

C

ФЭИ-1795

ФИЗИКО-ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ

В. С. БЫКОВСКИЙ, М. Н. ЛАНЦОВ, В. И. ЛЕПЕНДИН. О. Н. МАКАРОВ, В. И. МАТВЕЕНКО

Влияние гетерогенности размещения поглощающих стержней в активной зоне на формирование температурного эффекта реактивности уран-водных сборок

Обнинск — 1986

УДК 621.039.516.24

В. С. Быковский, М. Н. Ланцов, В. И. Лепендин, О. И. Макаров,

В. И. Матвеенко.

Влияние гетерогенности размещения поглощающих стержней в активной зоне на формирование температурного эффекта реактивности уран-водных сборок.

ФЭИ-1795. Обнинск: ФЭИ, 1986 г. — 12 с.

В данной работе приводятся результаты расчетно-экспериментальных исследований, полученных при изучении температурных эффектов реактивности (ТЭР) уран-водных сборок с Рн / $\rho_5 \simeq 130$ в зависимости от способа размещения гадолиниевых СВП по сечению активной зоны: равномерно, в центре зоны и на ее периферии. Измерения ТЭР были проведены в подкритическом состоянии методом стреляющего источника. Расчеты были выполнены в двугрупповом диффузионном приближении с использованием (Z, Z)-геометрии в программах F ACTOP -3, ДНЕСТР и (Z, Ψ)-геометрии с учетом реального местоположения СВП в программе R F I-80. Исследования выявили заметную зависимость величины ТЭР от способа размещения СВП в активной зоне в условиях конкурирующего вклада отражателя и поглощающих стержней в баланс реактивности сборок.

Физико-энергетический институт (ФЭИ), 1986 г.

Данная работа представляет результаты расчётно-экспериментальных исследований, относящиеся к выявлению влияния способа гетерогенности размещения поглощающих стериней в активной зоне на эффективность этих стериней и на формирование температурных эффектов реактивности (ТЭР) уран-водных сборок, именщих отрицательный знак по причине недозамедленности этих сборок. Исследования были проведены на сборках малого (~ 4 - 6 длин миграции) размера с большим влиянием отражателя на их Кэф. Два варианта сборок по отношению ρ_{H}/ρ_{5} практически были одинаковы, но отличались размерами, количеством имитаторов поглощающих элементов и конфигурацией боксвой границы активной зоны. В экспериментах использовался метод стреляющего источника / I / для определения реактивности сборок в подкритическом состоянии, что позволило приблизить эксперимент к схемам используемых мето-

дов расчёта.

う いたん いたさい たわいズー・・・・

ОПИСАНИЕ СБОРОК.

Эксперименты проводились на стенде МАТР-2, позволяющем изотермически разогревать исследуемые сборки до 300°С / 2 /. Твэли типа ВВЭР диаметром 9,15 мм с двускисью урана 5% обогащения по урану-235 высотой 60,7 см размещались в гексагональной решетке с нагом 12,9 мм внутря пестигранных пиркониевых кассет с размером под ключ 128 мм. Кассети располагались в гексагональной решетке с натом 130 мм. Толинна стенок ширконневых кокухов кассет составляла 1.5 мм. В качестве поглощающих стеркней использовались гадолиниевые СВП, оболочка которых диаметром 13,0 х 0,3 им выполнена. из неркавержей стали (плотность окися галолиния 0.4 г/см³). Имитеторы СВП имели аналогичные размеры и были заполнены окисью алюминия. СВП и их имитаторы размещались внутри кассет на месте извлекаемых твол. Во всех сборках, на расстоянии 17 см от центра актывной зоны, размещались 4 стальных герметичных чехла дламетром 24x2 им для стеряней СУЗ. В центре активной зони стояя одлагнаемый воздухом герметичный канал / 32 мм, в котором разневался кальфорниевый источник нейтронов мощностью ~ 6.10 и/сек. Датчик нейтро-

「おい」をおんというないです。

нов СНМ-17 помещался в охлаждаемом канале 🔌 89х4 мм, расположенном в боковом отражателе на расстоянии ~48 см от центра активной зонн. Датчик и источник нейтронов размещались в горизонтальной илоскости по центру сборки. Активная зона с верхнего торца и с боков была окружена бесконечным водяным отражателем. Нижний торцевой отражатель на ~ 80% состоял из металлических концевых петалей.

Исследования проводились на двух вариантах сборок, имеющих почти одинаковое отношение \mathcal{P}_{H}/ρ_{s} (128 и 130). Сборки отличались формой боковой поверхности активной зонн и количеством стальных поглогителей в ней. Сборка радиусом 18,1 см содержала 20 имитаторов СВП, сборка радиусом 20,9 см - 49 имитаторов СВП и 24 пластины нержавеющей стали толщиной 1,5 мм между кассетами.

Картограммы исследованшихся сборок и способов размещения в них гадолиниевых СВП, их имитаторов и пластии из нержавеющей стали представлены на рис. 1.

методика эксперимента. потрывности измерений.

Исследуемые сборки с $P_{H}/\rho_{s} \approx 130$, как правило, якляются недозамецленными из-за недостатка ядер водорода в ячейке и обладают стрицательным ТЭР. Предлагаемая схема исследований позволяег проследить изменение ТЭР за счёт вариации отдельных параметров сборки. Для выявления характера закономерности обычно проводилась серия измерений в сборке одного размера, которая в отсутствии поглощающих элементов в ней (присутствуют только их ссответствующие имитатори) при T = 20° С являлась либо критичной, лисо имела небольщую подкритичность.

Последовательная замена имитаторов на соответствующие поглощающие элементи при неизменной величине ρ_{H}/ρ_{T} позволяет проследить исследуемур закономерность. При этом все измерения проводились в подкритическом состоянии при неизменном взаимном положении источника и датчика нейтронов. Последнее обстоятельство позволяет полагать, что возможние систематические погрешности носят регулярный характер и изменяются с температурой одинаковым образом.

していていたいというないのであるというでした。

Контроль температуры при изотермическом разогреве сборки осуществлялся II хромель-копелевыми термопарами, равномерно распределенными по её объёму. Среднеквадратичная погрешность измерения температуры не превышает + 0.5°C.

Подкритичность сборки определялась с помощью модифицированного метода стреляющего источника / I /. Метод основан на анализе скорости спада плотности запаздивающих нейтронов в соорке после быстрого извлечения из неё источника нейтронов с помощью аналогового реактимстра типа ПАМИР. При этом обработка поведения нейтронного потока во времени ведется в приближении одноточечной молели кинетнки реактора, что для сборок небольшого размера (~ 4-6 длян миграции) считается вполне приемлемым. Следует иметь в виду. что при таких измерениях для правильного определения реактивности не-OCXOLUMO YANTHBATS BOSMONHHE HOLDEHHOCTH, CERSAHHHE C "HDOCTDAHCTвенным эффектом" и обусловленные перераспределением поля нейтронов но пространству в присутствии источника нейтронов в сборке и в его отсутствии. При фиксированных положениях источника и датчика нейтронов эффективность регистрации нейтронов датчиком при двух положениях источника может отличаться. Степень этого отличия зависит от выбора местополовения датчика и источника. Полкритичность сборки в процессе разогрева измерялась при 10-12 температурах в дианазоне 20-240°C. Экспериментальные значения

О (T) обрабативались с помощью МНК по формуле:

 $\rho(T) = a + bT + cT^2.$

Величина ТЭР определялась как разность значений ρ (T) при 20⁰С и текущей температуре.

 $\Delta \rho(\tau) = \rho(\tau) - \rho(20^{\circ}c),$ Оцененная статистическая погрешность зависимости $\rho(\tau)$ не превышает $\pm 1\%$.

МЕТОДИКА РАСЧЕТА.

В нейтронно-физических расчётах исследуемых уран-водных критических сборок использовали простие оперативные эффективные инженерные методики, не требующие больших затрат машинного времени и в то ке время обеспечивающие удовлетворительную точность в определении изучаемых эффектов. Основные расчёты температурных эффектов реактивности были выполнены с использованием двухгочиновой методики, основанной на решении уравнений реактора в дирфузионном приблихении. Усреднение эффективных групповых макроконстант для активной зочы и отражателей проводили по многогрупповым спектрам, рассчитанным в различных приближениях, с применением более высоких приближений в области тепловых энергий, где в основном происходит генерация нейтропов в исследуемом типе сборок. Граница раздела групп принята равной 0,67 Эв.

Макроскопические константы тепловой группы нейтронов определены с учётом гетерогенной структуры активной зоны путем усреднения по пространственно-энергетическому распределению плотности потока нейтронов, рассчитанному в смоделированных по составу активной зоны ячейках Вигнера-Зейтца в многогрупповом DSn -прибликеник с учётом эффектов термализации нейтронов / 3 /. Из предварительных расчётов вариаций угловой сетки 9,5, -приближения было определено, для рассматриваемой серии расчётов, D.S. -прибликение. Для отражателей константы тепловой группы нейтронов получены путем усреднения по пространственно-энергетическому распределению илотности потока нейтронов с учётом влияния спектра утечки из активной зоны, рассчитанному в многогрупповом Р-прибликении метода сферических гармоник с учётом эффектов термализации нейтронов / 4 /. Макроскошческие константи недтепловой группы нейтронов определены путем усреднения по девятигрупповому спектру замедления. рассчитанному в цифузионном приближении в гомогенном "голом" реакторе с эквивалентными размерами с источниками, распределенными по спектру деления - для активной зоны, и в бесконечной среде с источниками. распределенными по спектру утечки из активной зоны - для отражателя.

Малогрушновая методика расчёта реактора в диффузионном приблидения положена в основу алгоритма программ *FACTOR-3* / 3 /, ДПЕСТР / 6 / и *RFI* -80 / 7 /, используемых в расчётах температурной завыскмости эффективного коэффициента размножения нейтронов неследуемых сборок.

Программы FACTOR-З и ДЛЕСТР расчёта реакторов в (2,2)-геометбил были использованы в расчётах критических сборок с равномерно размещенными по сечению активной зоны поглощающими стержнями с учётом гетерогенности, вносимой стержнями, при подготовке групночих констант физических зон сборки.

Программу *RFI*-80 расчёта реактора в (2, φ)-геометрии использовали в расчётах сборок с системой произвольно расположенных цилиндрических поглощающих стержней с учётом гетерогенного расположения стержней цутем задания (2, φ)-координат, размера стержней и групповых эффективных граничных условий на позерхности стержня.

Для оценки "пространственных эффектов", т.е. погрегностей, обусловленных перераспределением поля нейтронов по пространству при использовании в реактиметре метода обращенного решения уравнения точечной кинетики, использовалась программа ДНЕСТР / 6 /. Для указанной оценки в программе производится численное моделирование нестационарного распределения поля нейтронов после "выстреливания" источника из реактора. Полученные значения потока нейтронов усредняются с заданной чувствительностью детектора и обрабативаются по тому же алгоритму, что и в реактиметре. Учёт погрешностей возможен двумя путями :

I) введением "показателя неадекватности"

X(t) = (P/par) / (P/par) OPYK (t),

2) с помощью нормированной эффективности детектора (НЭД)

 $S(t) = \frac{N(t)}{N(0)} \cdot \frac{[X \psi^{\dagger}, \Theta \psi(0)]}{[X \psi^{\dagger}, \Theta \psi(t)]}$

В расчётах описнваемых сборок НЭД практически не изменяется при t > 0 и весьма мало отличается от $\chi(t)$ -в пределах 2% при $t \sim 300$ с. Таким образом, можно использовать приближение миновенного скачка эффективности и вносить поправки в измеренные значения реактивности любым из указанных путей.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ.

Поведение Каф уран-водных сборок при их натреве, как правило, регламентируется совместным действием нескольких эффектов противополовного знака, например, увеличением эффективности водяного отражателя и увеличением эффективности поглощащих стериней. При малых (~ 4 - 6 длин миграция) размерах активной зоны в условиях больцого (~ 10% в величине Кэф) положительного вклажа водяного отражателя влияние количества поглощащих стериней и их местоположения в активной зоне на такие нараметры сборок, как температурный эффект реактивности (ТЭР) и эффективность поглощающих стериней может проявиться наиболее рельефно, так как комбинированное действие выше названных эффектов будет проявляться в условиях разного вклада в Кэф.

В таблицах Іа и Іб представлены результати таких расчётноэкспериментальных исследований в двух вариантах сборок. отличарцихся размерами и формой боковой поверхности при слабом отличии Ри /о. в этих сборках. Исследованы три варианта размещения гадолиниерых CBII: в центральной области активной зоны, равномерно по её сечению и на её периферни. В 7 кассетной соорке с эквивалентным радиусом 13,1 см варьировалось местоположение сдиночного СВП в каждой из 6 перифорийных кассет при неизменном размещении СВП в центральной кассете. В сборке с R экв. = 20.9 см. по форме боковой поверхности наиболее приближающейся к эквивалентному цилиндру, варьировалось размещение 18 СВП. В габлицах Іа и Іб приведены экспериментальные значения **р(**Т) и ар (T), лоправленные на "пространственный эффект" (ПЭ). Использованы значения поправок в центральной плоскости сборок, полученные расчётом по программе ДНЕСТР. Расчётные исследования показали, что величина поправок слабо зависит от расстояния меклу детектором и границей активной зоны при размещении детектора в отражателе, а источнейтронов - в центре активной зоны. Соответствущие значения ник t =300 с меньше 8 приблизительно на 1% и растут для-X

при увеличении раднуса активной зоны. В частности, расчёты показаля, что величина ў с увеличением степены подкрытики увеличывается по закону, близкому к линейному, я скорость её роста составляет ~ 0.5% в сборже с R экв=18,1 см и ~ 0.5% в сборже с R экв = 20,9 см на 1 β эф реактивности.

На рис. 2 принедена зависимость отношения ТЭР отравленных сборок к ТЭР невозмущенной сборки радкусом I8,I см от радкуса резмещения одиночного СШ в 6 периферийных кассетах. Во всех исоледованных сборках наблюдается моногонное увеличение величины отринательного ТЭР с температурой.

Таблица Іа

Влияние способа размещения гадолиниевых СВП в двух вариантах уран-водных сборок на степень подхритичности оборок при T=20°C и 240°C. Данные расчёта получены по программе RFI-80. В экспериментальные значения введена поправка на "пространственный эффект".

Раднус	Способ раз- мещения СВП, рис. I	Реактивность сборки в В эф				
COOPRN,		$T = 20^{\circ}C$		$T = 240^{\circ}C$		
CM		экспер.	расчёт	экспёр.	pacyër	
	CBN Her puc.I.I	- I,63	- 0,25	- 10,84	- 8,78	
18,1	7 СВП рис.1.2	- 8,10	- 6,55	- 17,50	- 15,10	
· .	7 СВП рис.1.3	- 5,30	- 5,06	- 14,82	- 14,19	
	7 СВП рис.1.4	- 4,50	- 4,16	- 14,70	- 13,93	
	CBII HET puc.2.1	0	+ 0,90	- 8,02	- 7,20	
20,9	18 СВП рис. 2.2.	- II,48	- 13,00) - 21,49	- 21,13	
	18 СВП рис.2.3	- 8,99	- 10,00	- 20,00	- 19,40	
	18 СВП рис.2.4	- 4,54	- 5,30	- 15,70	- 15,69	
	8 СВП рис.2.5	- 4,59	~ 5,50	- 13,42	- 13,70	
				· · · · · · · · · · · · · · · · · · ·		

в двух вариантах уран-водных соорок. Данные расчёта подучены Виляние способа размещения годолиниевых СВП на их эфрективность и на велачину Techning Io TaP nps T-240°C

Sector State

The second of the second second second

RF180. anarotroun on ----

Parro	CINCOD NB3-	Эййот)	
					۲ ۳	UPAT UDN JEZAU	ମୁକ କୁ ଅନୁକୁ
coopera-	MOMENTER CLUI,	E-1	= 20 ⁰ C	п Еч	240 ⁰ C		
8	+ • • • • • • • • • • • • • • • • • • •	эксп.	pacter	BKCH.	pacter	archepum.	Dac we T
	CHUI Her Duc. I.I	1	ſ	١		-9,2I	8,8
• •	7 (191) pmo.I.2	-6,49	-e ' 30	-6, 66	-6,32	-9,40	-8,55
16,1	7 CHU pmc.L.3	-3,67	-4 ,8I	-3,98	-5,41	-9,52	-9,13
	VUHI DEC.I.4	-2,87	3,91	-3,86 -	-5,15	-10,20	-9,77
	CHI RET puc.2.1	1			,	-8,02	-8, IO
c S	LE CHI puc.2.2	-11,48	-13,90	-13,47	-13,93	10'0I-	-8, I3
e' 173	LG CMI PHC.2.3	-8 ,89	-I0,90	-11,98	-12,20	-11,01	-9,40
	To USU DEC.2.4	4.54	-6,20	-7,69	-8,49	-11,17	-I0,39
	a ubu parce 2.5	-4,59	-6.40	-5.40	-6.50	-8-83 	-8-20

8

-8,20

8. 83

-6,50

-5,40

, 9

4,59

it with a factor

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ И ВИВОЛЫ.

I. В исследованных сборках отчётливо прослеживается влияние способа размещения гадолиниевых СВП в активной зоне на величину ТЭР отравленных сборок. Наибольшее значение ТЭР наблюдается в сборках, где СВП стоит блике к границе активной зоны и отражателя, хотя при этом эффективность СВП имеет минимальное значение. Полученные данные при этом показывают, что :

- температурная зависимость эффективности СВП увеличивается по мере их удаления от центра активной зоны ;

- характер изменения ТЭР соответствует характеру изменения температурной зависимости эффективности СЫП.

2. Наблюдаемыз тенденции в закономерности поведения ТЭР, в целом, одинаковым образом выявляются как в эксперименте, так и в расчёте. Однако, при детальном сравнении значений, рассчитанных по программе *RFI* -80, и экспериментальных величии эффективности СВП, как демонстрируют данные таблиц Ia и IG, проявляются следующие особенности :

- расчёт завышает эффективность CBII ;

ないないというないないであったいという

- расчёт показывает меньщую степень изменения эффективности СВП при их перемещении от центра к периферии активной зоны ;

 расчёт показывает меньшую температурную зависимость эффективности СВП.

Это обстоятельство даёт возможность сказать, что расчётные значения ТЭР получены в условиях неадекватности учёта влижния гадолиниевых СВП на формирование Кэф.

Для количественной иллострации эффекта гетерогенности при размещении гадолиниевых СЕП в активной зоне были также проведены гомогенизированные расчёты по программе *FACTOR-3*, которая раньше широко использовалась в расчётных исследованиях. Как видно из рис.2, гомогенный расчёт по программе *FACTOR-3*, не учитивающий реального положения СВП, даёт завышенное значение ТЭР.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ .

- I. Бондаренко В.В. и др. Контроль реактивности глубоко подкритических реакторов с помощью аналогового реактиметра и корректировка аналога источника. Атомная энергия, 1976, т. 41, вып.4, с.238.
- 2. Физико-энергетический институт. Проспект, 1974, с.II.

したいのないので、「ないないない」というないので、

- Калашников А.Г., Глебов А.П. Применение Д.Я, -метода для расчёта ячеек ядерных реакторов в области тепловых энергий нейтронов. Препринт ФЭИ-857, 1978.
- 4. Кузнецов В.А. и др. Спектры нейтронов в неоднородных средах. Препринт ФЭИ-324, 1972.
- 5. Булеев Н.И., Гинкин В.П. Алгоритм решения двумерного уравнения реактора в двухгрупповом диффузионном приближении. Препринт ФЭИ-737, 1977.
- 6. Колесов В.Е., Макаров О.И., Матвеенко И.П., Шокодько А.Г. Программа ДНЕСТР и её применение для учёта пространственных эффектов при измерении реактивности методом ОРУК. Преприят ФЭИ-II62,1981.
- Земсков Е.А., Исакова Л.Я. Интегральный метод решения станионарной системы групповых уравнений диффузии нейтронов в многозонном реакторе с системой поглощающих стержней в (ζ, φ)геометрии. Препринт ФЭИ-436, 1973.

II .

;

19、「「「「「「「「「「」」」」

Ряс. 2. Зависимость отношения ТЭР отравленных гадолиниевыми СВП сборск к ТЭР невозмущенной сборки радиуса 18,1 см от радиуса расположения одиночного СВП в 6 периферийных кассетах.

Спложные линии – расчёт по программам *RFI*-80 и FACTOR-3.

12

のためないたちのであるというとう

10日本になったい いろうち

1192-56-95

Технический редактор Н. П. Герасимова

•

Подписано к печ	ати 25.09.1986 г.	T-21122	Бумага № 1
Формат $60 \times 90^{1}/_{16}$	Усл. п. л. 0,75	Учизд. л.	0,5 Тираж 95 экз.
Цена 8	коп. Инден	с 3624 ФЗ	ЭЙ-1795

Отпечатано на ротапринте. 249020, г. Обнинск Калужской обл., ФЭИ 8 коп.

Влияние гетерогенности размещения поглощающих стержней в активной зоне на формирование температурного эффекта реактивности уран-водных сборок. ФЭИ-1795, 1986, 1-12.