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" ABSTRACT

A many-body description of the photoemission and
photoabsorption processes is outlined that incorporates the
multichannel treatment of the atomic dynamical excitations
into the framework of the multiple scattering theory.

In this context the interplay between excitation dynamics
and electronic and geometrical structure of the ground state
is elucidated. A new multiple scattering expansion is derived
that takes into account interchannel transitions as well. An
application to the analysis of photoabsorption spectra of
mixed valence compounds is outlined.

The same approach is shown to provide a theoretical model
for the study of the evolution from the adiabatic to the
sudden regime. Limiting, asymptotic cases are discussed.

Finally the unifying approach provided by the multiple
scattering theory in the description of photoemission and
photoabsorption processes in condensed and gaseous phase
matter is illustrated.
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1. INTRODUCTION

Electromagnetic radiation has been historically the most
widely used tool in the investigation of the properties of the
physical state of matter. The reason lies in the smalleness of
the fine structure conétant a=(e2/fic)=(1/137) that governs the
coupling of the radiation with matter. The resulting weak
interaction has a twofold advantage: c¢n one hand the
perturbation on the system under study is negligible so that
one is able to investigate the properties of the unperturbed
system; on the other hand from a theoretical point of view one
can use the linear response theory as an 1nterpretat1ve scheme
in which to frame thc experimental observations.

The study of the electronic excitation dynamics in the
various states of the matter benefits of this fortunate
circumstance. There is however a price to pay for this
simplification in the investigation of the structural
properties of matter. Due to the smallness of the coupling
" constant scattering experiments c¢an only probe the pair
correlation functior of observables that couple to the
electromagnetic probe, like the local density p(zr) or the
current density jj(r). Except for periodic systems, where this
information is usually sufficient to reconstruct the spatial
organization of the atoms, in any other instance one has no
clue to the atomic,géometrical arrangement in the system under
study. '

The advent of the ex<tensive use of synchrotron radiation
has given a tremendous impulse to both areas of research. The
unique properties of this radiation source, like its
intensity, brilliance, polarization, tunability and
collimation, to cite a few, coupled with sophisticated data
acquisition techniques have made possible the explosive
development of all kinds of spectroscopic research.

On the ::ide of electronic excitation dynamics a deeper
understanding has been achieved in the way an excited system
reacts to the excitation probe. Screening, polarization,
relaxation, autoionization and decay mechanics have been
elucidated in a variety of cases, both because of higher
quslity data and better theoretical treatment,




On the structural side the photoabsorption process has been
progressively recognized and used as a technique capable of
providing structural information beyond the pair correlation
function relative to the absorbing atom even in non periodic
systems. In fact it has been realized that, even thouch the
primary probe, the radiation, couples weakly with matter, the
secondary probe generated in the photoabsorption process, i.e.
the photoelectron, can couple strongly with the atoms of the
system and therefore can carry supplementary information
through final state inceractions.

ASs a consequence photoabsorption and photoemission
measurements, especially from inner shell states, have been
progressively used for structural purposes. The limitation to
inner shells, with the inherent simplification brouéht about
by the localized and dispersionless initial state, has made
simpler the theoretical interpretation of the experimental
results, which in turn have exploited the selective power of
the incoming radiation both in terms of the type of atom to
excite and the type of final state to reach.

Another reasons for using deep core states has been the
reduction, in the final state, of the amount of electronic
correlation effects which in general tend to obscure the
informational content relating to the structural arrangement
of the atoms in the system.

However relaxation processes and double excitations are, to
some extent, always present in the final state of inner shell
photoabsorption. Therefore a theoretical scheme for
interpreting the interplay between structural properties and
electronic correlation dynamics . would be highly desirable.
This scneme is proéided by the multichannel multiple
scattering (m.s.) theory!:? which forms the objects of these
lecture notes.




2. - THE MULTICHANNEL MULTIPLE SCATTERING THEORY
We begin with the total absorption cross section, given by

] .
o(=4xZaho | (PNie X £, 1P,"128 (hw-E+E,) (2.1)
f

i=1

where ""z.r are the many-body initial and final state wave
functions for N electrons in the system and the sum over the
fina. states I is intended also over all directions of the
photoemitted electrons. Hhw is the incoming photon energy and €
its polarization.

For transitions from a core state we assume that, to a good
approximation,

YN =W, (D) c @ " (x,.2, )

(2.2)
= INIAG (D) P (2,2, )

where A is the usual antisymmetrizing operator A=(1/N!) }.'.p(-l)l’
P(A=4) and ® *!(r,.x,,) are Slater determinants describing
the configurations present in the initial state wave function
¥,N. Normalization imposes I, Ic I2=1, if (.19,)=1.

Similarly we assume that, by expanding ¥ N(r,r.r, ) in
terms of the complete set ¥ *!(r.rx, )

»,

¥ F=VN! A L tg(x) ¥ (5yx, ) (2.3)

We take the functions ¥,"! to be eigenstates of the N-1
electron Hamiltonian

N-1 N-1 P 2z, 181, jsw-1 2
Hyy*~-L V2= £ £ ——+ I —mm (2.4)
i=1 =1 ka1 Iri-l,‘l 1¢4 “"i”j'

with eigenvalues E,*!:

Hy., W1 = ENT1 W M1 (2.5)
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where £ Z, = N, R, denotes the nuclear positions and 2, are the
k=1

associated charges.

We use throughout atomic units of length and Rydberg units
of energy. The factor VN! in Eq. (2.3) again assumes that we
can approximate ‘i’a“'l by a linear combination of Slater
determinants, belonging to a continuum spectrum if ‘l’a"'1 does.
In any ca3e we assume for simplicity all continuum states
normalized into a box enclosing the system: one may eventually
take the limit of the box linear dimensions to infinity and
transform the sum in Eq. (2.3) into an integral.

The final state wave function ¥, is an eigenstate, with
energy E=fio+E",of the N-electron Hamiltonian

N-1 2 P sz
H,=-V24+ X -z +H,
=1 2% ) k=1 |Zz-R |
(2.6)
=-V2+V(e,r,R) + H
Therefore
H, W, = Y%, (2.7)

and we shall henceforth assume that E:"f--l-.'."g is the ground state
of the system.
The ingertion of Eq. (2.3) into Eq. (2.7) gives

(-V2_+ vz, z;,R) + H, | ) AL ()Y M (r.x, ) =

(2.8)
= E AL f ()Y (x5, )

and by multiplying on the left by ¥,"! and integrating we
obtain the set of equations

(V24 E-E"Y) f ()=
(2.9)
= L[V (2, R)+W . (2, R)] £4, (2)

where




N-1
Voa (E/R) = [ T &P N (x,.x, )
i=1
(2.10)
vig, 5,R) o' (2, )

is a direct potentia. term and we have lumped all the exchange
terms into the quantities W,,.(r,R,) which are thus
complicated, non 1local, exchange potentials for which a
suitable, local approximation has to be found. If we impose
the condition, as we shall do, that the functions f, (r) be
orthogonal to all the one particle states present in the
configurations making up the ground state wave function (so as
to ensure the orthogonality condition (‘P,'I‘Fq')-O) as well as
to those configurations that enter in all the ¥, *!,then. the
exchange term is given by
N-1

Woo. (B,R) =1/f,(2) | TT &r,¥ (x5, )V(E, 2, ,R)
i=1

(2.11)
I (-DPFEf,, (2P (2,2, )
P(»E)

We refer to the appropriate literature for the transformation
of this non local operator into a local one?. Henceforth we
shall assume that this transformation has been performed and
that our problem is to solve the coupled set of Schrédinger
equations with local potentials. |

Since E-ﬂaH-E"q we can write in Eq. (2.9)

E-E,"! = hw+ E" - E;! = ho+ EY - M- (ESMI-EMY)
(2.12)
=ho - I~ AE, = k2 '

since Eq""-Eq" =], is the ionization potential for the core
state and AE=E "' - E™! is the excitation energy left behind
to the (N-1)-particle system. Therefore k; is the wave-vector
of the final state photoelectron

Egs. (2.9) can then be rewritten as

(V2 4+kg?) £,(2) = Zog, Voo (B/R) £, (%) (2.13)




where for sake of brevity we have put V. =Vg,.+ Wg,..

The functions f,(r) have a simple physical meaning in the
case of electron-molecule scattering. Through the asymptotic
conditions

ik_r

— ) Ny (2.14)

Lku.t e
£(0) ~ (e | Bug t£u (%, %y

T r

where the factor Ny=(ky/X)!/?/(4%) is necessary to ensure
normalization to one state per Rydberg, they describe an
electron ih the incoming channel @ with wave vector knuhich
can be scattered in any outgoing channel @, with wave vector
kg, after loosing the energy AE“. In the photoemission process
we have to take the time-reversed state of Eq. (2.3) (complex
conjugate if spin is neglected) so that the outgoing channels
become incoming channels which interfere constructively in the
wave packet describing the photoelectron so as to give an
asymptotic plane wave propagating out at infinity with wave
number k. '

Therefore Eqs. (2.13) are to be supplemented with the
boundary conditions Eqs. (2.14) written by replacing f,(r)
with £ *(z).

It is fairly obvious then that in the expansion (2.3) the
most important (N-1)-particle states are the excited states
‘l’a"" with a core hole corresponding to the photoejected
electron, for which Eq'H'Bq' = 1., so that kazz ho - I, - AE, is
small compared to V.,,. In this sense the ¥, *! are the relaxed
excited states of H, .

The argument runs as follows. If kg 2»hw-I =k, and k 2»
IVgq: (Ec) |, where r. is the radius of the atomic core, then to
a first approximation we can neglect the potentials in the
r.h.s. of Egs. (2.13), so that, together with the boundary
conditions qu; (2.14), we obtain

ltu.z-
fa(8) ~ e 8ag - (2.15)

The procedure for solving Eqgs. (2.13) with boundary
conditions (2.14) (in the end we shall take the complex
conjugate) closely follows Ref. 2. We first transform Eq.




(2.10) into a Lippman-Schwinger equatica

Lku.r

£,(x) = Nye Oag +] G%(x-x') I, Voo (x') £, (211"

ik,.x P
e dg * kzl ]nkG“O(r-r')Zu. VK oo (') £, (2') A"

=N
(2.16)

+[aq GO (x-2") E,, VI . (2") £, (2')d%c"

where we have partitioned the space in non overlapping spheres
Sy_around the atomic nuclei and an interstitial region AfQd. An
outer sphere !% enclosing all atomic spheres can be added by
replacing I, _, with I ;. Also V¥ . (£')=V . . (z')for r'e Q.

Moreover
(Vi k) G% (x-2') = 8(x-r') (2.17)

whose solution is?

iky Ix-2° |
e
G% (r-£')=-(1/4%) —————=—ik, L, j,(kor) Y (2)

lz-x'|
(2.18)

n*(kgr,) Y (T, = —ikgZ J% (z) H'® (x))

where L stands for (1,m), r,(r) refers to the greater (lesser)
of || and |x*'| and jx' n, h1+ are spherical Bessel, Neumann
1 - We shall
use re:zl spherical harmonics and put for brevity J“L(:)-

and Hankel functions, respectively, with h,* = j + in

jl(kar)Y(Q), etc...G“o(r-:') is the free Green's function with
moment um ﬁka and cutgoing wave boundary conditions.
Use of Eq. (2.13) allows us to write

ika.rs
f () = Ne
* " o (2.19)

+[G% (£-2') (V.24 k) £, (x) &1

which, together with the Green's theorem




[y (6% (x-2") (V.2 +k2) £q(2)
~£,(2") (V. 2+ Xx,2) 6% (x-2") 1d°r" (2.20)
=[_ (6% (x-2)V,, £4(=) ~£4(z)V,.6% (r-2') ]-n do°
v

leads to the following equations

ik_ .z

£, (6) = Nye = 8o

P
+k,£1[sﬂk[Ga°(:-t') vr'fa(:') -
- £,(8) V6% (z-x")]n do"  (2.21a)

+ [0 G (2-2") Vo, (2°) £, (1) & ifrel Q

iky-® P
0 =N,e g + kz_llsnk (6% (x-2")V £ () -

- £,(2")V,,G% (x-£') ]'n do' (2.21b)

+ G (E-2") 5, Vi, (£') £y, (2) &' if re 5 Q

In order to perform the surface integrals around the
spheres €, centered at R, we make use of the usual expansion?

G (z-x') = I, 3, (kqr) YL(?L)'GQLLJL- 31 (kg Yy (2y)

(2.22)
~ I, 9% (%) Gau.,jx.' I (x))
where
a 1741-1'~ L* » A
e, e = 4% kg L. 1 C, pnl-ih 1~(kaRij)] Yyn (Ryy)
=N - % (2.23)
with

Cll . =Y (DY, (DY, ()dQ (2.24)
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and putting tj-t-kj, 311'31‘31' Unless explicitly stated, we
shall henceforth assume this meaning for xy. The matrices N and
J are defined by decomposing -ih* =n -ij,.

Moreover we need also an expression for the solution of the
system of Schrddinger equations (2.13) inside each sphere Qk
Writing

fa(r) =Z, £ (1) Y, (B) (2.25)

inserting into Eq. (2.13) and projecting onto Y, we find

[1/r(d%/dr?) r + k2 = 1(1+41)/r?1£% () =

o ) (2.26)
2«-:.- Vi: e (r) fax.-‘r)
Here we have assumed that around each center k,
. A
Ve (B) =L, ¥V, ., %% ()Y, (F) (2.27)
"so that
vk’.LLCM' (r)'zl‘. CLL'LH VR:LIu' (r) ' (2 [ 28)

If & runs from 1 to ng and 1 from 0 to 1., this is a set
of na(lmxﬂ)’ equations and éonsequently we can construct this
number of linearly independent solutions f ., (r) regular at
the origin which, for given G'L'can be interpreted as vector
solutions whose components are labelled by OL. To start the
integration, we might take, for example, near the origin,

£,0%= rl 8, 8, (2.29)
Consequently the general solution can be written as
£%(x) = Z,,,.. 0% . ® () (2.30)

so that without loss of generality, inside the sphere Qu we
can write

' [ ~n
fa'(5) = g I, €y ™ £, % (2 Y (E) (2.31)
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Insertina this expression into Eq. (2.21b), taken for :eQi,
remembering Eq. (2.22), one obtains

0 = I 3%(x)) (kPy? Tyoy. Wi-ih*), £, %0C,.%

* HZ“ z"' ZL'L" pkz ch..kx.' Wi3,., fk:x.-x.-m']cn-n'} (2.32)
”»

ik .x
+ [4Go (T-E ) B VI (£ ) £o, (£ + N e §

Here we have introduced p,, the radius of sphere Qk, and
defined the wronskian

Wi, g)=£(r) (d/dr)g(r) - g(r) (a/dr) £(x) |r=p, (2.33)

calculated for r = p,.
We now put

B%. = Py Tgop W3y o £y, 201G, =
(2.34)
= p,2 Zair W3 £)) 10 C ™

and invert this relation to obtain

P2 Cop® = Zou [W(3,£071],,,.%% B* . (2.35)
with obvious notation.
Then Eq. (2.32) becomes

0 =X J%r)(Z, .5

o' “a“L” ka [W(-ih)lfi)]LLrw.

(W(3, €)1, **" 8%, .+ Z I, G°
k(#i)

iL, kL’ BakLv } (2.36)

ikg®
#Nge o Bt [anGo® (2-2") Ty, Vi, (£1) £, (£°)dr"

We now introduce the generalized inverse atomic Tai‘l—matrix
whose meaning we shall discuss later
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(T.i-l)w' LL'- kuznnl‘- [w(-ih+' fl) ]LL" " [w(j' fl) -1] L.L.G"G'
{2.37)

and use the usual development (remember that N =(k,/%)1/2/(4x))

ixg® A
N, e =(kg/X)1/2 T, il J% (D) Y, (K,) =
(2.38)

-(1/k V2 E iy, (R, 3%, . 3%, (x)

where we have reexpanded the function J"‘L(:)IJ"L(:O), which is
defined with respect to the origin of the coordinates o,
around site i through the quantity J"“‘.'ol‘ defined in Eq.
(2.23)2. :

Since the solution of Eq. (2.36) is linear in the source
term N,e'*a'*, we can put in Eq. (2.38)

(1/kgm) 1/2 41 YL(?:a) = 8§, (1/k®) /2 (2.39)
so that finally we can write

0 =Z 3% (£){Z,., . (T, 1)% B (g:L)
L L L ai LL iL (2.40)

+ I L, G% e B (L) + 0% o Bog (1/kgR) /2 )
K (wi)

+[a0 G%, (2-2') T, VI, (2') £, (x') Q'

Notice that we have now affected the quantities B“u(n;L) by
the indices g,L, marking the dependence on the inhomogeneous
texm §,,8, . Therefore in Eq. (2.3f;

A
B® = I, 1+ B% (@i L) Y (k) (2.41)

Let us neglect, for the moment, the interstitial potential,
i.e, let us put V! . (r)=0. Then the Eqs. (2.40), one for each
i, determine the coefficients B"u(ﬁ;L), which through the
relations (2,35) and (2.31), provide the functions fa ()
needed to calculate the transition matrix elements.

To interpret the B®, (Q/L), we need to consider Eq. (2.21a)




Al

for r € 2, Q, and use Eg. (2.18). Performing the surface
integral and remembering the definition (2.35) we find

£a'%) =N, etkaF §
- koI, Iy i3 bt (kar) Y, (B) BT (@D ¥, (R

+Han 6% (2-2') L Vi, (x') £4.(x*) dr' (2.42)

Assuming again vﬂnr(:)xo, this equation clearly shows the
meaning of the B® (Q;L)'s as scattering amplitudes into the
channel o with angular momentum L emanating from site k in
response to an excitation with angular momentum L into" the
channel &.

It is interesting to derive an explicit formula for the
B%, 's in the atomic case, which is obtained by suppressing the
terms k#°' in Eqs. (2.40) and (2.42) and putting i=o.

From Eq. (2.40) in such a case we obtain, since? J®

oL,oL
L
T (T, B (@i L) = ~ 8 8§y (kg/m) 1/2 (2.43)
giving
-BY (Q;L) =(T,) %% (ky/m)1/2= (2.44)

=(ko/®)V Y2 By, (W3, £) 11,9 (ky) 71 [W(-1ih*, £) 1), @8

This explains the definition in Eq. (2.37). The quantities
(T.)W”Lﬁ are the natural generalization of the usual atomic
T,~-matrices for non spherically symmetric potential in the
multichannel case.

For the many center case the interpretation of the
ccefficients B“u(ﬂ;h) as scattering amplitudes is indeed
confirmed by the physical meaning of the m.s. equations:

oo (T, 719 L B, (L) + (2.45)

+ I I, 6%, . B (L) = = 5% 8a (17 (kgR) )12
k(ml)
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wh. ch can also be written as

BY (@D = —ZG.L.(TH)“"'WE(:‘HEL. G* ypr,xe B - (G7 L)

- I, (T, ), 38 (1 (kX)) M2 (2.46)

Since, from Eq. (2.38), qu..ox. is the exciting amplitude of
the L angular momentum component of a plane wave impinging on
the origin as seen from site i, Eq. (2.46) shows that B% (Q;L)
is the sum of the scattering amplitude originated directly at
site i by the exciting amplitude plus all the scattering
amplitudes generated by the waves that are scattered by. all
other sites k(#i) and propagate from site k to site 'i, where
they are finally scattered into the final state.

If is interesting to look at the structure of the m.s.
matrix Eq. (2.45):

SO e =Ty L 8+ (1-8,,) 844.G%y e

=(K, 71 )9 L 8+ (1= 8,080 N%yy 40 1800, %y iy

= M e 1A (2.47)
where M and A are hermitian matrices (actually A is real
symmetric). We have introduced the reactance atomic K, -matrix
related to the T, -matrix by the usual relation

(Tu-l) ua-u" kczc"t.- (W(-in*, £)] LL,,““" (W(3.£,) -1 L_L'c"a',

= kaz“nLn [w(nffl)]Lan' [w(j'fi)-lll‘unvana'

- ik, 8, .8,

a Ly’

= (K, ~1o® ~iI kg (2.48)

remembering that -ih* = n -ij . The term il k,= i §,,. 8 .k, has
been incorporated in A by lifting the restriction i#k and

using the relation J% ., ,=k.8 .. In Eq. (2.47) we bave used
the decomposition (2.23).




By exploiting the sum rule?

Z, non ean ™ %% Xa A" i1 s Soae (2.49)

it is now easy to derive a generalized optical theorem for the
amplitudes B® (Q;L):
I B (QL) (B%, (QL) 1° =1/x [(M-1iA)'A (M+id)1jo®,, |

| (2.50)
= 1/% Im [(M-iA)1)%% . = 1/% Im T%%° .

which we shall need in the following. For convenience we have
put (M-iA)-l=S-l=t, which is known as the scattering path
operator.

The presence of an interstitial potential VI, . (r) merely
modifies the quantities T,”! and G in Eq. (2.45). However the
general structure of the m.s. equations as well as the
validity of the generalized optical theorem (2.50) remain
unchanged. This is also true in presence of an outer sphere.
We refer the reader to the already cited articles for
details!-?,

If we assume that the initial core state is localized at
site i, we need the vave function f (r) inside the sphere Q,.
From Eqs. (2.31) and (2.35) we obtain

tig(x) = B, Ly, Cup ™y, " (r)Y, (§))
= Lo L0 Zpope P2IWCE £ 7N, 00 (2.51)

' A
BY e 1,0 ™ (1)) Y (F)
By defining the functions
£,,.997(r) = p, 72X, £,.9% () (W(3.6) 7N, 0 (2.52)

we can also write, making explicit the dependence on the
incident wave vector ks and using Eq. (2.41),




1€

gt (k) = E Fg. B £,.%(r) Y (F) (2.53)

[} . A * »
= I X, 5 BY, (L) ity (k) £....%% ()Y, (Z;)

To obtain the total cross section we have to sum over all
possible photoelectron final states labelled by the index Q.
Since the wave functions fla are normalized to one state per
Rydberg we have, using the projection property A?=A4,

o(®) = 4x2aho )

"
| diﬁl (zufai(::k“)‘l’c"ll e- £ g.IN!~c1(:)?cl-1) |2
=l
(2.54)
~ aaho I f dk | (5, £, ik | exlo t(x)) 5yl

The last step follows from the orthogonality of f*c,to all the
initially occupied orbitals and the fact that we assume the
arthogonality of ¢_._(x) to all the orbitals appearing in the
W1, Su = (P 1P ") is the projection of ¥ _"! onto the
occupied configurations present in the initial state.

By introducing the expression (2.53) into Eq. (2.54),
performing the angular integration over"nand introducing the
atomic matrix elements

MR L= Y () lex] ¢ t(x))) (2.55)

we can rewrite Eq. (2.54) as

o(w) = 4x’aho X I,y zn,;.-,z“' Sao m:f" B, (@:L)

(2.55a)

Savol

p’ : ‘B
[B iL’ (“lh) m [.'t[.'

= axafi0 Ly, By I I, Sy s
£°t

Ltl.
A (2.55b)

'f‘"

using the generalized optical theorem Eq. (2.50).
From Eq. (2.53) it is immediate to write down an expression
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for the photoemission cross section for ejection of an
electron into the state k, with energy kg’ -ﬁm—Ic—Al-:“

do(e) dk, = xtahol| (L, £, e:x) | exle ti))sy,l?
(2.56)
L] . A L]
- u’aho'i' Lo Iy B (D) it Y, (k) e Seol?

In both cases the sum over L, indicates the sum over the
final angular momenta allowed by the dipole selection rule in
Eq. (2.55{. Notice that in Eq. (2.56) it is not possible to
take advantage of the generalized optical theorem.

It is interesting to compare the expression (2.55) with the
total cross section for electron molecule scattering. The
general definition of scattering T-matrix in the multichannel
case is derived by looking at the asymptotic behavior of the
‘electron wave function

A
falr) ~ Iy 4% Y (k) it (3% (B)8og- ikg Iy, H'O (D) T, ]
(2.57)

where r i3 referred to the center of the coordinates.

This expression has to be compared with Eq. (2.42), with
V! ,.=0, after all cooszdinates r,=r-R, have been referred to
the origin. To this purpose we use the reexpansion formula?

~ikgh* (kT ) Y (B) =-1 I, h*,, (kD) Y, (B) 3, .. (2.58)

valid for l:k-zl-llg! < |z} since we 1look at |z|—jee
Substituting this relation into Eq. (2.42) we obtain

~
~ id
fa(®) -~ I, 4% Y (kyil (N I8, (£)8g
-i/ax L, I, ht (ke Y, (£) 3%, | B% (&iL) ]

A
=L 4% Y, (k) id Ny (%, (%) 6,“

-1/ (anN £, HY® () I, 0%, B% (GiL)) (2.59)
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This gives [or "I'mu_ the expression

The total scattering cross section into any channel '
starting from channel @ is given by

%1 (Eg) = 4% L, 5, Il‘.-l.'l.|2=4' Ig & I'l"'.u.- |2
(2.61)

using the detailed balance relation®.
Using Eq. (2.60) we find

I T 12 =(TThH ™, =
- '/kcgh RLI yox"kL. Bckx" (n;m [R.L- J¢°L'k"'. Bak'l'- (n:m ].

= %/kg’ By Epope 3% 4y Im T

kL*,kL"”

J®

oL, k°L”"

= 1/kzIm T (2.62)

since J® ... is real and we have exploited the relation,
derived f-om Eq. (2.45)

(koX) 172 B%, (@;L)= xu;n- Fkl.,k'l.' Jcol.,k'l.' (2.63)
Eq. (2.62) is nothing else that the optical theorem for the

scattering T-matrix. As a consequence Eq. (2.61) takes the
form

0%, (Eg) = 4x/k, L Im T™

(2.64)
= ax/kg’ Im L. g By 9% i ™ kenr I%ene, ot

exploiting the relation J% ... =J%,. ..

We shall discuss the relation of this expression with Eq.
(2.55) in the next section.




3. THE GENERALIZED MULTIPLE SCATTERING EXPANSION

In the expressions (2.55), (2.64) the structural
information is contained in the inverse t=S"! of the multiple
scattering matrix Eq. (2.47) through the presence at the
structure matrix elements G ..., in a rather involved way
that intermingles dynamics as well as structure.

It turns out however that under certain circumstances, to
be discussed shortly, one can expand the various cross
sections in a convergent series the general term of which has
a simple and direct physical meaning.

In fact, remembering the notation introduced in section 2,
we have

Te=stl= (T,246) ' = (I+4TG) ' T,

so that if the spectral radius p(T,G) of the matrix TG is less
than one, where p(A) is the maximum modulus of the eigenvalues
of A, then

[_J
(I+T G) ' = T (-1)" (TG)" (3.1)
a=0

the series on the right being absolutely convergent relative
to some matrix norm. For short we shall henceforth define
G%,. (10 to account for the factor (1-8,,) in Eq. (2.47).

As a consequence the photoabsorption cross section Eq.
(2.55) can be expanded in an absolutely convergent series

[ _ ]
o®w = I 0,0 ' (3.2)
i n=0
where
Oy (w) = sxaho L, Iy, LEL,' L, Sao "-’LtLI"(Tu)”'u.u-
. (3.3)
(P s_..]
L"Ll

is a smoothly varying atomic cross section and




o, (@ = azaho L I, .:.’,;:.- Z,,.Se ll::"
) 4

(3.3)
m{-1n* T 61, . lf':"vs...l'

represents the contribution to the photoabsorption cross
section coming from process where the photoelestron, before
being ejected at iafinity, leaves the photoabsorbing atom,
located st site i, with angular moaeatua I and channel state
P, is scattered (n-1) times by the surrounding atoms and
returns to site i vwith angular momentum L' and channel state
B°. All these evests are eventuslly to be mmitiplied by the
corresponding smplitudes ‘

Seo M9, a0

and summed together to give the n-th order comtributioa. It is
clear that this term besrs information on the n particle
_correlation and therefore is sensitive to the geometrical
arrangement around the photoabsorbing atom. '

In order to better illustrate these concepts let us treat
some asmtdtic cases. It is obvious that the condition
PITG)I<1 is satisfied st high photoelectron energy since

lim H‘l',)""w I = 0.
kg
In this regime one can safely write

(TO™ . = t%,8, 8y ana ™' -~ " 8§, .8, (3.5)

since the photoelectron is sensitive only to the atomic cores,
vhich are spherically symmetric, and only the “incoming”
channel f.(t) in Bq. (2.14) is relevant, following the same
argument leading to (2.19).

As a consequence the asysptotic cross section O, (®) is
given by

0, (0 = sanxhel,iS, W I12ZL Im s . . (3.6)

wvhere, for simplicity, we have assumed & single 1 final state
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and T%,, ... is the inverse of S%, the submitrix cf S relative to
the channel a:

) )y e = S = %) 7 8, 8y + 6%y (3.7

In other words the different channels decouple and they
have identical .-.s. structure, apart from the trivial
dependence on the photoelectron propagation vector ke and on
the atomic scattering matrices t* ;.

Eq. (3.6) is the form used by Rehr et al® to discuss the
role of multielectron excitations in the EXAFS structure of
the Br, molecule in the framework of the “sudden
approximation®. )

The total cross section is _herefore an incoherent sum of
photoabsorption cross sections relative to different channels,
so that we can limit ourselves to a single channel. On a
theoretical basis, born out by experiments, one expects the
predominance of a single channel in the sum (3.6) when the
ground state of the system contains one single doainant
configuration. In this case the biggest overlap factor among
the S..,'s is S,,, corresponding to the same relaxed
configuration in the final state and to AE,=0 in Eq. (2.12).
Depending on the systems, one has 0.7 < |S,,12 <0.8 so that one
single channel accounts for 70~80 per cent of the spectrum. We
shall see in a aoment how to account for the rest in an
approximate way.

In the energy region where Eq. (3.6) is valid we can also

expand 1T* as
T =(1+ t*, G t® = (-1)" (% GN" t%, (3.8)
a=0
so that

0, (@) =4xahol 1Sy, ¥ I7Z L (-1)* Im ((t% GO" ¢%,], ...

-;t,o' () (3.9
neo

Analytic expressions for the 'm.s. terms, based on the Zq.
(2.23) for the matrix elements G, ,, ., are available in the




literature’-?. For our purpose it is sufficient to observe that
each G%, ... carries a factor exp{ikgR, } independent of L,L'
contained in the Hankel function appearing in the definition
(2.23), which can be better taken account of by defining the
reduced matrix

~ikgR:x

S @ e
(3.10)
L= 0
For the n-th order term in Eq. (3.9), we find
Z(t® Gc% ™) = I .. I t* _G* t* ...
) a a'ilm, ile a KL - ilm u""l"l ' K1
(3.11)

The set k, ... k,_, defines a path p, of order n that begins
and ends at the central atom (located at site i), to which we
can associate a total path length

tot a1

R = X R (3.12)
Pa Y T

Therefore, putting

1 'l "
AL, (kg R, Jexp [i¢t, (kg R} (3.13)
=L, I ..I %,  G* .. g% t® .
h L fim, k; by Ku-1ba-1, i1m

we can finally write

Z, [ 6eH" tcalu.-, il ™

(3.149)
P p
= Zp, A, (kg Ry,) exp {1[k¢R:°t+ ¥, (kqs Ry} 1)

so that the functional contribution of the n-th order m.s.




term to the photoabsorption cross section in channel @ is

tot
P,

P P
z Al (kg R, ) Sin (KGR + @ (kg R, )] (3.15)
n

n

This means that each path contributes an oscillatory signal
in the cross section of period 2X/R®°“p and amplitude A! (k,
R'ﬁu, .

The quantities A! (kg ,BP»,.) and ¢! (k,,RPn,,) are slowly
varying functions of kg, 80 that, indicating by k,={ho-1_)1/2
the photoelectron wave vestesr of the primary channel, we can
write approximstively ia Bg. (3.14)

z.[(t‘.@‘) .t.u,lh. 1a ™
N Pa tor Pn
:a_ (RorRyy ) empiLik,R 4 ¢, (kR )]) (3.16)
]

P,
upu(u.-u,)(n:ﬁ (&/dR) ¢, (kR )1 1)
n %o

If we then define theé complex number

19 (kg a,
(k) e " = 18y M, 17 Ey1Sg, I
(3.17)
tot Pp
exp{i(kg=ky) (R  + (d/dk)$! (k,R, ) | 1}
P K=k,
we can finally write
o 2 n gl
6, =L I 0" (w)=dxahewisS, M, 1L L (-1)" B! (k)
. Pll
Al (k Py tot P,
n(kor Ry '1“"‘0"' T (kR L)Y (KD ) (3.18)

This is the generalization of the result arrived at in
Refs. 5,6. The modification needed when there are two or more
configurations present in the ground state with comparable
amplitudes, is straightforward. We easily find in this case




' P
0,,(0) = 4xafio Ty 15y, MP 12 E, I (-1)" B, (kp) AL, (kg,R;))
n

R tot Pn
sin [kgR "+ ¢ (kg,Ry, )+ W (Kkg) ] (3.19)
n

where the Zb is over the corresponding relaxed configurations
in the final state.

It should then be possible to discriminate in the
experimental analysis between the various oscillatory signals
appearing in the spectrum due to the presence of different
main channels PB.

However the formula (3.19) is only asymptotic and
deviations from the sudden approximation (3.5) must be
considered if one wants to exploit a larger energy range.

The general expansion to use in this case is given in Egq.

(3.4). The lowest order term is n=2, since G% , .=0. This is
the usual EXAFS contribution given by
o,(0) =d4xahw X, s, M £, Z,. I (T,)," G% ,,.
e,®;
(To) 1. 51%2 6%y, 4y (T,), %% [M*Sg,017 (3.20)

where for simplicity we have assumed (T,,)®* = (T,) % 3J
set M%*®' .~ M® §.,.
M™’ .. (az0’) would be of higer order in this expansion.

LL’ and

8,..» since terms proportional to

The new feature now is given by the fact that at each
scattering event the photoelectron can change its channel
state, and consequently its propagation vector k,. This fact
can make difficult the detection of, say, a two channel in the
EXAFS signal of fluctuating mixed valence compounds,
especially for the first coordination shell whose atoms can
participate to the relaxation effect of the photoabsorber.

However it is likely that there is no relaxation beyond the
) 182~ (T,) %1 Sage, for
atoms located in the second shell. Eq. (3.20) then implies
that there are only twu EXAFS signals, originating from this

first shell so that one can write (T

shell, each one with a definite propagation vector. Since for
higher order shells the period of oscillation in k is shorter,
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1t snouid be easier to detect the two signals. Recently
interesting results concerning lattice relaxation in
homogeneous and inhomogeneous mixed-valent materials have been
obtained by the use of a two channel EXAFS analysis?.

Equations like the one in (3.19) constitute the basis for a
structural analysis of photoabsorption spectra. This analysis
is in many way complicated by the need of taking
configurational averages both dynamical (over the phonon
spectrum) and structural, when it is the case (as in amorphous
systems). The way to do this averaging processes is still a
matter a research.

It 1is 1interesting at this point to compare the
photoaksorption cross section Eq. (2.55b) which reduces to the
following '

o) = axhw Iy, SeM™ (Im ™, )} (MY Sg.,]° (3.21)

if one takes the most important terms (M™' ,k -~ M* §_. where L
represents the 1 channel selected by the dipole matrix element
with initial core electron angular momentum 1l-1), with the
expression (2.64) for electron- molecule (i.e. cluster of
atoms total cross section, which we rewrite here for
convenience

0% (Eq) =
(3.22)

,4‘/,“3 Im %, :H.zk'l.' JcoL',kL tuld..k'l.' Jck'l.',ol."

The greater structural and angular momertum selectivity of
the photoabsorption cross section is apparent. In Eq. (3.21)
only paths beginning and ending at the photoabsorbing site
with the same angular momentum are possible. No such selection
rule exists in Eq. (3.22). Moreover in the greatest majority
of cases, when only one single configuration is dominant in
the ground state, only the primary channel a;, matters, the
effect of the remaining channels resulting into a smoothing
action on the primary transition. Therefore, as a structural
probe, photoabsorption has to be preferred to electron
collisions.
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It is also interesting to compare Eq. (3.21) with the
photoemnission cross section Eq. (2.56), which under the same
assumptions reduces to

do

A
—§-;41t2ﬁa) [Z,Z, B%, (@:L'id ¥ (k) M%, Sy, |2 (3.23)
d
[ ]

By using the solution (2.63) for B"u, together with the
definition (2.23) for J% ,/. and the relation (2.38), we find

o . i1 ™
ELB iL e L) i Yl..(kﬂ)

ikn.lko

(kg/M) 12 By, 8By 0 317 Yy, (in)e

’ ikn.llko

' la)
(ko/®) M2 L, [(I+ T,G)H T, 1%, . i1 Y, (ke
(3.29)

At "high" photoemission energyies, again

(I+T,G)' T, ~ [1-T,G + (T,G)%+...] T

a

retaining only terms up to the second.
Within this approximation and putting for simplicity
(T,)% . =~ (T,,),%" § ., we derive

A
I B (L)il Y (ky) = (ko/m)Y2E,, (T,) %

A A
(11 ¥ (k) 8y Byp. = I, G%yp e (T), *% i ¥, (ky)

* g By Typn 6%y e (Tyg) 1'% G%yp yr
o A 1Ky R,
(To) & il y, (k)+.. te & °° (3.25)

which has to be inserted in Eq. (3.23).

As can be seen from this equation, now there are
contributions coming from paths beginning at the
photoabsorbing site and ending anywhere in the system, as it
is obvious since the photoelectron is detected outside, in
free space.
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The structural analysis is more complicated than in the
photoabsorption case, but can still be done and is giving its
fruitsl®., The expression (3.25) incorporates the multichannel
structure which <can help analysing photodiffraction
experiments with more completeness.

Of practical importance in the structural analysis is an
accurate approximation to the exact, but computationally
cu.\bersome, expression (2.23).

The following zpproximation

. . A A
G ip ™ —A% kg iTVY (R YL (RGP, @yy,0By,0) (3.26)
where

g, P) = [1+ o/ (2p))1Y/2 3, (B/p) 1/p :
(3.27)

exp{ip[1+(a/ (2p)?]}
with
)= 2[1(1+1)+1'(1'+1) ];
{3.28)
Boio= [1(1+41)1°(1'+1)]Y/3%; P% = kKoR,,

gives rather accurate results for m.s. paths of low order
(n=2,3,4) when compared with the exact expressions. In Eq.
(3.27) J,(p) is the Bessel function of order zero®-ll,

The nice feature of Eq. (3.26) is the proportionality to
Y, Y, which allows to clofe intermediate angular momentum
summations through the addition theorem for spherical

harmonics
(21+1)/(4m) P, (R:R) = I v, R)y, R) (3.29)

For example the second term in Eg. (3.25), putting the origin
O at site i, becomes

' 1%y R,
= L G%yp e (T 8 1YY, (?:“)e s
A ~
= 4R kg i1 Y (RGZ LY (Ry)
A ik_.R
g™ iy By ) (T TR Y, (k) e e (3.30)
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s1 4 ' T4
= I il Y, (R;,) I,. (21'+1)P,, (k;R,))

1Ky R
. . Rt
gP i Gy By Koo (T,) %% e

A ' iy R
=3 ity ROE, (P, kgR)e O (3.30)

where fe“(p“}k; idauJ is an effective scattering amplitude
off the atom located at site k, calculated at the angle arcos
("“n'iix) between the vector joining the photoabsorbing site i
with the scattering atom and the direction"kll of escape of the
photoejected electron. A similar form is valid for the third
term if one introduces an effective scattering amplitude off
atoms located at site k and j.!2

The expression (3.26) can also be efficiently used for
computing m.s. terms like those in Eq. (3.13) for
photoabsorption. We refer the interested reader to Refs. 8,11.

Until now we have simply assumed that p(T,G)<l and given an
argument (IT,)" '  .1=0 for k=) to show that there exists an
energy regime for which this relation holds.

However, by simply considering the behavior of p(T,G) as a
function of Hw (hence of the various ko) » one can predict some
general features of photoabsorption spectra.

In fact the spectral radius (T,G) is a continuous function
of fw and, as already observed, goes to zero for hw—e. At the
other extreme however, i.e. near threshold (hm~Ic), it is
reasonable to assume that p(T,G) -, due to the singularity of
the Hankel functions h* (k4R;,) appearing in the definition
(2.23) of the matrix elements of G (the product kgh' (kgR,,)
goes like kaqo. Consequently p(T,G) must cross at least once
the value p=1 in the range I.< hw< =, Moreover, the nearer to
1 is its value, the slower is the convergence of the m.s.
series,

On the basis of this simple consideration we can therefore
conclude that there are at least three regimes in a
photoabsorption spectrum: a full multiple scattering regime
(FMS) (p(T,G)31), where a great number of m.s. paths of high
order contribute significantly to shape up the photoabsorption
spectrum or even an infinite number of them, depending on



whether the m.s. series converges or not; an intermediate
multiple scattering regime (IMS) where only a few m.s. paths
of low order are relevent (typically n<4) so that interatomic
configurational correlations of this order are accessible; a
single scattering (SS) regime where only the lowest order term
of the m.s. series (n=2) 1is detectable and provides
information on the atomic pair correlation function.

The energy extent and even the sequential order, as a
function of increasing photon energy, of the regimes described
above are obviously system dependent. Usually the FMS regime
precedes the IMS which, in turn, merges into the SS$ region.
This is the normal situation; however there are exceptions to
this. In copper K-edge spectrum, for example, in the first ~50
eV above the absorption edge the EXAFS like O,(®W) term alone is
capable of reproducing the experimental spectrum and the ek;ct
band calculation. However a substantial discrepancy shows up
in the energy range 50+200 eV, where <clearly m.s.
contributions of order higher that two are present!!l,

This behavior can be understood on the basis of the
peculiarity of the relevant atomic phase shifts that are small
(modulo %X, by Levinson thenrem) at low energy and must cross
X/2 (again modulo ®) before going to zero at high energy. At
the crossing |tal|-lsin51|~1, so that the coupling of the
photoelectron with matter becomes again substantial.

Summarizing, since the magnitude of p(T,G) depends on the
interplay between the atomic T-matrices and the structure
factors G, both ingredients must be considered in discussing a
photoabsorption spectrum. The bearance of the multichannel
structure of T, on the magniﬁude'of'p is still an interesting
subject ‘open Lo research.

Experimental analysis based on the ©preceeding
considerations is confirming that structural information can
indeed be obtained from the SS and IMS energy region of the
spectrum!3-14, In the FMS region the presence of many scattering
paths in a limited energy range (usually 2-5 Rydbergs) makes
it impossible to derive any detailed information whatsover on
the various paths. However it is an empirical experimental
fact that clusters of similar atoms (in the sense that they

have similar scattering power, i.e. atomic phase shifts, like
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atoms in neighboring or corresponding positions along the
periodic table) with the same geometrical arrangement give
quite similar features, like fingerprints in photoabsorption
spectra.

This is quite evident in moiecules where these particular
features have been named "cage™ or "shape resonances"!®. They
afford a kind of global information about both the structure
and the type of atoms participating in the resonance

These resonances are the cluster analogues of the
scattering or photoabsorption resonances which are well known
in the single atom scattering case. They have been mainly
asssociated with the presence of some effective repulsive
potential that creates a sort of cage that traps the final
state electron in a quasi-bound state decaying away with a
lifetime ‘l:=f'il“7"1 connected with the tunneling probability
through the barrier. In reality this is only a partial, model
view of the potential resonance theory!®. Be as it may be,
these resonances, which show up as more or less sharp maxima
"in the cross section, are associated with a singularity of the
reactance matrix k related to the atomic t-matrix by the
relation (see Eq. (2.48) for the general case)

i8
1 3 - - »
t, =(1l/ky)e sin 81,' k 11= cotg 81 =t 14 ik,

t, =k, /(1-ik, k,) (3.31)

where we have indicated by k, the wave vector of the electron
and introduced the potential phase shift 81.

Since the cross section is proportional to Im t, (see Eq.
2.55b) we find

= in2 = 2 -2
Im t, = (1/k,)sin?d, = k,/ (k.2 + k,7?) (3.32)
so that at a maximum

k

b=k, cotgd, =0— § = w2 (modulo )

This implies that at a resonance k, is singular.
It i3 easy to convince oneself that quite similarly, in the
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cluster case, resonances are associated with singularities of
the cluster K -matrix which can be shown to be given by

(K™ o= B yee e )™ g0 e 3% e (3.33)

where the matrix M has been defined in Eq. (2.47), and to be
related to the cluster T_ matrix Eq. (2.64) by the usual
relation, analogous to (3.31)

(T)™® =i~ ik K)TK ™ . (3.34)

where we have introduced the diagonal matrix k = kg er Su,.
The matrix K_ is hermitian, so that its real eigenvalues A,
can be identified with the tangent of the eigenphasé shifts:
A =tan §,.
Therefore in the electron molecules scattering, as in the
atomic case, resonances occur whenever some eigenvalue lh goes

to infinity (8,9 %/2), i.e. whenever
Det ||M |j=Det || (K, )% .. &, +(1-5,)8,,.N% ... H=0 (3.35)

due to (3.33). Similarly for the photoabsorption case Eq.
(2.55b) where the cross section is proportional to

Im T= Im (M-iA)"! = Im(I-iM"1A)-IM1 |

The sharpness of the resonance depends on how fast, as a
function of energy, the eigenphase Sh increases through an odd
multiple of ®/2.

Eq.(3.35) is the natural generalization to the multichannel
case of the resonance condition already discussed in Ref. 16
for the one channel case. It gives the wanted, global relation
between scattering power of the constituent atoms and their
geometrical organization in the mclecule or cluster. In the
one channel case, under the assumption that the relevant
atomic phase shifts are non resonating and actually depend
smoothly on the energy, it leads to the rule k R=constant,
where k_ denotes the resonance wavevector and R the average
coordination bond length, in molecules or clusters with




identical angular geometrical arrangement but different bond
length scale. This follows from the fact that the structure
matrix elements N,;, ,,. depend on energy only through the
combination kR.We refer for applications and more details to
Refs. (16,17).

As a final remark, we note that the condition Det §M J=0
does not entail necessarily the other condition p(T,G)>1.
Stated differently, at a resonance the m.s. series might even
converge, although one is always in the FMS regime where p-=1.

4. THE ONE CHANNEL APPROXIMATION AND THE OPTICAL POTENTIAL

The multichannel m.s. theory approach to the description of
photoabsorption and photoemission processes in condensed
matter is a relatively recent development that makes use of
concepts already known in atomic or molecular physics. This
approach is substantially equivalent to the configuration
interaction methcd (Fano, Davis, Feldkamp)!®. For the relation
of this latter approach to some aspects of the many-body
calculational approach, see Chang and Fano!?, although in the
general case this relation can be quite involved.

As a general trend, however, the calculation of the EXAFS
signal in photoabsorption and photoelectron diffraction
processes in condensed matter or molecular physics has been
traditionally based on an effective one particle approach,
that is one particle moving in an effective (real or complex)
potential. Multielectron excitations effects are added on top,
so to say®.

In this section we want to illustrate the relation of this
one particle approach to the general theory of section 2 and
show how the multiple scattering approach provides the
unifying scheme in which to frame the different ways of
solving the one particle problem.

The first reduction procedure one can think of is to
eliminate in the set of equations (2.13), supplemented by the
boundary conditions (2.14), all the "inelastic channels”, i.e.
those with a # o' and such that AE; # 0 , in favour of the
"elastic"” one. This elimination is in principle possible and
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imaginary part is neglected.

simple we shall assume this form for the potential,

to the reader.
quantity

o(w) = 4x?aho £, | (§.le-r19;) 12 8(hw - E, + E))

Hamiltonian. For the final state

(k2 - H)¢p, = (A + k2 - V(£))§, = O

and k?= heo - I_ is the photoelectron energy.

Eq.(4.1):

normalized to one state per Rydberg. Then
G, () = 4axZaho| (¢ () Ie-2IP (£)) |?

with

leads to an effective Schrdédinger equation with a complex
potential, which in fact describes exactly the effect of the
eliminated channels. This potential is known as optical
potential. The contribution of the inelastic channels to the
total absorption cross section is neglected altogether.
Actually, since the optical pctential is quite complicated,
approximate forms based on ad hoc theoretical considerations
are used in practical calculations, where quite often the

As a further approximation one reduces the potential to a
muffin-tin form, although this is done only for computational
convenience. In order to keep the discussion and the notation

the relations (3.5) apply. The necessary generalization of the
following considerations for non muffin-tin potentials is left

The problem is therefore reduced to the calculation of the

where now |¢;) and |¢;) refer to one particle eigenstates with
energies E, and E; respectively, of the effective one-electron

where V(x) = I, V,(x) is a collection of muffin-tin potentials
Three methods have been used to calculate the quantity in

a) the scattering method, where one calculates the time
reversed scattering wave function ¢7, for ¢, with energy k? and



(V2+ k2 - V(x)) ¢, =0

¢, = (1/4m) (k/®) /2 Te T 4+ £°(k',K) (e7tk/r) )

| G o d

b) the Green's function method, whereby one transforms
Eq.(4.1) as (T = £&-x)

O () = ax?abw (1/x) Im(¢; IT* (k2-H) "1 TI9,)

(4.4)
= axahoIm ldridr'? ¢;(r) €' G (x,2') €' §(x')
where (k?-H)G = I or in the coordinate representation
(VZ+ k2 -v(r)] G (x,2') = § (x-x') - (4.5)

G- being the Green's function operator, with incoming wawe
boundary conditions.

c) the band structure approach for periodic systems, whereby
the scattering states are replaced by Bloch states Q;Wr),
where q@ indicates the wave vector in the reduced Brillouin
zone (BZ) and n is the band index. Then Eq.(4.1) becomes

Oy () = 4x?afwE v/ (2%)3
(4.6)
Joz Fa8(k2-€ (@)1 (4. (£) lE-xI$; (X)) |2

where & (q) gives the dispersion low for the band of index n
and v is the volume of the unit primitive cell.

It is not at all immediate that the three expressions can
be cast into the same final form for identical systems. We
shall show that this is possible in the framework of the m.s.
theory.

We can obtain the result of the scattering approach by
performing the necessary index reduction in Eq. (2.55a). We
obtain, assuming imo

Ops (@) = dn?ahwX M I B (L) B* (L) M* (4.7)
Lel'y Ly oL, oL’y L'y

where
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M, = (R° (x)|€E-2iId,(x)) (4.8)
R (X) = R° (r) Y (®) (4.9

and R° (r) is that solution of the radial Schrddinger equation
that matches smoothly to j, (kr)ctgd -n, (kr) at the radius of
the muffin-tin sphere of the absorbing atom and behaves like
r*(l1 + ...) at the origin. It can be shown to be identical with
the reduced form of the function f*™ . ., introduced in Eq.(2.52).

If the potential V(r) is real, by using the optical theorem
(2.19) we obtain the alternative form (2.55b)

G, (o) = 4mﬂ°z:.,:.-,":.,1' tol.t.ol.'f Hl-': (4.10)
where we have dropped the star on M,,, since in this case R, (x)
is real. This form will be useful for comparison with the
Green's function approach.

The solution of Eq.(4.5) for a collection of muffin-tin
potentials is given by (but see Ref. 21 for a more complete
definition)

G+(t't') == ’:u.' Rn(to) tol.,ol.' RL' (t'o)— zl. RI.(to)sl.(t'o)

for r,x' € Qo (4.11a)

GHE,E") = - Ty Ri(E) T . R (2T
for r € Ql, r'e Qk (4.11b)
where S (r) = Sl(r)YL(‘t') and S,(r) is that solution of the
radial Schrédinger equation that matches smoothly to j, (kr) at
p, and is singular at the origin. We need only the expression

(4.11a), since ¢ (r), being a core state, is localized at site
o. Its insertion in Eq.(4.4) gives, since G =(G%H ",

O, (0) = 4xahwX Im(M ¢t M +M M ]} (4.12)
Lel'y Lg oLg,oL"y L', Lg L'y

where

M = (S (p)ie-e|§, (2)) (4.13)




For real potentials, since M; and M, are real, we recover Eq.
(4.10).

Finally, in an infinite regular lattice, where for
simplicity we assume all sites to be equivalent, the KKR
method writes the Bloch function as

¥, (x) =L a' (@ R(r) (4.14)

with the same definition of R (r) as before.
The coefficients a" (q) satisfy the homogeneous equations

L.t 8 .-G, .(@) a' (q =0 (4.15)

where t, = ei‘L 311181 is the usual 1 wawe atomic t-matrix,
common to all sites, and

G (@ = (1/N) I, ev+®NH) g ..

(4.16)

= I e9-RyR) g
k (»0)

oL.kL’

since now the second term is independent of the initial site
o.

A non trivial solution of Eq.(4.15) demands that
pet ftl(e)- G(qie) |= 0 (4.17)
which determines the band dispersion kZ=g=g (q).
Correspondently Eqs. (4.15) provide a" (q). Using the
expression (4.14) for the final state wave function, the Eq.

(4.6) gives

Oy (0) = 4x?ahw X M M I v/2K?
LelL'e Lg L7

oz Pa8 (k2 -e (@) & (@[ (@] (4.18)
4 t

Now this expression is nothing else that
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Oy (@) = 4xahio

(4.19)
Im § dr3 dr® ¢ _(r) €'x Gy (x,2') €' § (2')
where
i
‘ ¢ (©)]" " (')
Im Gyg (r,x') = Im L X, X h =
k? -€¢, (@

(4.20)

= XL Z [(0°(D)]° ¢ (=x') Sk~ g, (q)

But the function Gy (r,z') is a solution of the Schrddinger

equation

(V+ k2- V(R)) Gy (x,2') = &(x - x') (4.21)
which satisfies periodic boundary conditions

Gyg (X+R,X'+R) = Gy, (F,2') | (4.22)
due to the property of the Bloch states

07, (THR) = elTh ¢ (x)

Such a solution is provided by the function defined in Eq.
(4.11), where now T, ... depends only on the difference Ri-ltj
due to the periodicity of the lattice. When inserted in Eq.
(4.19) this solution provides the usual result (4.10), since
V(r) is assumed to be real in band structure calculations.

The equivalence of the three approaches, just proved,
reconciles the apparently different point of view of the
chemist, who wusually thinks in terms of wave function
amplitude, with the physicist attitude, who is inclined to
think in terms of density of unoccupied states. In fact Im
G(zr,z'), for z,x'€ Qo, is proportional to the local projected
density of states, of which a particular 1 character is
selected when performing the weighted trace in Eq. (4.4). This




equivalence is not surprising, since the presence of a
potential modifies at the same time the amplitude of the wave
function and the density of the available states.

When the potential is complex, there is no more equivalence
between the scattering and the Greern's function approach. In
fact the generalized optical theorem Eq. (2.50) does not hold
in this case. One must then resort to theoretical
considerations to know which method to use.

The imaginary part of the complex optical potential
describes the reduction of the wavefunction amplitude of the
elastic channel due to transitions to all the other channels.

As it is known in scattering theory?, the imaginary part of
the forward scattering amplitude is greater than the integral
of its modulus, the difference giving the flux of particles
scattered in the inelastic channels. So for the
electron-molecule scattering the form (2.64) is still to be
used for the total cross section, elastic plus inelastic.

In the photoabsorption process we add an electron to the
ground state of the (2+1)-equivalent atom, therefore we neeed
to describe the propagation of the added electron in the
presencae of all the other electrons of the system. The
amplitude of this propagation is the probability amplitude
that the added electron remains in the original state in which
it has been added to the syétem. Its imaginary part, as in the
scattering case, gives the total probability of scattering in
and out the initial state.

This propagation is described by the one particle Green's
function G(xr,r';E) which obeys an effective one particle
Schrédinger equation, better known as Dyson equation,

(V2+E- V_(£)) G(x,x';E)-
(4.23)

J a%c" £ (2, 2";E) G(g£",r';E) = § (x-x')

where Z(x,r';E) is an energy dependent, complex and in general
non local, effective exchange and correlation potential,
whereas V_(r) is the usual Coulomb or Hartree potential.
Therefore in calculating the photoabsorption cross section we
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have to replace Eq. (4.5) with Eq. (-4.23) and use formula
(4.12).

Much work has gone into approximating the self-energy X in
a way suitable for numerical applications. Hedin and
Lundqvist??, by incorporating the Sham-Kohn?? density-functional
formalism for excited states within the single-plasmon pole
approximation of the electron-gas dielectric function, have
produced a useful, theoretically sound, local approximation to
X given by

V(x)z L (p(x),E - V (x); p(x)) (4.24)

Here I, is the self-energy of an electron in an homogeneous
electron gas with momentum p(r), energy E -~ V_(r) and density
p (r), the local density of the actual physical system.

| The local momentum p(x) is defined as

p2(x) = k? + k¥ (x) - W (4.25)
where k? is the photoelectron energy, k7. (x) = [3x%p(r)]/3 is
the local Fermi momentum and U, is the Fermi energy of the
system as a whole. For molecules it should be the first
ionization energy.

Since E - V_(x) ~ p’(r) we can write with Lee and Beni?!

V. .(x) =~ I (p(x), pi(x);:p(x)) (4.26)

To calculate X,, one uses Eq.s (25.14) and (25.15) of Ref.
25

d’q 4x f (p+q)

Re £ (p,@) = - |
B (2m)2 q? e(q, (p+q)? -~ W)

d3q 1 1

~w, |
(2% 20,(Q O (9-0+ (p+q)?




mopz diq i 1
ImZ (p,0)= J
2 2m3 ¢ o (g

{fp+q) S (Pt -0 (@ -]

- [1-f(p+q)] [ (p+q@)? +0, (q) -]}
where the dielectric function is approximated by

2
mP

(e (p,W)] =1+
[o? —w,2(q) ]

0@ =02 + &? [(43) (@/k) + (a/kgp)']

.m5is the plasmon frequency and f(k) is the Fermi distribution
function. A useful analytical approximation to these equations
is given in ref. 6 where other approximate forms of effective
potentials are discussed, like the X-0 and the Dirac-Hara
potentials?®,

5. CONCLUSIONS

The multichannel multiple scattering theory outlined in
section 2 provides a simple, natural scheme in which to study
two main problems that are still a subject of active research:
the evolution from the adiabatic to the sudden regime and the
ihterplay between excitation dynamics and structure.

In fact t:the nature of the crossover from sudden to
adiabatic behavior is an interesting theoretical question
which is not yet well understood. We refer to ref. 27 for a
review discussion on this point, mainly based on the articles
of Fano and Cooper?? and Lee and Beni?’. A more quantitative
attempt is contained in the work by Chou et al® (but se also
references therein) and in ref. 29.
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In our formulatioi. we see from Eq.(2.47) that the driving
terms that control the crossover are the off-diagonal (i.e.
interchannel) (K ,)%®®' . matrix elements of the atomic
reactance matrices. It is not the purpose of the present notes
to develop this aspect of the theory which is still a matter
of investigation.

Another aspect which is clarified by the present theory is
that of the relation between excitation dynamics and
geometrical and electronic structure of the ground state. It
is not surprising, looking at the structure of the m.s. matrix
Eq. (2.47{ and the resonance condition Eq. (3.35) that the
general shape of a photoabsorption spectrum is determined
mainly by the geometrical structure of the ground state and by
the configurations present in it. ‘ '

Certainly many applications are needed to establish the
relative role of the various factors that contribute to a
photoabscrption or to a photoemission spectrum. What was
missing was a unifying interpretative scheme which we think is
now provided by the multichannel multiple scattering theory.

After the completion of this notes I became aware of the
fact that the questions treated here had been addressed by
Bardyszewski and Hedin in a different scheme provided by a
novel perturbation theory approach, with applications to
photoemission and X-ray spectroscopy’®. Their conclusions are
qualitatively similar to those presented here although further
study is needed to established the relation between the two
approaches.

AKNOWLEDGMENTS

It is a pleasure to aknowledge the stimulating
collaboration of Dr. M. Benfatto during which a large part of
the results presented here have been obtained.

I also want to thank Mrs. L. Invidia for her patience and
valuable suggestions in editing the manuscript.




42

REFERENCES

1) C.R. Natoli, M.Benfatto, C. Brouder and M.Ruiz-Lopez, to
be submnitted to Phys. Rev. A,

2) The derivation of the multichannel multiple scattering
(m.s.) equations follows very closely the method used to
derive the m.s. equations for general non muffin-tin
potentials in C.R. Natoli, M. Benfatto and S. Doniach,
Phys. Rev. A34, 4682 (1986) to which we also refer for the
derivation of the various reexpansion formulae used in the
text.

3) The problem of exchange is well known among theoretical
molecular physicists and quantum chemists. They have
devised a wealth of methods to cope with it. For a review
see N.F. Lane, Rev. Mod. Phys. 52, 29 (1980) and F.A.
Gianturco and A. Jane, Phys. Rep. 143, 347 (1986) and
references therein.

4) N.F. Mott and H.S.W. Massey, The Theory of Atomic
Collisions (Clarendon, Oxford, 1965) 3rd Ed. ) ’

5) J.J. Rehr, E.A. Stern, R.L. Martin and E.R. Davidson,
Phys. Rev. B17, 560 (1978).

6) S.H. Chou, J.J. Rehr, E.A .Stern and E.R. Davidson, Phys;
Rev, B35, 2604 (1987).

7) S.J. Gurman, N. Binsted, and I. Ross, J. Phys. C: Solid
State Phys. 19, 1845 (1986).

8) M. Benfatto, C.R. Natoli and M., Ruiz-Lopez, to be
submitted to Phys. Rev. B.

9) G. Krill, J. de Phys. C8-907 (1986); N. wWetta, G. Krill,
P. Haen, F. Lapierre, M.F. Ravet, L. Godart and F.
Holtzeberg, ibidem p. 965.

10) J.J. Burton and D.A. Shirley, Phys. Rev, B32, 1982 (1985);
M. Sagurton, E.L. Bullock, R. Saiki, A. Kaduwela, C.R.
Brundle, C.S. Fadley and J.J. Rehr, Phys. Rev. B33, 2207
(1986); C.S.Fadley in Progress in Surface Science, S.
Davison Editor, Vol. 16, pag. 275 (Pergamon, N.Y. 1984).

11) J.J. Rehr, R.C. Albers, C.R. Natoli and E.A. Stern, Phys.
Rev. B34, 4350 (1986)

12) J.J. Rehr, J. Mustre de Leon, C.R. Natoli and C.S§. Fadley,
J. de Phys. 47, Coll. C8, 213 (1986)

13) M. Benfatto, C.R. Natoli, A. Bianconi, J. Garcia, A.
Marcelli, M. Fanfoni and I. Davoli, Phys. Rev. B34, 5774
(198¢) ; :

14) A, Bianconi, A. Di Cicco, N.V. Pavel, M. Benfatto, A.
Marcelli, C.R. Natoli, P. Pianetta and J. Woicik, to
appear in Phys. Rev. B; October 1987. M. Ruiz-Lopez, M.
Loos, J. Goulon, M. Benfatto and C.R. Natoli to be
submitted to Chem. Phys.

15) J.L. Dehmer, J. Chem. Phys. 56, 4496 (1972); J.L. Dehmer
and D. Dill, Phys. Rev., LlLett., 35, 213 (1975).

16) C.R. Natoli in "EXAFS and Near Edge Structure", A.
Bianconi, L. Incoccia and S§. Stipcich Editors, Springer
Series in Chemical Physics 27, 43 (1983).

17) C.R. Natoli, EXAFS and Near Edge Structure III, Vol. 2 of

Springer Proceedings of Physics edited by K.O. Hodgson,
B. Hedman, J.E. Penner-Hahn (Springer, Berlin, 1984) pag.
38; J. Stohr, J.L. Gland, W. Eberhardt, D. OQOutka, R.J.
Madix, F. Sette, R.J. Koestner and U. D&bler, Phys. Rev,
Lett. 51, 2414 (1983),.



18)
19)
20)
21)
22)

23)
24)

26)

27)

28)
29)

30)

43

U. Fano, Phys. Rev. 124, 1866 (1961); L.C. Davis and L.A.
Feldkamp, Phys. Rev., B15, 2961 (1977); L.C. Davis and L.A.
Feldkamp, Phys. Rev. B23, 6239 (1981).

T.N. Chang and U. Fano, Phys. Rev. Al3, 263 (1976).

C.R. Natoli and M. Benfatto, J. de Phys. 47, Coll. C8, 11
(1986) .

J.S. Faulkner and G.M. Stocks, Phys. Rev. B21, 3232
(1980) . :

L. Hedin and B.I. Lundqvist, J. Phys. C: Solid State Phys,
4, 2064 (1971).

L.J. Sham and W. Kohn, Phys. Rev. 145, 561 (1966).

P.A. Lee and G. Beni, Phys. Rev. B1l5, 2862 (1977).

L. Hedin and S. Lundqvist, Solid State Phys. 23, 1 (1969).
For the X-@ potential see J.C. Slater, The Self-Consistent
Field for Molecules and Solids: Quantum Theory of
Molecules and Solids (Mc Graw-Hill, N.Y., 1974) and K.
Schwarz, Phys. Rev. BS5, 2466 (1972); for the Dirac-RHara
potential see S. Hara, J. Phys. Soc. Jpn 26, 376 (1967).
T.M. Hayes and J.B. Boyce, Solid State Phys. 37, 173
(1982) . . )

U. Fano and J.W. Cooper, Rev, Mod. Phys. 40, 441 (1968).

J. Stohr, R. Jaeger and J.J. Rehr, Phys. Rev. Lett. 51,
821 (1983).

W. Bardyszewski and L. Hedin, Physica Scripta 32, 439
(1985); Proc. of the X-87 Intern. Conf. Paris 14-18
September (1987), to be published on J. de Phys.
Colloques.




