
l£Éli41^ 

MICROCOPY RESOLUTION TEST CHART 

NATIONAL BUREAU OF STANDARDS 
STANDARD REFERENCE MATERIAL 1010a 

(ANSI anri ISO TEST CHART No 2) 



iflflft 
Laboratori Nazionali di Frascati 

-* (VJ^K» LNF-87/83(PT) 
28 Agosto 1987 

C.R. Natoli : 

INNER SHELL X-RAY PHOTOABSORPTION AS A STRUCTURAL AND ELECTRONIC 
PROBE OF MATTER 

Lectures given at the 
"NATO Advanced Study Institute" 
30 August -12 September 1987, Vimeiro (Portugal) 

Servizio Documentazione 
dei Laboratori Nazionali -li Frascati 

P.O. Box, 13 - 00044 Frascati (luly) 

illlllVBHHKW 



INFN • Laboratori Nazionali di Frascati 
Servizio Documentazione 

LNF-87/83(PT) 
28 Agosto 1987 

INNER SHELL X-RAY PHOTOABSORPTION AS A STRUCTURAL AND 
ELECTRONIC PROBE OF MATTER 

C.R. Natoli 

INFN - Laboratori Nazionali di Frascati, P.O.Box, 13 - 00044 Frascati (Italy) 

ABSTRACT 

A many-body d e s c r i p t i o n of t h e p h o t o e m i s s i o n and 
photoabsorption p r o c e s s e s i s o u t l i n e d that incorporates the 
mult ichannel treatment of the atomic dynamical e x c i t a t i o n s 
in to the framework of the mult iple s c a t t e r i n g theory. 

In t h i s context the in terp lay between e x c i t a t i o n dynamics 
and e l e c t r o n i c and geometrical s t ructure of the ground s t a t e 
i s e l u c i d a t e d . A new mult ip le s c a t t e r i n g expansion i s derived 
that takes i n t o account interchannel t r a n s i t i o n s as w e l l . An 
a p p l i c a t i o n t o the a n a l y s i s of photoabsorpt ion spec tra of 
mixed valence compounds i s ou t l ined . 

The same approach i s shown t o . p r o v i d e a t h e o r e t i c a l model 
for the study of the e v o l u t i o n from the a d i a b a t i c t o the 
sudden regime. Limiting, asymptotic cases are d i scussed . 

F i n a l l y the un i fy ing approach provided by the m u l t i p l e 
s c a t t e r i n g theory in the d e s c r i p t i o n of photoemiss ion and 
photoabsorpt ion p r o c e s s e s in condensed and gaseous phase 
matter i s i l l u s t r a t e d . 

KEYWORDS: multichannel / mult iple s c a t t e r i n g / XANES / EXFAS 
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1. INTRODUCTION 

Electromagnetic radiation has been historically the most 

widely used tool in the investigation of the properties of the 

physical state of matter. The reason lies in the smalleness of 

the fine structure constant a-(e2/f>c)«(1/137) that governs the 

coupling of the radiation with matter. The resulting weak 

interaction has a twofold advantage: en one hand the 

perturbation on the system under study is negligible so that 

one is able to investigate the properties of the unperturbed 

system; on the other hand from a theoretical point of view one 

can use the linear response theory as an interpretative scheme 

in which to frame the experimental observations. 

The study of the electronic excitation dynamics in the 

various states of the matter benefits of this fortunate 

circumstance. There is however a price to pay for this 

simplification in the investigation of the structural 

properties of matter. Due to the smallness of the coupling 

constant scattering experiments can only probe the pair 

correlation function of observables that couple to the 

electromagnetic probe, like the local density p(r) or the 

current density j^(r). Except for periodic systems, where this 

information is usually sufficient to reconstruct the spatial 

organization of the atoms, in any other instance one has no 

clue to the atomic geometrical arrangement in the system under 

study. 

The advent of the extensive use of synchrotron radiation 

has given a tremendous impulse to both areas of research. The 

unique properties of this radiation source, like its 

intensity, brilliance, polarization, tunability and 

collimation, to cite a few, coupled with sophisticated data 

acquisition techniques have made possible the explosive 

development of all kinds of spectroscopic research. 

On the .ide of electronic excitation dynamics a deeper 

understanding has been achieved in the way an excited system 

reacts to the excitation probe. Screening, polarization, 

relaxation, autoionization and decay mechanics have been 

elucidated in a variety of cases, both because of higher 

quality data and better theoretical treatment. 
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On the structural side the photoabsorption process has been 

progressively recognized and used as a technique capable of 

providing structural information beyond the pair correlation 

function relative to the absorbing atom even in non periodic 

systems. In fact it has been realized that, even thouch the 

primary probe, the radiation, couples weakly with matter, the 

secondary probe generated in the photoabsorption process, i.e. 

the photoelectron, can couple strongly with the atoms of the 

system and therefore can carry supplementary information 

through final state interactions. 

As a consequence photoabsorption and photoemission 

measurements, especially from inner shell states, have been 

progressively used for structural purposes. The limitation to 

inner shells, with the inherent simplification brought about 

by the localized and dispersionless initial state, has made 

simpler the theoretical interpretation of the experimental 

results, which in turn have exploited the selective power of 

the incoming radiation both in terms of the type of atom to 

excite and the type of final state to reach. 

Another reasons for using deep core states has been the 

reduction, in the final state, of the amount of electronic 

correlation effects which in general tend to obscure the 

informational content relating to the structural arrangement 

of the atoms in the system. 

However relaxation processes and double excitations are, to 

some extent, always present in the final state of inner shell 

photoabsorption. Therefore a theoretical scheme for 

interpreting the interplay between structural properties and 

electronic correlation dynamics would be highly desirable. 

This scheme is provided by the multichannel multiple 

scattering (m.s.) theory1'2 which forms the objects of these 

lecture notes. 
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2. - THE MULTICHANNEL MULTIPLE SCATTERING THEORY 

We begin with the total absorption cross section, given by 

otcoMx^fKoIi CFf
Nie-I rjY^^SCfua-Ef+E^ <2.i) 

f i-i 

where ì¥n
i t are the many-body initial and final state wave 

functions for N electrons in the system and the sum over the 

finax states £ is intended also over all directions of the 

photoemitted electrons, fid) is the incoming photon energy and c 

its polarization. 

For transitions from a core state we assume that, to a good 

approximation, 

(2.2) 

where A is the usual antisymmetrizing operator .Jl-d/N! ) I_(-1)P 
P(^-^) and On

1'"1 (TJ^TJJ.J) are Slater determinants describing 

the configurations present in the initial state wave function 

V/ 1. Normalization imposes 2^|cn|
3-l, if (+el+e)-l. 

Similarly we assume that, by expanding Wt
tl{x,xl„.xH_1) in 

terms of the complete set f^""1 (x^^^i 

¥f"=VN!.* L fa(r) f."'1 (r^r,,.,) (2.3) 

We take the functions *¥J~l to be eigenstates of the N-l 
electron Hamiltonian 

i«-i ii-i p 2Zk i$i,j»-i 2 
Hw_x- - I V x

2 - I I —+ I (2.4) 
i-l i-l *«1 'ri"*>cl *<! !ri"rjl 

with eigenvalues EJ1"1: 

H.I-! V 1 - V 1 V 1 <2-5) 
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P 
where £ Zk - N, 1̂  denotes the nuclear positions and Zk are the 

k-l 

associated charges. 

We use throughout atomic units of length and Rydberg units 

of energy. The factor VN! in Eq. (2.3) again assumes that we 

can approximate *Fa
M_1 by a linear combination of Slater 

determinants, belonging to a continuum spectrum if *F0
M-1 does. 

In any case we assume for simplicity all continuum states 

normalized into a box enclosing the system: one may eventually 

take the limit of the box linear dimensions to infinity and 

transform the sum in Eq. (2.3) into an integral. 

The final state wave function *Ff is an eigenstate, with 

energy E=fi«M-EMi? of the N-electron Hamiltonian 

M-i 2 p 2Zk 
H„ «-Vr

2 + I I — + V , 
i-i \r-xL\ k-i \x-\\ 

(2.6) 

--V + v<r'ri'V + Vi 

Therefore 

H„H™f =E V f (2.7) 

and we shall henceforth assume that E^-E" is the ground state 

of the system. 

The insertion of Eq. (2.3) into Eq. (2.7) gives 

<-V2r + Vtr,^,^) + H ^ ) *Va<
r>,V"1<ri"ri«-i> " 

(2.8) 

and by multiplying on the left by *¥a*~l and integrating we 

obtain the set of equations 

{V'+Mf'1) fa(r)« 

(2.9) 

where 
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H - l 

V « 0 - < r ' V " I n d 3 r i V 1 < r i ~ r H - l > 
i-1 

(2.10) 

is a direct potential term and we have lumped all the exchange 

terms into the quantities ttaa*(
r'*k) which are thus 

complicated, non local, exchange potentials for which a 

suitable, local approximation has to be found. If we impose 

the condition, as we shall do, that the functions fa(x) be 

orthogonal to all the one particle states present in the 

configurations making up the ground state wave function (so as 

to ensure the orthogonality condition (Yf
R|Yl,)*0) as well as 

to those configurations that enter in all the H,0
H'1,then. the 

exchange term is given by 

w-i 
W^.tr,^) «l/f0(r)J n d3riH»0«-

1(rr^I,_1)V(r,ri,*k) 
i-i 

(2.11) 
Z (-l)P FfB. (r^f.."-

1 («j-Jf-r,.!) 

He refer to the appropriate literature for the transformation 

of this non local operator into a local one3. Henceforth we 

shall assume that this transformation has been performed and 

that our problem is to solve the coupled set of Schrddinger 

equations with local potentials. 

Since E-flOH-E"g we can write in Eq. (2.9) 

E-E,,""1 - fH»+ Z*g- E0"_1 - fKB+ E*q- B ^ M E ^ - E ""M 

(2.12) 

«fkD-Ic-AE0»k0
2 

since E l,"1-E " • Ic is the ionization potential for the core 

state and AEe«E0''"
1 - E *"1 is the excitation energy left behind 

to the (N-l)-particle system. Therefore k0 is the wave-vector 

of the final state photoelectron 

Eqs. (2.9) can then be rewritten as 

(V*+k0
2) f0(r) - Iao.VaB,(r,Rk)f0,(r) (2.13) 
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where for sake of brevity we have put V^, -V,,,,. + W,̂ ,. 

The functions fa(r) have a simple physical meaning in the 

case of electron-molecule scattering. Through the asymptotic 

conditions 

ik0r 

f0(r) - (e a ^ + faCr,^) )N„ (2.14) 

where the factor Na-(k0/j|)
1/2/(4JC) is necessary to ensure 

normalization to one state per Rydberg, they describe an 

electron in the incoming channel SL with wave vector k_which 

can be scattered in any outgoing channel a, with wave vector 

ka, after loosing the energy AE_. In the photoemission process 

we have to take the time-reversed state of Eq. (2.3) (complex 

conjugate if spin is neglected) so that the outgoing channels 

become incoming channels which interfere constructively in the 

wave packet describing the photoelectron so as to give an 

asymptotic plane wave propagating out at infinity with wave 

number k_. 

Therefore Eqs. (2.13) are to be supplemented with the 

boundary conditions Eqs. (2.14) written by replacing f0(r) 

with f0*(r). 

It is fairly obvious then that in the expansion (2.3) the 

most important (N-l)-particle states are the excited states 

H*,,""1 with a core hole corresponding to the photoejected 

electron, for which E "_1-E " - Ic, so that k0
2* fico - Ic -AE0 is 

small compared to V̂ ,,. In this sense the H^"'1 are the relaxed 

excited states of HM_1. 

The argument runs as follows. If k0
2»flo>-Ic =k0

2 and k0
2» 

lvao- <re*'' w n e r e r
c
 i s t n e radius of the atomic core, then to 

a first approximation we can neglect the potentials in the 

r.h.s. of Eqs. (2.13), so that, together with the boundary 

conditions Eqs. (2.14), we obtain 

fB(r) - e «„„ . (2.15) 

The procedure for solving Eqs. (2.13) with boundary 

conditions (2.14) (in the end we shall take the complex 

conjugate) closely follows Ref. 2. We first transform Eq. 
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(2.10) into a Lippman-Schwinger equation 

f0(r) = N„e ^ B ^ + j G«0(r-r') V V ^ I r M ^ . d ' l d 3 ! 1 

' Na e ° r 5 a a + 2 / ^ ( r - r ' J V V ^ . t r ' J f o . C r ' i d ^ ' 

(2.16) 

where we have partitioned the space in non overlapping spheres 

Q^ around the atomic nuclei and an interstitial region Aft. An 

outer sphere fi0 enclosing all atomic spheres can be added by 

replacing Z|t.1 with Zk.0. Also V
k
oa, (r ' )« Voa. (r ') for r '6 fik . 

Moreover 

(V̂ +k,,) G°0(r-r') - 8(r-r') (2.17) 

whose solution is2 

i k a l r - r ' l 
e 

G ° 0 ( r - r ' ) —(1/4K) ' - i k ^ J i d C a ' J YL<*<> 
ir-r'l 

(2.18) 

h1
+(kar>) Y^S,) - -ikaIL J«L(r<)H

+«L(r>) 

where L stands for (l,m), r̂ r,.) refers to the greater (lesser) 

of |r| and |r'| and jx, nx, h1
+ are spherical Bessel, Neumann 

and Hankel functions, respectively, with hx
+ - jx+ inx. We shall 

use reel spherical harmonics and put for brevity J°,(r)-

j1ikar)Y(i), etc. ..G°0(r-r') is the free Green's function with 

momentum flkB and outgoing wave boundary conditions. 

Use of Eq. (2.13) allows us to write 

fB(r) « N„e 5 ^ 
(2.19) 

+ \Ga
0 (r-r') (Vr.

2 + ka
2)fa(r*)d

3r' 

which, together with the Green's theorem 



Jv [G°0 (r-r« ) (Vr.
2 +k 0

2) f0(r') 

-f0(r') (Vr.
2 + kB

2)G°0(r-r')]d
3r' (2.20) 

-J [Ga0(r-r')Vf. fa(r')-fo(r
,)Vr.G°0(r-r')]n da' 

leads to the following equations 

ik 0 . r P 
f 0 (r ) « « 0 e S^+Zjs [&0(T-T') Vvta&) -

- f B ( r ' ) V^G'jIr -r 'J l -adO' (2.21a) 

+ laaCfl
0(r-T')lay

t
aa.(x')faAt')<ih' i f r i l ^ 

0 - N t t e i V r 6 ^ + ZJS tG«0(r-r')Vr ,fo(r') -

- f 0 ( r ' )V r . G°0(r-r')]-n do' (2.21b) 

+ /AOG°o< ir-r'>2;a'Vl<ia'<r ,) fa' <r'> d 3 f ' i f r € ^ *K 

In order t o perforili the surface i n t e g r a l s around the 

spheres Cl^ centered a t 1^ we make use of the usual expansion2 

G«0(r-r') - ELL. j ^ V j ) YL(^) G*iltiL, j x , (k 0 rpy L (^) 
(2.22) 

*ILL. AU,) GVJL. A.<«i> 
where 

«"it, jL' " 4 * *« £L- ^"^'Cfv [-ih\. (k0R..)l YLB (*„) 

with 

CLL'L» -Jy L (Q)Y t t (0 )Y t . (0 )dn (2.24) 
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and putting r^-r-R,, R^-Rj-R,. Unless explicitly stated, we 

shall henceforth assume this meaning for r,. The matrices N and 

J are defined by decomposing -ih^-n^i^. 

Moreover we need also an expression for the solution of the 

system of Schr5dinger equations (2.13) inside each sphere Cl^. 

Writing 

fa(r) «XLf°L (r) YL (r) (2.25) 

in ser t ing i n t o Eq. (2.13) and project ing onto YL we f ind 

[ l / r ( d 2 / d r 2 ) r + k0
2 - 1 (1+1) /r 2 ] f° L (r ) -

(2.26) 
*«.L. •klLL."",(r) f ° ' L . (D 

Here we have assumed that around each center k, 

V ^ . t r ) - ^ Vk;L«»
,(r)YL (£) (2.27) 

so that 

VK;LL.a0'^)-J:L-CI,
L,
L-Vk;L.««

,(r) (2.28) 

If a runs from 1 to nB and 1 from 0 to lnax, this is a set 

of n0(
1m«x+1)2 equations and consequently we can construct this 

number of linearly independent solutions f^.00'(r) regular at 

the origin which, for given a'L'can be interpreted as vector 

solutions whose components are labelled by (XL. To start the 

integration, we might take, for example, near the origin, 

«u..""- r1 *LL' 8ao. (2-29) 

Consequently the general solution can be written as 

fL«(r) - Za,L, Clj«
,fXit.

OB,(r) (2.30) 

so that without loss of generality, inside the sphere C1L, we 

can write 

*el<«i> " V rLL- Cu.
0' W ^ i * V*i> (2.31) 
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Insertino this expression into Eq. (2.21b), taken for refi,, 

remembering Eq. (2.22), one obtains 

0 » *L J\<«i> {k«Pi2 W Wt-ih+
i r f ^ u , . - ' ] ^ . « • 

+ I V LL.L- Pk2 G°iL.kl/ W[j l t , fk;L.L.a,r]CkL.« ,> (2.32) 
k(*i) 

ik a . r 
+ / A Q G O 0 < r - r , ) ^ t • v I a o • < r , ) f a . ( r , ) d 3 ^ , + N« • «, OB 

Here we have introduced pk, the radius of sphere Qk, and 

defined the wronskian 

W[f,g]«f(r)(d/dr)g(r) - g(r)(d/dr)f(r) |r^k (2.33) 

calculated for r - pk. 

He now put 

(2.34) 

B°kL' " Pk *fa'I." W^l"fk;L1L-a0]CkL-0' = 

= Pk ^O'L- W^'fk)L•L-a0,CkI,-0, 

and invert this relation to obtain 

Pk2 CK,.0' - Z„-L.[W(j,fk)-ML.L,«'«- B«"kL„ (2.35) 

with obvious notation. 

Then Eq. (2.32) becomes 

0 - IL J ^ ^ H I , , , ^ ^ . k0 [WC-ih',^) ]„,,«' 

tW(j,fi)-
1]La„°

,°"B«"u.+ I IL, G»1Iwkt. B«kL- ) (2.36) 
k(#i) 

ik0-r 
+ N0e &aa+lxiG*{z-x')Za,V

1
aa,(x')fa,lx')d3r' 

We now introduce the generalized inverse atomic T^^-matrix 

whose meaning we shall discuss later 
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(2.37) 

and use the usual development (remember that N0-(k0/x)1 /2/(4x) ) 

N0e ° ' - ( V * ) 1 7 2 ^ i 1 J°L<r>YL<ko> -
(2.38) 

- U / k j D l ' a I ^ Y , (k^Z,, j» l l t oL ^ . ( r , ) 

where we have reexpanded the function J°L(r)« J°L(«0) , which is 

defined with respect to the origin of the coordinates o, 

around site i through the quantity J*iL, oL defined in Eq. 

(2.23)2. 

Since the solution of Eq. (2.36) is linear in the source 

terra N0e
ikcrr, we can put in Eq. (2.38) 

(l/kon)
1/2 i1 Y^jèo) - 6^(1/^)1)1/2 (2.39) 

so that finally we can write 

0 - J^J», (r){I0.L.(T,i-
1)««,I)L. B«'iL.(fl;L) 

(2.40) 

+ z K G V K L . B°kI>, (fl;L) + J V * 5^ (i/k0*)"
2} 

Notice that we have now affected the quantities B°iL(fl;It) by 

the indices n,Lr marking the dependence on the inhomogeneous 

term 8^6^. Therefore in Eq. (2.36) 

Let us neglect/ for the moment, the interstitial potential, 

i.e. let us put V1^, (r)«0. Then the Eqs. (2.40), one for each 

i, determine the coefficients BaiL(flt;L), which through the 

relations (2.35) and (2.31), provide the functions ffl,(r1) 

needed to calculate the transition matrix elements. 

To interpret the Ba1L(fl;L), we need to consider Eq. (2.21a) 
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for r € 2^ lijj and use Eq. ( 2 . 1 8 ) . Performing the sur face 
in t egra l and remembering the d e f i n i t i o n (2.35) we f ind 

f 0 ' r ) =N 0 e i k er*8 a a 

- * « ^ Z u . i i t l h V } W Y i A > B«kL(fl;L) Y ^ ) 

+Ui G"o < r - r , ) Sta-Vlao.<r,> f<r<r'> d3r> < 2 - 4 2 > 

Assuming again V1^, (r)«0, this equation clearly shows the 

meaning of the B0kL(a;D *s as scattering amplitudes into the 

channel a with angular momentum L emanating from site k in 

response to an excitation with angular momentum L. into the 

channel SL-

It is interesting to derive an explicit formula for the 

BaiL's in the atomic case, which is obtained by suppressing the 

terms k*f in Eqs. (2.40) and (2.42) and putting i-o. 

From Eq. (2.40) in such a case we obtain, since2 J°oL oL= 

^ • L ^ V 1 ) 0 0 ' ^ . B0,L,<a;D- - S^taa^a'V1'2 (2-43) 

giving 

-B°L(fi/L) -(T.)"^^/*)
1' 2- (2.44) 

-(k0/«)
1/2Ia,L, IVHjrf))^,0"'^.)-1 [W(-ih+,f)-1]L,L

a'fl 

This explains the definition in Eq. (2.37). The quantities 

(Ta)
oa'LL'( are the natural generalization of the usual atomic 

Ta-matrices for non spherically symmetric potential in the 

multichannel case. 

For the many center case the interpretation of the 

coefficients Ba
iL{£L:D as scattering amplitudes is indeed 

confirmed by the physical meaning of the m.s. equations: 

So-L'<T.i"1)W,,Li.' Ba'1L,<a;l) + (2.45) 

+ * K GV,*L- BV.*a;D - - J V ^ a / i k . * ) ) 1 ' 2 
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wh eh can also be written as 

k(tfi) 

- K « W - jaiL..oL<1/<ka,c))1/2 (2-46) 

Since, from Eq. (2.38), ^"ÌL.OL is the exciting amplitude of 

the L angular momentum component of a plane wave impinging on 

the origin as seen from site i, Eq. (2.46) shows that BaiL(fl;L) 

is the sum of the scattering amplitude originated directly at 

site i by the exciting amplitude plus all the scattering 

amplitudes generated by the waves that are scattered by. all 

other sites k(#i) and propagate from site k to site i, where 

they are finally scattered into the final state. 

If is interesting to look at the structure of the m.s. 

matrix Eq. (2.45): 

-^.i"1 )aB'u.. Si***1" »ik>^.""iL.M..-
 i5aa. AL.KL-

- ti*'*.*.- iAa°'iL.,a. (2.47) 

where M and A are hermitian matrices (actually A is real 

symmetric). We have introduced the reactance atomic Kai-matrix 

related to the Tai-matrix by the usual relation 

<T.i"1)aB'u.. " JcA-L-tWf-ih^f^l^^-fWtj,^)-1]^»-0*-

" k«Vi- W n . ^ ) ]„,„•»" [Wtj.f,)-1]^,»"0' 

" iko8LL'5ao-

- itn'1)**':.!.'"*-1 ka <2.48) 

remembering that -ih*x- n1-ij1. The term il k0- i B^, 5LL, ka has 

been incorporated in A by lifting the restriction i*k and 

using the relation Ja1L,ii,."kc&,i,' •
 In Ec*' (2.47) we bav« used 

the decomposition (2.23). 



By exploiting the sum rule2 

*L A L . * . J*»-.* " V w " k« AaB,iL.kt. 5„. (2.49) 

it is now easy to derive a generalized optical theorem for the 

amplitudes Btt1L(B;L) : 

LOL B°iL<a^> tB«kt. (atWV -1/X I (M-iA)-^ W«'iA)-1]0",
it.kIi. 

(2.50) 

- 1/x Iro I (l§-iA)r1l,,B,
1Il#kt. - 1/* Im t*»'^ kL. 

which we shall need in the following. For convenience we have 

put (M-iA) "1-S"1«t, which is known as the scattering path 

operator. 

The presence of an interstitial potential V1^, (r) merely 

modifies the quantities Tai
_1 and G in Eq. (2.45). However the 

general structure of the m.s. equations as well as the 

validity of the generalized optical theorem (2.50) remain 

unchanged. This is also true in presence of an outer sphere. 

tie refer the reader to the already cited articles for 

details1'2. 

If we assume that the initial core state is localized at 

site ir we need the vave function f0(r) inside the sphere QL. 

From Eqs. (2.31) and (2.35) we obtain 

£*.<«) " *«. *LL. Clt.
a,filtt.-

,,(rl)Yl <«,) 

- Za. 1^. I0„L. P1-
2[W(j,f1r

1Wa,er (2.51) 

B°"iL- * lux."' <*!> V*l> 

By defining the functions 

<r) - pf2Io,L.fLL/»'(r)[W(j,f)-ML.L..
o,0r (2.52) acr 

we can a lso write/ making e x p l i c i t the dependence on the 

incident wave vector kfl and using Eq. (2.41), 
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(2.53) 

" \ Vl- h «•"it- « » W i i YL (*U> ̂ i:LL~'<^I>YL^i> 

To obtain the total cross section we have to sum over all 

possible photoelectron final states labelled by the index ft. 

Since the wave functions f1,, are normalized to one state per 

Rydberg we have, using the projection property &~A, 

ot<o)« 4x2afK»2^ 

J d*J [^Vlr.k.lV 1! e • I rjH!J*c*<r><rc-*) |* 

(2.54) 

- 4JiaafKtt2^JdkSll(2^fa
1(r;ka)|er|#c

i(r))S<l0l2 

The la s t step follows from the orthogonality of f l
a to a l l the 

i n i t i a l l y occupied orb i ta l s and the fact that we assume the 
arthogonality of • c

i O to a l l the orbitals appearing in the 
HFJ-i's. So0-(,fo

,'-1|1'c
l,"1> i s the projection of Ta"-1 onto the 

occupied configurations present in the i n i t i a l s ta te . 
By introducing the expression (2.53) into Eq. (2 .54) , 

performing the angular integration over ^ a n d introducing the 
atomic matrix elements 

ttm'LL.'i£m'VLAri)YLlxi) ieri V ^ ) ) (2.55) 

we can rewrite Eq. (2.54) as 

oto» - 4**afkDlau^,0Xp,p 1 ^ 2 ^ . s*, M«» ^ B>iL <a;L> 

(2.55a) 
[B*iL. (a;W «•'»• t, sa>0] 

{imxwv^MM»^ s..0r (2.55b) 

using the generalized optical theorem Eq. (2.50). 

From Eq. (2.53) it is immediate to write down an expression 
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for the photoemission cross sec t ion for e j e c t i o n of an 
electron into the state k̂  with energy kft

2 -1W-Ic-AEa 

dodoVdk.* 4*2afl«»| ( ^ V C r ^ l e - r l ^ C D i S ^ I 2 

(2.56) 

« 4*2af>»|X ^,. t.l^«« ,
1I i.(fl;i) i x V V **' S«ol2 

In both cases the sun over Lf indicates the sum over the 

final angular momenta allowed by the dipole selection rule in 

Eq. (2.55). Notice that in Eq. (2.56) it is not possible to 

take advantage of the generalized optical theorem. 

It is interesting to compare the expression (2.55) with, the 

total cross section for electron molecule scattering. The 

general definition of scattering T-matrix in the multichannel 

case is derived by looking at the asymptotic behavior of the 

electron wave function 

f0(r) -^ ^ 4K V V i X WV«>^mT ika K H*\- <«>*"t.J 

(2.57) 

where r is referred to the center of the coordinates. 

This expression has to be compared with Eq. (2.42), with 

V^.-O, after all coordinates r^-r-l^ have been referred to 

the origin. To this purpose we use the reexpansion formula2 

- i k ^ V W V ^ —*• Zi> hV<*«r)YL.(r) J»O1..M. (2.58) 

valid for | rk-r I -1 Jt̂  ! < |r| since we look at |r|-»~ 

Substituting this relation into Eq. (2.42) we obtain 

f0(r) ^ Z^ 4K YL(ktt)ii [Na JV r , 5oa 

- ZL 4* Yu(kg) U Na [J", (r) 0^ 

-i/(4)CNa)IL, H
+«L.(r) Ifct^ot.^t^di/DJ (2.59) 
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This gives lor I5*^ the expression 

T^U, * ̂ i- AL.*!.. B"kt. <«'*W <*/
k«3>1/a <2.60) 

The total scattering cross section into any channel a' 

starting from channel a is given by 

«".1<S.> « «« * r i A lT»'«t.Ll
2=4Jt X ^ . J^ I T - ^ . I* 

(2.61) 

using the detailed balance relation4. 

Using Eq. (2.60) we find 

^.IT^y,!2 «(TT+>< LL 

- l/kBIm T"»^ (2.62) 

s i n c e ^OI^KL. i s r e a l and we have e x p l o i t e d t h e r e l a t i o n , 
derived from Eq. (2.45) 

<k^)"* B«kL ( 0 ; D - I , . , . T«kLJ{.L, J«oLJt.L. (2.63) 

Eq. (2.62) is nothing else that the optical theorem for the 

scattering T-matrix. As a consequence Eq. (2.61) takes the 

form 

°° . i <Ea> - 4 */*a £ L I m ' " u . 
(2.64) 

" 4 * ' K < * I m n . " HcL nc 'L' ^0L",kL ' ^ k L . l c ' L ' J k , L , , o L " 

e x p l o i t i n g the r e l a t i o n J°oL#kL. - J", l t > o l . 
We s h a l l d i s c u s s the r e l a t i o n of t h i s express ion with Eq. 

(2.55) in the next s e c t i o n . 
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3 . TUE GENERALIZED MULTIPLE SCATTERING EXPANSION 

In t h e e x p r e s s i o n s ( 2 . 5 5 ) » ( 2 . 6 4 ) t h e s t r u c t u r a l 
in foraa t ion i s contained in the inverse t « S - 1 o f the mul t ip le 
s c a t t e r i n g matrix Bq. (2 .47) through t h e presence a t the 
s t r u c t u r e matrix e lements G"iL,kL.» i n a rather involved way 
that intermingles dynamics as we l l a s s t r u c t u r e . 

I t turns out however that under c e r t a i n circumstances» t o 
be d i s c u s s e d shor t ly» one can expand t h e v a r i o u s c r o s s 
s e c t i o n s i n a convergent s e r i e s the general term of which has 
a simple and d i r e c t phys ica l meaning. 

In fact» remembering the notat ion introduced in s e c t i o n 2 , 
we have 

t - S'1 - (T.^+G)"1 - (I>TaG)"1 Ta 

so that if the spectral radius p(T,G) of the matrix TaG is less 

than one» where p(A) is the maximum modulus of the eigenvalues 

of A» then 

(I+T.G)-1 - £ (-1)" (TaG)" (3.1) 

the series on the right being absolutely convergent relative 

to some matrix norm. For short we shall henceforth define 

G*itlL.»0 to account for the factor (l-8lk) in Eq. (2.47). 

As a consequence the photoabsorption cross section Eq. 

(2.55) can be expanded in an absolutely convergent series 

cu») - Z a„(») (3.2) 
l»"0 

where 

<V») - 4*afK» 1^. Ip,. X ^ XU.SW,**VI-<T".Ì>
I|,ÌL.ÌL. 

(3.3) 

[*»•»- s..,r 

is a smoothly varying atomic cross section and 
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Ial(-l)- <T.G)-T.^lull.[H-J^Vl" 

rapraaents tha contribution to tha photoabaorption cross 

aaction coaing fro» procaaa «bara tha photoelectroa, bafora 

being ejected at infinity, leavee tba photoabeorbing atoa, 

locatad at aita i, with angular aoaeatva L and channal stata 

$t is scattarad (n-1) tiaes by tha aurrounding atoaa and 

returns to sita 1 with angular aoaaatoa L* and channal atata 

P*. All thaaa a vanta ara eventually to ba Multiplied by tha 

corraaponiiaf aaplitedee 

»«. * • and «L. «•'•• 

and swaaed together to «iva tha n-th ordar contribution. Xt ia 

claar that this tara baars inforaation on tha n particla 

correlation and therefore is sensitive to tha geometrical 

arrangement around tha photoabsorbing atoa. 

In ordar to batter illustrate thaaa concapta let ua treat 

aoaa asyaptotic caaas. It ia obvious that tha condition 

p(T,G)<l ia aatiafiad at high photoelectron energy since 

lia I (T,)"»'̂ . | - 0 . 

In this ragiaa one can safely write 

<T.)•»,tt. ~ t»,,^,^, and *•»•„,. z. K\ *u.-*m' ( 3 5> 

since tha photoelectron is sensitive only to the atoaic cores, 

which are spherically syaaetric, and only tha "incoming" 

channal fft(*> in Eg. (2.14) ia relevant, following tba saaa 

argument leading to (2.15). 

As a consequence tha aayaptotic croaa aaction oa,(#) is 

given by 

«„(•> - 4«af*jf* IS., H-J2 I. la +iim.iim (3.6) 

where, for simplicity, «a have assumed a single 1 final state 
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and f ^ m . is the inverse of S", the subaitrix cf S relative to 

the channel a: 

l<f>-lliww.. - « V » . ' <*\u>"1 *i* KL- + G»!,..*!.. (3.7) 

In other words the different channels decouple and they 

have identical m.s. structure, apart frost the trivial 

dependence on the photoelectron propagation vector ka and on 

the atoaic scattering matrices t"^. 

Eq. (3.6) is the fora used by Rehr et al* to discuss the 

role of multielectron excitations in the EXAFS structure of 

the Br2 molecule in the framework of the "sudden 

approximation". 

The total cross section is wherefore an incoherent sum of 

photoabsorption cross sections relative to different channels, 

so that we can limit ourselves to a single channel. On a 

theoretical basis, born out by experiments, one expects the 

predominance of a single channel in the sum (3.6) when the 

ground state of the system contains one single dominant 

configuration. In this case the biggest overlap factor among 

the Sc.0's is S00, corresponding to the same relaxed 

configuration in the final state and to AEa«0 in Eq. (2.12). 

Depending on the systems, one has 0.7 < IS^l2 <0.8 so that one 

single channel accounts for 70-80 per cent of the spectrum. We 

shall see in a moment how to account for the rest in an 

approximate way. 

In the energy region where Eq. (3.6) is valid we can also 

expand V* as 

1V-(I* t-aGP)-* t*. - £ (-1)" (t«a G
B)* t \ (3.8) 

ft-0 

%o that 

0„(C) -4*af*»I.|S<||0 M V ' £„ I. (-1)" lm ((t«. G«)" t«Jlta.u. 

-I!,, <*•„„(») (3.9) 

Analytic expressions for the m.s. terms, based on the Eq. 

(2.23) for the matrix elements Gu,kL.r are available in the 
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literature1'*. For our purpose it is sufficient to observe that 

each G*1L kL. carries a factor exp{ik^ik) independent of L,L' 

contained in the Hankel function appearing in the definition 

(2.23)» which can be better taken account of by defining the 

reduced Matrix 

(3.10) 

For the n-th order tern in Eq. (3.9), we find 

II(t«.Gl»|t«J11_ ita - X X ... I t«lla G« t« ... 
ail^il. . ^ ^ ^ il. ^ ^ ^ 

(3.11) 

t* G" tB 
k.-l V l «r-A-l."" "-

The set kj ... kN-1 defines a path pa of order n that begins 

and ends at the central atom (located at site i) , to which we 

can associate a total path length 

tot **1 

R - X R (3.12) 
pn wl *» *»*1 

Therefore, putting 

p p 
Al» <*«rRtt)exp [î 1,, (k^R^)) (3.13) 

•a X X X t* G* G" tfl 

'n-l U-.kjtj "«-l'-fl-l,!!» 

_ • _ . . . . 

we can finally write 

X. [<t«.GVt«J1i..il.-

(3.14) 
P P 

Xpn A^CJc^Ru) exp |i[k^
toe* •*„(*., Rik") 1 > 
*n 

so that the functional contribution of the n-th order m.s 
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ter* to the photoabsorption cross section in channel a is 

p p 

£ A1.(k^,Rasili [k.R 0t + •WKik"^ (3.15) 

This means that each path contributes an oscillatory signal 
in the cross section of period 2«/Rtotpn and amplitude A

1
n<ka, 

R % ^ • 

The quantities A1a(karll'nlk) and •
1
(l(ka#R

p»Ik) are slowly 
varying function* of k^, so that, indicating by k0-(fHD-lc]

1/2 

the photoelectron wavm vmetmr of the primary channel, we can 
write approximatlvely ia Be.. (3.14) 

S.I(f.G»)-tMito,lto-

*• *» 

e*p{l(k.Ht0) (R
 ta% {é/diofjk,*.** ) | ]} 

If we tato defiae the complex number 

(3.17) 

exp(i(kB-k0)[R
tot* (d/dk)^1B(k,RlJ)| ]} 
Pn k"*0 

we can finally write 

p p 
A\,< ko'0 »in[k0R

tot •iB<k0#Ru)+¥
1
n(ko>J

 (3-18> 

This is the generalisation of the result arrived at in 
Refs. 5,6. The modification needed when there are two or more 
configurations present in the ground state with comparable 
amplitudes, is straightforward. We easily find in this case 
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O„«D)-4xafKD2p|Sp0M« ,
1l2In I (-l)»Bln<kp) A ^ k p , ! ^ ) 

pn 

s i n [kpRt0t+ •\,<Kp'Rik") + V 1n<kp ) 1 ( 3 - 1 9 ) 

pn 

where the £> is over the corresponding relaxed configurations 

in the final state. 

It should then be possible to discriminate in the 

experimental analysis between the various oscillatory signals 

appearing in the spectrum due to the presence of different 

main channels |J. 

However the formula (3.19) is only asymptotic and 

deviations from the sudden approximation (3.5) must- be 

considered if one wants to exploit a larger energy range. 

The general expansion to use in this case is given in Eq. 

(3.4). The lowest order term is n«2, since G^L IL'~0- This ia 

the usual EXAFS contribution given by 

°1°2 

where for simplicity we have assumed (T^)00'^» {Tal)1
aa' 8LL. and 

set M°a,
LL,^_ M°1 5ao, 8LL,, since terms proportional to 

M0""^. (a*a-) would be of higer order in this expansion. 

The new feature now is given by the fact that at each 

scattering event the photoelectron can change its channel 

state, and consequently its propagation vector k0. This fact 

can make difficult the detection of, say, a two channel in the 

EXAFS signal of fluctuating mixed valence compounds, 

especially for the first coordination shell whose atoms can 

participate to the relaxation effect of the photoabsorber. 

However it is likely that there is no relaxation beyond the 

first shell so that one can write (Tak)1°i
a2~(Ta)t) fi 8a,o2 for 

atoms located in the second shell. Eq. (3.20) then implies 

that there are only two EXAFS signals, originating from this 

shell, each one with a definite propagation vector. Since for 

higher order shells the period of oscillation in k is shorter, 
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it snould be easier to detect the two signals. Recently 

interesting results concerning lattice relaxation in 

homogeneous and inhomogeneous mixed-valent materials have been 

obtained by the use of a two channel EXAFS analysis9. 

Equations like the one in (3.19) constitute the basis for a 

structural analysis of photoabsorption spectra. This analysis 

is in many way complicated by the need of taking 

configurational averages both dynamical (over the phonon 

spectrum) and structural, when it is the case (as in amorphous 

systems). The way to do this averaging processes is still a 

matter a research. 

It is interesting at this point to compare the 

photoabsorption cross section Eq. (2.55b) which reduces to. the 

following 

O(O)z:4lcfìa»Iàtt,Sa0M«L {Im f»"luiL> [M"'LSo.0]* (3.21) 

i f one takes the most important terms (M08'^. ~ M"L 5 ^ . where L 
represents the 1 channel s e l e c t e d by the d i p o l e matrix element 
with i n i t i a l core e l e c t r o n angular momentum 1 - 1 ) , with the 
expres s ion (2 .64) for e l e c t r o n - molecule ( i . e . c l u s t e r of 
atoms t o t a l c r o s s s e c t i o n , which we r e w r i t e here for 
convenience 

o°.i<E«> -
(3.22) 

» 4 H / k a Im i L „ £ | , i , * v L . " oL",kL * k L ,k'L' " k'L'.oL" 

The greater structural and angular momentum selectivity of 

the photoabsorption cross section is apparent. In Eq. (3.21) 

only paths beginning and ending at the photoabsorbing site 

with the same angular momentum are possible. No such selection 

rule exists in Eq. (3.22). Moreover in the greatest majority 

of cases, when only one single configuration is dominant in 

the ground state, only the primary channel cc0 matters, the 

effect of the remaining channels resulting into a smoothing 

action on the primary transition. Therefore, as a structural 

probe, photoabsorption has to be preferred to electron 

collisions. 
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It is also interesting to compare Eq. (3.21) with the 

photoemission cross section Eq. (2.56), which under the same 

assumptions reduces to 

do A 
— - - 4K2fl<o |Xà21 B«1L (fl;L̂  i1 \ ( \ ) M°L So0 |

2 (3.23) 
dkfl 

By using the solution (2.63) for BaiL, together with the 

definition (2.23) for J°3L#)tL. and the relation (2.38), we find 

- ( V « ) 1 / 2 ^ L . ̂ iL<kL. i
1" YL.(ka)e "••"

ko 

= ( V « 1 / 2 2*1, I d * ^ G ) " 1 T.]«1 X i f k l I i*' YL.(kfl)e i V R k ° 

(3.24) 

At "high" photoemission energies, again 

(I+T G)"1 T. ~ tl-T.G + (T G)2+...] T 

r e t a i n i n g only te rms up t o t he second. 

Wi th in t h i s a p p r o x i m a t i o n and p u t t i n g f o r s i m p l i c i t y 

<T.i>aB,LL. - ^ a i ) ! 0 " ' 5LI/ «e de r ive 

^ B ^ ^ f f i D i ^ Y ^ (k0) - (ka/n)"2Za, (Tai)x««' 

( i 1 Y (k ) S, 8 - Z. Ga' (T ) ° ' f l i 1 ' Y (k ) 

+ E 5! T fi° /T \ o'°" rt<*" 
T ^O" n t f ^ j L " " i L . j L " ^ a j ' l " *• jL",KL' 

(Tak)11°"a i 1 , YL.(ka)+... }e fl' ° (3.25) 

which has to be inserted in Eq. (3.23). 

As can be seen from this equation, now there are 

contributions coming from paths beginning at the 

photoabsorbing site and ending anywhere in the system, as it 

is obvious since the photoelectron is detected outside, in 

free space. 
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The structural analysis is more complicated than in the 

photoabsorption case, but can still be done and is giving its 

fruits10. The expression (3.25) incorporates the multichannel 

structure which can help analysing photodiffraction 

experiments with more completeness. 

Of practical importance in the structural analysis is an 

accurate approximation to the exact, but computationally 

cu.ibersome, expression (2.23). 

The following approximation 

e V » ' - -4* k«il"1'Yi. <*Ì<C>YL.<*Ì.C>G<PV c^,,^.) (3.26) 

where 

g(p;ot,P) - [i+ a / ( 2 p ) 2 ] 1 / 2 J0(p/p) l / p 
(3.27) 

e x p { i p [ l + ( a / ( 2 p ) 2 ] } 

with 

a u , « 2 [ l ( l + l ) + l ' ( l ' + i ) ] ; 
(3.28) 

pllf- [ld+Dl'U'+i)]
1'2; P°ifc-koRiic 

gives rather accurate results for m.s. paths of low order 

(n-2,3,4) when compared with the exact expressions. In Eq. 

(3.27) J0(p) is the Bessel function of order zero
8,11. 

The nice feature of Eq. (3.26) is the proportionality to 

YLYL, which allows to clo?e intermediate angular momentum 

summations through the addition theorem for spherical 

harmonics 

(21+1) /(AH) Pitftj-fcj) - Zm Y1(B<R\>*ln<fc2) (3.29) 

For example the second term in Eq. ( 3 .25 ) , put t ing the or ig in 

o at s i t e i , becomes 

« 4x k0, i 1 YL (R ik)IkL.YL.(R lk) 

g ( p 0 ,
i k ; a u l , p n , ) ( T ^ , 0 ' » YL, (kfl) e fl' k i ( 3 . 3 0 ) 
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- S** 1 V*ik> =i. (21' + DP1 . (k f lR l k) 

<J<P°V « n - Pii-> *«• <Tak)1« ,« e ^ ' ^ 

- ^ i l YL <Ri>c>feff<P0V V * i k > e fl' * (3.30) 

where feff (p
a
 ik; k -Rik) is an effective scattering amplitude 

off the atom located at site k, calculated at the angle arcos 
A A 

(k_.Rik) between the vector [joining the photoabsorbing site i 

with the scattering atom and the direction \^ of escape of the 

photoejected electron. A similar form is valid for the third 

term if one introduces an effective scattering amplitude- off 

atoms located at site k and j.12 

The expression (3.26) can also be efficiently used for 

computing m.s. terms like those in Eq. (3.13) for 

photoabsorption. We refer the interested reader to Refs. 8,11. 

Until now we have simply assumed that p(TaG)<l and given an 

argument ( IT^)00'^. |-»0 for Jc,,-»00) to show that there exists an 

energy regime for which this relation holds. 

However, by simply considering the behavior of p(TaG) as a 

function of fico (hence of the various k0), one can predict some 

general features of photoabsorption spectra. 

In fact the spectral radius (TaG) is a continuous function 

of fl(D and, as already observed, goes to zero for fl©-*». At the 

other extreme however, i.e. near threshold (flO)-Ic), it is 

reasonable to assume that p(TaG)-»<», due to the singularity of 

the Hankel functions h+1(k0RiJ) appearing in the definition 

(2.23) of the matrix elements of G (the product ^oh^ (k^.) 

goes like k^1) . Consequently p(TaG) must cross at least once 

the value p*l in the range Ic < fia>< *>. Moreover, the nearer to 

1 is its value, the slower is the convergence of the m.s. 

series. 

On the basis of this simple consideration we can therefore 

conclude that there are at least three regimes in a 

photoabsorptjon spectrum: a full multiple scattering regime 

(FMS) (p(TaG).$l), where a great number of m.s. paths of high 

order contribute significantly to shape up the photoabsorption 

spectrum or even an infinite number of them, depending on 
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whether the m.s. series converges or not; an intermediate 

multiple scattering regime (IMS) where only a few m.s. paths 

of low order are relevent (typically n<4) so that interatomic 

configurational correlations of this order are accessible; a 

single scattering (SS) regime where only the lowest order term 

of the m.s. series (n=2) is detectable and provides 

information on the atomic pair correlation function. 

The energy extent and even the sequential order, as a 

function of increasing photon energy, of the regimes described 

above are obviously system dependent. Usually the FMS regime 

precedes the IMS which, in turn, merges into the SS region. 

This is the normal situation; however there are exceptions to 

this. In copper K-edge spectrum, for example, in the first ~50 

eV above the absorption edge the EXAFS like O2(C0) term alone is 

capable of reproducing the experimental spectrum and the exact 

band calculation. However a substantial discrepancy shows up 

in the energy range 50+200 eV, where clearly m.s. 

contributions of order higher that two are present11. 

This behavior can be understood on the basis of the 

peculiarity of the relevant atomic phase shifts that are small 

(modulo Jt, by Levinson theorem) at low energy and must cross 

K/2 (again modulo it) before going to zero at high energy. At 

the crossing | tal I - I sin8x | ~1, so that the coupling of the 

photoelectron with matter becomes again substantial. 

Summarizing, since the magnitude of p(TaG) depends on the 

interplay between the atomic T-matrices and the structure 

factors G, both ingredients must be considered in discussing a 

photoabsorption spectrum. The bearance of the multichannel 

structure of Ta on the magnitude of p is still an interesting 

subject open to research. 

Experimental analysis based on the preceeding 

considerations is confirming that structural information can 

indeed be obtained from the SS and IMS energy region of the 

spectrum13,14. In the FMS region the presence of many scattering 

paths in a limited energy range (usually 2-5 Rydbergs) makes 

it impossible to derive any detailed information whatsover on 

the various paths. However it is an empirical experimental 

fact that clusters of similar atoms (in the sense that they 

have similar scattering power, i.e. atomic phase shifts, like 



atoms in neighboring or corresponding positions along the 

periodic table) with the same geometrical arrangement give 

quite similar features, like fingerprints in photoabsorption 

spect ra. 

This is quite evident in molecules where these particular 

features have been named "cage" or "shape resonances"15. They 

afford a kind of global information about both the structure 

and the type of atoms participating in the resonance 

These resonances are the cluster analogues of the 

scattering or photoabsorption resonances which are well known 

in the single atom scattering case. They have been mainly 

asssociated with the presence of some effective repulsive 

potential that creates a sort of cage that traps the final 

state electron in a quasi-bound state decaying away with a 

lifetime T=flT "x connected with the tunneling probability 

through the barrier. In reality this is only a partial, model 

view of the potential resonance theory16. Be as it may be, 

these resonances, which show up as more or less sharp maxima 

in the cross section, are associated with a singularity of the 

reactance matrix k related to the atomic t-matrix by the 

relation (see Eq. (2.48) for the general case) 

tx =(l/k0)e sin 81; k'
1^ cotg 8: - tx

_1 + ik0 

tx = kx /(l-ik0 kx) (3.31) 

where we have indicated by kn the wave vector of the electron 

and introduced the potential phase shift 5^ 

Since the cross section is proportional to Im t1 (see Eq. 

2.55b) we find 

i n t j - (l/kgjsin^ = k0 / (k0
2 + kf2) (3.32) 

so that at a maximum 

kj"1 » k0 cotgSj -0-» 5X - 71/2 (modulo K) 

This implies that at a resonance kL is singular. 

It Ì3 easy to convince oneself that quite similarly, in the 
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cluster case, resonances are associated with singularities of 

the cluster Kc-matrix which can be shown to be given by 

(Kc)fl" LL'* ̂ kL" 2jL" Auki1 (M"")aBkIà'.jL- ̂ IL-.oL' (3.33) 

where the matrix M has been defined in Eq. (2.47), and to be 

related to the cluster Tc matrix Eq. (2.64) by the usual 

relation, analogous to (3.31) 

<Tc>a"'u.-- l <I- i * Kc>-1 Kc 1^'LL- <3-34) 

where we have introduced the diagonal matrix Jt « k0 8^, 5LL,. 

The matrix Kc is hermitian, so that its real eigenvalues X 

can be identified with the tangent of the eigenphase shifts: 

K'tan SXm-
Therefore in the electron molecules scattering, as in the 

atomic case, resonances occur whenever some eigenvalue \m goes 

to infinity (&jj—»x/2), i.e. whenever 

Det ||M ||=Det || ( K ^ ) 0 0 ^ . 6ik + U - S ^ o ^ . N V kL. | | - 0 (3.35) 

due to (3.33). Similarly for the photoabsorption case Eq. 

(2.55b) where the cross section is proportional to 

Im T« Im (M-iA)"1 - Imd-iM^Ar1^1 . 

The sharpness of the resonance depends on how fast, as a 

function of energy, the eigenphase 6m increases through an odd 

multiple of ft/2. 

Eq.(3.35) is the natural generalization to the multichannel 

case of the resonance condition already discussed in Ref. 16 

for the one channel case. It gives the wanted, global relation 

between scattering power of the constituent atoms and their 

geometrical organization in the molecule or cluster. In the 

one channel case, under the assumption that the relevant 

atomic phase shifts are non resonating and actually depend 

smoothly on the energy, it leads to the rule krR-constant, 

where kr denotes the resonance wavevector and R the average 

coordination bond length, in molecules or clusters with 
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identical angular geometrical arrangement but different bond 

length scale. This follows from the fact that the structure 

matrix elements NiL kL. depend on energy only through the 

combination kR.We refer for applications and more details to 

Refs. (16,17). 

As a final remark, we note that the condition Det |M |«0 

does not entail necessarily the other condition p(TaG)>l. 

Stated differently, at a resonance the m.s. series might even 

converge, although one is always in the FMS regime where pnl. 

4. THE ONE CHANNEL APPROXIMATION AND THE OPTICAL POTENTIAL 

The multichannel m.s. theory approach to the description of 

photoabsorption and photoemission processes in condensed 

matter is a relatively recent development that makes use of 

concepts already known in atomic or molecular physics. This 

approach is substantially equivalent to the configuration 

interaction method (Fano, Davis, Feldkamp)18. For the relation 

of this latter approach to some aspects of the many-body 

calculational approach, see Chang and Fano19, although in the 

general case this relation can be quite involved. 

As a general trend, however, the calculation of the EXAFS 

signal in photoabsorption and photoelectron diffraction 

processes in condensed matter or molecular physics has been 

traditionally based on an effective one particle approach, 

that is one particle moving in an effective (real or complex) 

potential. Multielectron excitations effects are added on top, 

so to say6. 

In this section we want to illustrate the relation of this 

one particle approach to the general theory of section 2 and 

show how the multiple scattering approach provides the 

unifying scheme in which to frame the different ways of 

solving the one particle problem. 

The first reduction procedure one can think of is to 

eliminate in the set of equations (2.13), supplemented by the 

boundary conditions (2.14), all the "inelastic channels", i.e. 

those with a * a' and such that AE0 * 0 , in favour of the 

"elastic" one. This elimination is in principle possible and 
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leads to an effective Schródinger equation with a complex 

potential, which in fact describes exactly the effect of the 

eliminated channels. This potential is known as optical 

potential. The contribution of the inelastic channels to the 

total absorption cross section is neglected altogether. 

Actually, since the optical potential is quite complicated, 

approximate forms based on ad hoc theoretical considerations 

are used in practical calculations, where quite often the 

imaginary part is neglected. 

As a further approximation one reduces the potential to a 

muffin-tin form, although this is done only for computational 

convenience. In order to keep the discussion and the notation 

simple we shall assume this form for the potential, so that 

the relations (3.5) apply. The necessary generalization of the 

following considerations for non muffin-tin potentials is left 

to the reader. 

The problem is therefore reduced to the calculation of the 

quantity 

o(«) - 4*2afi© Lt | (•£ie-n$i) I
2 6(h« - Ef + zL) (4.1) 

where now |+f) and 1^) refer to one particle eigenstates with 

energies Ef and EL respectively, of the effective one-electron 

Hamiltonian. For the final state 

(k2 - H)+f - (A + k
2 - V(r))4)f - 0 (4.2) 

where V(r) * Ly vk*r) i s a collection of muffin-tin potentials 

and k2- fuo - Ic is the photoelectron energy. 

Three methods have been used to calculate the quantity in 

Eq.(4.1) : 

a) the scattering method, where one calculates the time 

reversed scattering wave function +~k for +f, with energy k
2 and 

normalized to one state per Rydberg. Then 

csc(fl» - 4K
2afi©| (4>-k(r) le-ri^(r)) |

2 (4.3) 

with 
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<V2 + k2 - ver)) 4rk - 0 

•~k i (1/4K) (k/*) 1 ' 2 r e _ i k t + f ( k ' , k ) (e- i k r /r ) J 

b) t h e Green's f u n c t i o n method, whereby one transforms 
Eq. (4 .1) as (T - E-r) 

Ogj.(O) « 4x2afka (1/x) IrnCti IT+ (k2-H) _1 T1^) 

(4.4) 

- 4xafK»Im Jdr3dr'3 ^ ( r ) e-r G~(r ,r ' ) £ - r ' ^ ( r ' ) 

where (Jc2-H)G~= I or in the coordinate representat ion 

[ V 2 + k2 -V(r) ] G~(r,r ' ) - 5 ( r - r ' ) (4.5) 

G" being the Green's function operator, with incoming wawe 

boundary conditions. 

c) the band structure approach for periodic systems, whereby 

the scattering states are replaced by Bloch states • "(r), 

where q indicates the wave vector in the reduced Brillouin 

zone (BZ) and n is the band index. Then Eq.(4.1) becomes 

0^(0» - 4x2afWDln v/(2*)
3 

(4.6) 

JB2 d
3q5(k2-en(q)) I (•,*<*> le-rl^r)) |

2 

where en(q) gives the dispersion low for the band of index n 

and v is the volume of the unit primitive cell. 

It is not at all immediate that the three expressions can 

be cast into the same final form for identical systems. We 

shall show that this is possible in the framework of the m.s. 

theory. 

We can obtain the result of the scattering approach by 

performing the necessary index reduction in Eq.(2.55a). We 

obtain, assuming i*o 

Oa<.((0) - 4*2aflC0l M I . B (L) B* (L) M* ( 4 . 7 ) 
"^ L f L ' f Lf °Lf ° L ' f L ' f 

where 



l^- (R°L(r) |£-rl4»o(r)) (4.8) 

R L(r) » R
0
XU) YL(4) (4.9) 

and R°1(r) is that solution of the radial Schrddinger equation 

that matches smoothly to j1(kr)ctg61-n1(kr) at the radius of 

the muffin-tin sphere of the absorbing atom and behaves like 

rMl + ...) at the origin. It can be shown to be identical with 

the reduced form of the function ^m
LL. introduced in Eq.(2.52). 

If the potential V(r) is real, by using the optical theorem 

(2.19) we obtain the alternative form (2.55b) 

OV <«) - 4liafM»£ M Im t M (4.10) 
c LfL'f Lf oLf,oL'f L'f 

where we have dropped the star on M^, since in this case RL(r) 

is real. This form will be useful for comparison with the 

Green's function approach. 

The solution of Eq.(4.5) for a collection of muffin-tin 

potentials is given by (but see Ref. 21 for a more complete 

definition) 

G+(r,r«) - - 1^. RL(r0) t-u-l. RL.(r'0)- \ RL(ro)SL(r'0) 

for r,r' € C^ (4.11a) 

G+(r,r«> - - 2^. R^r,) tlUkt. \ . t t \ ) 

for r € Qi# r'e 1^ (4.11b) 

where SL(r) - S1(r)YL(r) and Sx(r) is that solution of the 

radial Schrddinger equation that matches smoothly to j1(kr) at 

po and is singular at the origin. He need only the expression 

(4.11a)r since +0(r), being a core state, is localized at site 

o. Its insertion in Eq.(4.4) gives, since G~«(G+)*, 

O..M0) - 4xaf)tt£ Im(M f M + M 11 } (4.12) 

where 

ML - (SL(r)ie-r|+0(*)) (4.13) 
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For rea l p o t e n t i a l s , s i n c e H^ and h^ are r e a l , we recover Eq. 
( 4 . 1 0 ) . 

F i n a l l y , in an i n f i n i t e r e g u l a r l a t t i c e , where for 
s i m p l i c i t y we assuae a l l s i t e s t o be e q u i v a l e n t , t h e KKR 
nethod wr i t e s the Bloch function as 

•", (r) - \ 0"L(q) RL(r) (4.14) 

with the same definition of RL(r) as before. 

The coefficients a"L(q) satisfy the homogeneous equations 

where tx * e
x*i sin61 is the usual 1 wawe atomic t-matrix, 

common to all sites, and 

GLL.(q) * (1/N) Zik e^«*i-V GiLkL. 
(4.16) 

» I e~*!*o~V G 
** c ° * ^oL.kL' 

k(«o) 

since now the second term is independent of the initial site 

o. 

A non trivial solution of Eq.(4.15) demands that 

Det |t_1(C)- G(q;E) |- 0 (4.17) 

which d e t e r m i n e s t h e band d i s p e r s i o n k 2 « E » e n ( q ) . 
Correspondent ly Eqs. ( 4 . 1 5 ) p r o v i d e o t n

L ( q ) . Using the 
express ion (4.14) for the f i n a l s t a t e wave funct ion , the Eq. 
(4 .6) g ive s 

0„(CO) - 4X2afl©I M M I v / (2X) 3 

»=> r r • t i » " 

/BZ d
3q8(k?-£n(q)) a

n (q) [an (q)J' (4.18) 

Now this expression is nothing else that 



37 

(4.19) 

Im J dr3 dr3 +Q{x) e-r Ĝ . (r,r*) e-r' ̂ (r*) 

where 

It" (r)l* •n_(r') 
In Gg- (r,r«) - Im £ E 2 2 _ 

k2 - en (q) 

(4.20) 

- xl,ln[*%(r)]* •»,(r') 5(k
2-en(q)) 

But the function GBS(r,r') is a solution of the Schròdinger 

equation 

(V+ k2- V(r)) GBS (r,r«) - 5 (r - r') (4.21) 

which satisfies periodic boundary conditions 

GBS (r+Rk'r'+Rk> " GBS (r'r'> (4.22) 

due to the property of the Bloch states 

Such a solution is provided by the function defined in Eq. 

(4.11), where now t1L kL, depends only on the difference R̂ -R* 

due to the periodicity of the lattice. When inserted in Eq. 

(4.19) this solution provides the usual result (4.10), since 

V(r) is assumed to be real in band structure calculations. 

The equivalence of the three approaches, just proved, 

reconciles the apparently different point of view of the 

chemist, who usually thinks in terms of wave function 

amplitude, with the physicist attitude, who is inclined to 

think in terms of density of unoccupied states. In fact Im 

G(r,r*), for x,t'e Cl0, is proportional to the local projected 

density of states, of which a particular 1 character is 

selected when performing the weighted trace in Eq. (4.4). This 
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equivalence is not surprising, since the presence of a 

potential modifies at the same time the amplitude of the wave 

function and the density of the available states. 

When the potential is complex, there is no more equivalence 

between the scattering and the Green's function approach, in 

fact the generalized optical theorem Eq. (2.50) does not hold 

in this case. One must then resort to theoretical 

considerations to know which method to use. 

The imaginary part of the complex optical potential 

describes the reduction of the wavefunction amplitude of the 

elastic channel due to transitions to all the other channels. 

As it is known in scattering theory4, the imaginary part of 

the forward scattering amplitude is greater than the integral 

of its modulus, the difference giving the flux of particles 

scattered in the inelastic channels. So for the 

electron-molecule scattering the form (2.64) is still to be 

used for the total cross section, elastic plus inelastic. 

In the photoabsorption process we add an electron to the 

ground state of the (Z+1)-equivalent atom, therefore we neeed 

to describe the propagation of the added electron in the 

presence of all the other electrons of the system. The 

amplitude of this propagation is the probability amplitude 

that the added electron remains in the original state in which 

it has been added to the system. Its imaginary part, as in the 

scattering case, gives the total probability of scattering in 

and out the initial state. 

This propagation is described by the one particle Green's 

function G(r,r*;E) which obeys an effective one particle 

Schrddinger equation, better known as Dyson equation, 

(V2+E- Ve(r>) G(r,r\-E)-

(4.23) 

j d3r" I (r,r";E) G(r",r';E) -5(r-r') 

where L ( r , r ' ; E ) i s an energy dependent, complex and in general 
non l o c a l , e f f e c t i v e exchange and c o r r e l a t i o n p o t e n t i a l , 
whereas V (r) i s the usuai Coulomb or Hartree p o t e n t i a l . 
Therefore in ca lcu la t ing the photoabsorption cross sect ion we 



have to replace Eq. (4.5) with Eq. (4.23) and use formila 

(4.12) . 

Much work has gone into approximating the self-energy Lin 

a way suitable for numerical applications. Hedin and 

Lundqvist22, by incorporating the Sham-Kohn23 density-functional 

formalism for excited states within the single-plasmon pole 

approximation of the electron-gas dielectric function, have 

produced a useful, theoretically sound, local approximation to 

£ given by 

vxc<r)- Zh(P(r)'E " vc<r>' P (r>> (4.24) 

Here 2^ is the self-energy of an electron in an homogeneous 

electron gas with momentum p(r), energy E - Vc(r) and density 

p (r), the local density of the actual physical system. 

The local momentum p(r) is defined as 

p2(p) - k2 + k2F(r) - m, (4.25) 

where k2 is the photoelectron energy, k2F(r) » [3K
2p(r)]1/3 is 

the local Fermi momentum and \lr is the Fermi energy of the 

system as a whole. For molecules it should be the first 

ionization energy. 

Since E - Vc(r) - p
2(r) we can write with Lee and Beni24 

Vxc(r) -I^pfr), p
2(p);p(r)) (4.26) 

To calculate £,,, one uses Eq.s (25.14) and (25.15) of Ref. 

25 

d3q 4K f(p+q) 
Re \ (p,(D) - - J 

(2K)3 q2 e(q, (p+q)2-W) 

d3q 1 1 
-Wp J 

(2K)3 2»1(q) <ù1(q)-(ù+ (p+q)2 
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J t Q > 2 d 3 q 41C 1 
im 21 (p,co) J 

2 (2lt )3 q2 CO^q) 

{ f (p+q) 8 [ (p+q)2 - C01 (q) - CO] 

- [ l - f ( p + q ) ] 8 [ (p+q) 2 +(0 1 (q ) - t o ] } 

where the dielectric function is approximated by 

<o2 

[e (p,©)]-1 - l + -
[C^-CO^tq)] 

»!2(q) = C0p
2 + e,2 [(4/3) (q/kF)

2 + (q/kF)<] 

CD Ì3 the plasmon frequency and f(k) is the Fermi distribution 

function. A useful analytical approximation to these equations 

is given in ref. 6 where other approximate forms of effective 

potentials are discussed, like the X-a and the Dirac-Hara 

potentials26. 

5. CONCLUSIONS 

The multichannel multiple scattering theory outlined in 

section 2 provides a simple, natural scheme in which to study 

two main problems that are still a subject of active research: 

the evolution from the adiabatic to the sudden regime and the 

interplay between excitation dynamics and structure. 

In fact the nature of the crossover from sudden to 

adiabatic behavior is an interesting theoretical question 

which is not yet well understood. We refer to ref. 27 for a 

review discussion on this point, mainly based on the articles 

of Fano and Cooper28 and Lee and Beni24. A more quantitative 

attempt is contained in the work by Chou et al6 (but se also 

references therein) and in ref. 29. 
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In our formulation we see from Eq.(2.47) that the driving 

terms that control the crossover are the off-diagonal (i.e. 

interchannel) (K^l''''^, matrix elements of the atomic 

reactance matrices. It is not the purpose of the present notes 

to develop this aspect of the theory which is still a matter 

of investigation. 

Another aspect which is clarified by the present theory is 

that of the relation between excitation dynamics and 

geometrical and electronic structure of the ground state. It 

is not surprising, looking at the structure of the m.s. matrix 

Eq. (2.47) and the resonance condition Eq. (3.35) that the 

general shape of a photoabsorption spectrum is determined 

mainly by the geometrical structure of the ground state and by 

the configurations present in it. 

Certainly many applications are needed to establish the 

relative role of the various factors that contribute to a 

photoabsorption or to a photoemission spectrum. What was 

missing was a unifying interpretative scheme which we think is 

now provided by the multichannel multiple scattering theory. 

After the completion of this notes I became aware of the 

fact that the questions treated here had been addressed by 

Bardyszewski and Hedin in a different scheme provided by a 

novel perturbation theory approach, with applications to 

photoemission and X-ray spectroscopy30. Their conclusions are 

qualitatively similar to those presented here although further 

study is needed to established the relation between the two 

approaches. 
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