the Strutinsky-type calculation of ref. [28]. They 
find a triaxial ground state up to J - 6, as opposed to our prolate 
solution. Between J - 6 and 12, there results i.ce very close to ours, 

-135 -

-134 -

-I3S -

-123 

-124 

QlbWM) 

Figure 6. Fission path at J - 22 and 26 as a function of the 
quadrupole moment. The upper part shows the deformation energy 
curves at J - 22 (contour separated by 0.5 Mev). In the left-low 
corner are drawn two sections of the total density of the Yrast 
state at J - 26. The equidensity lines are drawn every 0.02fm3. 
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and in both cases, the spectrum is too compressed compared with 

experiment. In contrast with our calculation, their ground state band 

stops at J - 12 . Above the ground state band and before fission, we 

have been able to extend some bands to lower spin (e.g. band H). There 

are other slight differences in the interpretation of the different 

bands which may be due to the absence of Y2 and Y£ components in the 

Nilsson-Strutinsky potential. As a matter of fact, most of the 

qualitative differences between their results and ours seem to come 

from the limitations of the parametrization of the potential shape in 

ref [28]. 

At the upper end of the Yrast line, from J -22 to 26 on the band 

E o n fig. 5, the nucleus is quite elongated, (400fm2< <? <570fiii 2 ) and 

remains close to the prolate axis. For comparison, the end points of 

band I have quadrupole moments ranging from 80fm2 to lOOfm2 (for 

J - 24). At the end of band EZ, symmetric scission in two oblate 1 2 C 

occurs. The upper part of figure 6 gives the deformation energy 

surface for (J2)-22 with the corresponding fission path. The saddle 

point is slightly triaxial, however the energy dépendance in T is 

rather important as on the prolate axis ("M)), the energy is already 

1.5 Mev above the saddle point (T—4*). The lower part of the figure 

displays the fission path for the limiting angular momentum (J-26). 

The density at the minimum is drawn in the left-low corner. The 

preformed 1 2 C are nearly oblate with their principal axes 

perpendicular to the rotation z-axis. This preformation can also be 

observed on the single-particle spectra where level are rearranging 

themselves in pairs of opposite parity [24] . The limiting angular 

momentum (J - 26) appears compatible with classical estimate [30]. 
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CONCLUSION 

Calculations of the deformation properties of the zirconium 
isotopes [2] have proven both the feasibility and the interest of the 
fully microscopic self-consistent Hartree-Fock approach when 
discretized in coordinate space. Exotic nuclei or triaxial shapes can 
be studied within its simplest version where states are time-reversal 
invariant and have no octupole deformation [8-11]. 

The study of octupole deformation presented in this talk [18] is 
already very interesting with the prediction of different moments of 
inertia for even and odd parity bands, however it remains incomplete 
as the "Y-stability is yet to be investigated. Ue emphasize that this 
study will not require modifications of the present program which is 
clearly capable of describing both octupole ad full quadrupole 
deformation (in fact all Y l n deformations such that m is even). On the 
other hand, the projection code we have developed to extract good 
parity states opens the possibility of performing dynamical 
calculations. Projection is based on the estimation of matrix elements 
of the two-body hamiltonian between different Slater determinants, 
which is one of the ingredients required by the generator coordinate 
method. Such dynamical calculations are very promising for the study 
of fission for instance. Barriers for very asymmetric fission in the 
Ra-Th region could obtained within such micoscopic approach and 
compared with other semi-classical estimate. 

The extension of H.F. to tine-reversal non invariant states is 
by itself another field of interest. Besides the results presented 
above for 2*Mg [2k] , we have also analysed the influence of 
temperature on the behaviour of the Yrast line, which allows the study 
of high spin states with excitation energy or excited bands parallel 
to the Yrast line. With an improved treatment of the pairing 
interaction, we are presently investigating the high-spin properties 
of 8 0Sr. Furthermore, the removal of time-reversal symmetry renders 
possible a microscopic study of odd-even or odd-odd nuclei without 
using artificially an even-even program (with time-reversal symmetry) 
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and ad-hoc partial filling of orbits. The exploration of the 
properties of odd exotic nuclei is thus possible microscopically, and 
remains to be done. 

Finally, we are presently working on an extension of our program 
to include at the same time time-reversal aon-invariant state and 
octupole deformation. Our goal is to analyse the structure of the odd 
and even bands in the Ba or the Ra-Th region as well as the high spin 
properties of these nuclei. 
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