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1. INTRODUCTION 

Green and Schwarz have proposed a modification of the system of ten dimen-
sional N*l supersymmetric Yang-Mills theory coupled to supergravity (viewed as 

3) the low-energy effective field theory of superstring theory) which is free of 
Yang-Mills and of gravitational anomalies by chosing as gauge group either SO(32) 
or E 6 x Ee and by adding suitable local interactions. The local counterterms 
are higher derivative terms parametrised in terms of Chern-Simons forms ' ' for 
both the Yang-^fills gauge potentials and the Lorentz connection. The counterterms 
proposed by Green and Schwarz are purely bosonic and thus violate supersymmetry. 
Green and Schwarz speculated "that restoring it would require introducing the 
entire infinite expansion of the superstring effective action". 

The complications encountered in the attempts to supersymmetrize the Green-
Schwarz anomaly cancellation mechanism are mainly due to the Chern-Simons forms 
associated with the Lorentz group. Partial answers, to low orders in a', have 

6 7 81 
been obtained both in component fields * * and in the framework of superspace 

fc 9,10,11,12) . ,. , . ,. geometry m ten and six dimensions. 

It is of course suggestive to study Chern-Simons forms in four dimensional 
supersymmetric theories * * > * ' which are much batter understood than the 
ten dimensional ones. Besides being technically less complicated we found this tc 
be an interesting problem in its own right. 

In this article we describe the complete four dimensional superspace geometry 
for Yang-Mills as well as supergravitational and chiral D(l) Chern-Simons forms in 
N*l supergravity. The knowledge of the complete superspace geometry allows to 
obtain supersymmetry as well as BRS transformations for the component fields in 
a compact way and is essential for the construction of invariant superfield 

17,18) actions ' 

In chapter two we give a compact review of U(l) superspace geometry, in 
chapter three we transcribe Chern's formula and the triangular equation, obtained 

20) from methods of algebraic geometry » to superapace geometry. In chapter four 
we present the complete superspace geometry for Lorentz, chiril U(l) and Yang-
Mills Chern-Simons forms in curved U{1) superspace and in the conclusions we 
discuss some details of different N-l supergravities and comment on the cons-

19) truction of invariant superspace actions 
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2. SUP5RSPACE GEOMETRY AND LOCAL R-INVARIANCE 

21} In contrast to other N*l supergravity theories new minimal supergravity 
22) possesses local R-invariance '. For its geometric description it is therefore 

natural to start with a superspace geometry which contains the Lorentz group as 
well as a chiral U(l) as structure group. It was pointed out by Miiller ' that 
such a superspace geometry can account for old minimal and 16-16 super-

24 25) gravity * as well by imposing suitable torsion constraints and by removing 
afterwards the local U(I) symmetry in particular ways. The important point is 
that there exists a set of natural torsion constraints which corresponds to a 

14) reducible supergravity multiplet of 16 bosonic and 16 fermionic components . 
The reducible multiplet contains a component field of (mass) dimension two and 
cannot therefore be used for the construction of a Poincaré supergravity theory. 
Its superspace geometry can however be further specified to describe, alternatively, 
old minimal, new minimal or 16-16 supergravity. Besides this advantage of covering 
three supergravity theories at the same time, U(l) superspace has a rather simple 
geometrical structure. This is in particular useful for our present purpose, the 
discussion of Chern-Simons forms especially of the supcrgravitational type where 
complicated higher polynomial expressions are expected to show up. For this reason 
and in order to be self contained we shall briefly review the properties of U(l) 
superspace in this section and come back to the various subcases later on. 

The basic superfields of U(l) geometry are the supervielbein E M (z) and 
A the superconnections (f) (z) and A-.(z) for the Lorentz group and the chiral U(l), 

respectively. From the corresponding oc<~ forms 

E -cfe E„ 

and the exterior derivative d in superspace one defines torsion, curvature and 
U(l) field strength 

(2.2) 

F = dfii 
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as two forms, covariant with respect to local Lorentz and chiral 17(1) transfor­

mations of the basic superfields. 

The chiral U(l) weight -CE») 
for the vielfaein form is different for 

different values of the superindex A ̂  (a,a,à) : 

w(Ea) = 0 , w(E*] - 1 , w(Ei)- - 1 < 2- 3> 

The nonvanishing parts of the Lorentz connection» 

are related among each other as usual: 

_L f jka\ « (2.5) 

Remember that with our choice of structure group the Lorentz curvature and the U(l) 

field strengths 

> A . » p C r P p A (2.6) 
•ft 2. ^ ^ 6 

c t> 
F - T £ E F K 

are completely defined in terms of the coefficients of the torsion tvo form 

-r* - '- F B c c ~r * ' < 2 - 8 > 
' " 2 . C& 

and their covariant derivatives n i consequence of the superspace Bianchi 

identities 

D T A - E B f ? &

 A -w(E A )E A F = Û & »»«.*- yt r - u ( 2.9) 
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In addition to the particular choice of structure group certain natural torsion 
14) constraints are imposed . They allow to express all the coefficients of torsion, 

curvature and 17(1) field strength in terns of the covariant superfields R t R and 
G of canonical dimension one and W , W.». of canonical dimension 3/2 (x m 

has dimension -1) and their covarianc derivatives. A detailed discussion of the 
torsion constraints and their consequences can be found in ref. 14). Here we just 
present the catalogue of nonvanishing torsion coefficients. At dimension zero 
one has 

P V --*««V (2.10) 

All the torsion coefficients of canonical dimension 1/2 vanish whereas the super-
fields R, R and G are located in the dimension one torsions 

T^bi --t^b«J»R , "^b - -i 4 R (2.11) 

V" • ioAytf, T\;-4(W;£° (2.12) 

The Weyl spinor superfields W „ and W... appear in the dimension 3/2 torsion 
coefficients T . and T ... This becomes most transparent in spinor notation 
with vector indices replaced by pairs of undotted and dotted spinor indices, 

A c fa A Q 
T%\ft " 6 , t f 6 p p T a b ) £«""<**>£« <2"13) 

The dimension 3/2 torsions are then given by the following expressions: 
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and 

T̂ i * ̂ -(^^+^^«0 (2.15) 

S4 - **#-$&* 

It should be noted that the covariant derivatives appearing in the last two equations 
are covariant with respect to Lorentz and chiral U(l) transformations. For a zero 
form superfield X A of chiral weight wOt A) for instance, the covariant derivative 
is defined as 

4x A = E B % X A - 4 > & A

C X C + wMAs* A 

and, consequently, the graded commutator 

of two covariant derivatives takes the form 

(3c,dftX - ~ T « % V ^ V ^ I W / i (2-18> 

The chiral weight of the covariant derivative is determined from that of the vielbein, 

w W = - w (EA) • ( 2 J 9 > 

If the vielbein transforms under a chiral U(l) transformation as 

then £), and A. transform under the same transformation as (D, = E, 9„) A A A A M 
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(2.21) 

Similarly the chiral U(I) weights of the coefficients of the torsion two form 
(2.8) are determined from those of the vielbein through the relation 

w(T C 6

A ) = W ( E V W ( E C ) - W ( E 8 ) (2.22) 

The chiral weights of the basic covariant superfields describing torsions and 
curvatures follow from eqs (2.11-15): 

W (1?+1 2. , vv ( K) = + 2. , 

W (era,") - 0 «-23) 

As already mentioned above the coefficients of Lorentz curvatures and U(I) field 
strengths too are expressed in terms of these few superfields. At dimension one 
we obtain 

Rsfl ba = & [6bcfi)s% R < 2 - 2 4 ) 

R é* b f l . - 6 ( 6 b . ^ R . «•«, 

(2.26) 

for the Lorentz curvatures whereas the chiral U(l) field strengths are given by 

F A * - o , F ^ - o ( 2 - 2 7 > 
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F. ; = 30^V * Q* 

At dimension 3/2 one finds 

-i- S . -•- S , -p S 

-.S • T^-T- • 7b*-r • 7 " S S T -

" cba = L 6 c Iba8't«-ûb 'c^S+<•$*. ' bc S 

FSû = T ^S^c + z ̂ CSS^ 

p s

c = | i ^ a o - i C 5 * , 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

with the definitions 

Finally, having expressed torsions, curvatures and (1(1) field strengths in terms 

of few covariant superfields the Bianchi identities themselves are now represented 

by a small set of rather simple conditions for these superfields: 

3«1? - O , 2>"R= O (2.35) 

^« H&ii = ° I «3 (• ̂ $£2. ~ O ( 2 . 3 6 ) 

^ Ôf " » O , 2>"'>fs| - O (2.37) 

,*f 9(« " 3 ^ " - 0 (2.38) 



(2.39) 

The expressions for Che Lorents curvatures and U(l) field strengths at dimen­
sion tvo and some additional notational informations are collected in the appendix. 
We conclude this section by showing how covariant redefinitions of the vectorial 
part A of the U(l) gauge potential change the form of eqs (2.12), (2.26) and 
(2.31-32). Call A the U(l) gauge potential of the geometric situation described 
in this section and define 

A., - A 0 + Z_ < 2 - 4 0 > 
The superspace geometry of ref. 14) is then obtained from 

Z = - | E a £ a

 (2-41) 

In particular, F~ (Aj) - 0. 

On the other hand the superspace geometry corresponding to old minimal super-
27) gravity is obtained from Ai • 0. As a consequence the torsions of eq.(2.12) 

become 

(2.43) 

(2.44) 

and from x. « 0, JJ - 0 and eqs (2.33),(2.34) it follows that 

in accordance with ref. 27). 

New minimal and 16-16 supergravity contain antisymmetric tensor gauge fields. 
Me postpone therefore the discussion of these cases after the description of the 
superspace geometry of the two form gauge potential. 



3. CHEEK'S FORMULA ATO THE TRIANGULAR EQUATION m SUPERSPACE 

In this chapter we establish the superspace version of Chern's formula and 
. 20) . 

the triangular equation in a general curved superspace without assuming any 
constraints for the gravitational and Yang-Mills parts of superspace geometry. 
He use the triangular equation to calculate how the Chern-Simons forms change 
under gauge transformations and under covariant redefinitions of the connection. 

Consider a superspace Yang-Hills potential 

A = E A A . ( 3-° 

subject to superspace gauge transformations, 

A ' - x\A-d)X < 3 - 2 > 
Its covariant field strength 

satisfies Bianchi identities 

(3.3) 

(3.4) 

Chern's formula and the triangular equation in this geometrical setting are special 
cases of the superspace version of the extended Cartan homotopy formula of Manes, 

. 20) Stora and Zumino 

For the super Chern formula take two super Yang Mills potentials A and A J . 
The convex combination 

A t - (l"t)<Ao + ttfl, (3.5) 

with t €, [0,1] " T t is still a connection. The covariant field strength 

? ( J V ) a 3=t - dcftt i-A t A t 0.6) 



10 

satisfies Bianchi identities 

d% - A t $ t + ? ; * t - o (3.7) 

The symmetric invariant polynomials J

n ( f f) are closed with respect to the 

superspace exterior derivative due to the Bianchi identities and the super Chem 

formula reads 

In this equation the integration ia over the unit interval and d denotes the 

exterior derivative with respect to t, 

dt = 0 * dd± + d^d » o ( 3-9 ) 

in particular: 

W + l / t i ~ dt (>A 0 -y t 4 ) (3.10) 

As can be directly seen from its definition the 2n-l form Q, , ( Jk , fy, ) is 

antisymmetric in its arguments, 

QZ.,1 (Ao,A<) = - QZn.< (dï^dio) (3.,,, 

and invariant under simultaneous gauge transformations of A. and J*t . 

From Chern's formula one sees isnediately that 

The triangular equation describes the exactness of this same combination, 
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GaM (M*V Q -̂i (*« AV&.H (./V^>d V A V O 
(3.13) 

Tz 
where now Jt interpolates between the three connections &. , dfc and Jfc 

(3.14) 

with t e. [0,1] for i • 1,2. d is the corresponding exterior derivative and 

the integration is over the standard two simplex in parameter space, T 2. 

The derivation of Chern'a formula and the triangular equation in ref. 20) is 

purely algebraic, employing the homotopy operation t defined on jt , $1, d

tJ^"t» 

d t r f 

and satisfying 

^ d - d ^ - d t (3.i6) 

^d t-d t !t
 Œ ° <3-17) 

It is therefore completely legitimate to apply these constructions to superspace 

geometry, as we are doing here. A useful relation we shall need later arises when 

taking A to vanish and $C to be a pure gauge in eq.(3.8): 

-1 

(3.I3) 

It follows that 
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d Q ^ . , [oxn) - o (3.i9) 

We introduce a family of gauge transformation» parametrised with s £[0,1] such 
that s • 0 corresponds to the identity, X • 1 and X, - X and define 

-1 
SL& = " XS<A\S O.20) 

Making use of the homotopy operation 

-1 
( B H S - - X s o». s X s 

(3.21) 

we arrive at 

In physical applications one usually encounters Chern-Simoni forms which depend on 
one connection only, 

and one may ask how this expression changes under a gauge transformation of jk 

alone. This amounts to calculate 

The answer is easily obtained from the triangular equation (3.13) and from eq. 
(3.22). In eq.(3.13) take 

v/t1 = A0 - XA,X - xax 
(3.24) 
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and use the fact that 

Q^iCX,^- G U - ^ A ) 

to arrive at 

Then take Jk - 0 and use (3.22) to obtain 
o 

A2„.z - ft,** (o,-*dx\ A)* S ( . Q ^ ( o , ^ 
C3.27) 

This shows that the physicist's Chem-Simona form changes under a gauge transfor­

mation of the Yang-Mills potential by a total derivative, 

Û^A)-Qlv,.M) = -dà 
2h-î. t 3 - 2 8 > 

Observe that one might construct a gauge invariant object at the expense of intro­

ducing a 2n-2 form gauge potential B_ __ with gauge transformations 

&2n-2. = &a*-2. + &Z*~l + ^ j B . j 

The 2n-l form 

H*,., - d 8 2 M . 1 + Q a ^ W 

(3.29) 

(3.30) 

is then gauge invariant and satisfies Bianchi identities 

(3.31) olH 2 l v 1 = : , ( ? 3 . . . , ï ) 
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What is the effect of a covariant redefinition of the connection on eq.(3.30)1 
Suppose T to be some gauge covariant Lie algebra valued one form and define 

v/l̂  = A + H (3.32) 

The Chern-Simons forms for the two connections are related through the triangular 
equation. Taking A2 - 0 in eq.(3.13) one obtains 

In eq.(3.30) X 2 n - 2 ^ ' * % • °' e a n b c a D s o r t > e d i» a redefinition of B_ _, and 
the gauge covariant quantity Q^n-i^^i ^») gives rise to the new field strength 

For illustrative purpose we have, in this chapter, only considered the super Yang-
Mills potential. It should be clear that the same arguments hold for the connection 
forms which correspond to the structure group of flexible (curved) superspace. 
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4. CHERH-SIHONS FORMS IN U(l) SUPERSPACE 

In £our dimensional superspace we are concerned with Chem-Simons forms 

QsW * ^{A^-^AA) (4.1) 

which satisfy 

These equations are obtained from (3.8) if one takes n™2 , Jh • <&t *Ai • 0 and 
performs explicitly the t-integration. <& denotes the superspace connection of 
some supersyrametrie Yang-Mills theory formulated in flexible (curved) U(l) super-
space. In addition we introduce the Chern-Simons forms constructed from the super-
space connections 4>B and A corresponding to local torentz and chiral U(l) 
transformations, respectively, as defined in section 2: 

QS(A] = 3 J A , F ] 

They satisfy, of course, 

In section two it was pointed out that, as a consequence of the choice of structure 
group and torsion constraints, all the torsions and curvatures of U(l) superspace 
can be expressed in terms of the few superfielda R, R , G , W Q - I W... and their 
covariant derivatives. Likewise the field strengths of supersymmetric Yang-Mills 
theory, 
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can be expressed in terns of the superfields X , X as a consequence of the 
constraints 

$jw - o , T?* « o , 3 ^ 

The remaining field strengths take the form 

1? 

(4.8) 

(4.11) 

and the Bianchi identities reduce to 
i 

4 X - 4.*V - o 

(4.12) 

(4.13) 

The covariant derivatives are now supposed to be covariant with respect to local 
Lorentz, chiral 0(1) and non-abelian gauge transformations in superspace. The 
chiral U(l) weights of X , X e 1 are 

W(A.) - +1 , W(ff*] - -1 (4.14) 

Following Che idea* presented in the previous chapter, we introduce a two form gauge 
potential in superspace, 

in order to construct an invariant three form 

H - aB +Q S(A)+Q a(£)+%(A) (4.16) 
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The corresponding Blanchi identities then read 

So far we have not considered constraints for the invariant three form 

H.^EVH,„ (4.18) 

28 ?9) In the case of vanishing Chern-Simons forms it is well known * ' how to impose 
the standard constraints which define consistently the superspace geometry of a 
multiplet containing a real scalar field, an antisymmetric tensor gauge field, a 
Majorana spinor and no auxiliary fields. It is however not guaranteed that the 
same constraints can be maintained in the presence of Chern-Simons forms. One has 
to convince oneself that the constraints in the various geometric sectors of super-
space geometry are compatible with eqs (4.16) and (4.17). 

For the case of Yang-Mills Chera-Sirons forms alone it is known * that the 
usual constraints for supersymmetric gauge theory, eqs (4.8), and the standard 
constraints for the three form H are indeed compatible with (4.17), even in 
flexible (curved) superspace. In order to accommodate Lorentz Chern-Simons forms 
as well one has to allow for additional quadratic terms to appear in the covariant 
components of the three form H, as described in the following. We replace the 
invariant polynomials in (4.17) by symmetrized traces, e.g. 

^t$ \? ] = -t (??) «.„) 

3 2 (.f?,M = ^ Kfc R,^ (4.20) 

3xlF,F) = 6 FF (4.21) 

T and a are constants and t stands for some suitably normalized trace. The 
Bianchi identities (4.17) are equations which are four forms in superspace, 
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T 1 r r A e & e C c D T 

= -2f,E E E E ^ ^ ^ D H C 6 A + é T D e HFB>A (4.22) 

-2t C^^-T R* f

 8 R M j - 2 d F ^ F ^ - O 

IC is straightforward to convince oneself that the constraints 

I V - V - H / . H * 4 - 0 

are compatible with the propertiea of F, R. , ? and eq.(4.22). Otherwise stated 

the Bianchi identities ^-xyQn» ^gVfi
 a n <* t^eir complex conjugates do not contain 

any quadratic terms in field strengths or curvatures. This is no longer true for 

the equation of index structure C-« and its complex conjugate and we are there­

fore led to demand 

^ ( S , 4 = te£t£ R &aa€) w (4.24) 

Furthermore we define 

H ^ - - - 2 ^ ) / H b q 
(4.26) 

and require the antisymmetric part of H ^ to vanish. 

H b a » H a t C4.27) 

This can always be achieved by a covariant redefinition of the vectorial part of 

the two form gauge potential B. The traceless pare of K. is then determined 

8a from the Bianchi identity I o^ and we parametrize the trace part such that 
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L is a new independent, real superfield. The Bianchi identities I* and 
1 Y g a serve to determine H . and H r, , 

&y a 

(4.29) 

..5*+4r , st=sd

bsl-s;s; 

(4.30) 

(4.31) 

The Bianchi ident i t i e s I , . and I^X then take the following compact form; 

(*X-Sd)L - fCWj+f %y*-fit V^W^ (4.32) 

Observe that (as already indicated above) for t « T • v » 0 one obtains just the 
superapace geometry describing the supermultiplet of the antisymmetric tensor 
gauge field. 

We still have to discuss the remaining Bianchi identities. From I ' we 
learn what the 88 component of the superfield L looki like, it contains the 
field strengch of the antisymmetric tensor and some non-linear terms: 
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The higher dimensional Bianchi identities, I» , , 1^ . and I, ^ do not 
ocba cba dcba 

contain new information. They are trivially satisfied as a consequence of the 
results obtained so far. 
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5. CONCLUSIONS 

We have presented the complete superspace geometry for Yang-Mills, chiral 
U(l) and Lorentz Chern-Simons forms in four-dimensional N"l supergravity. The 
analysis was carried out in U(l) superspace which has local R and Lorentz 
transformations in its structura group. For the case of Lorentz Chern-Simons 
forms consistency of the superspace Bianchi identities requires new additional 
terms in certain super field strengths of the two form gauge potential (which was 
introduced to compensate the gauge variations of the superspace Chern-Simons forms}. 
The additional terms are quadratic in the covariant fields which describe all the 
torsions and curvatures in the supergravitational sector. The superspace geometry 
exhibited in this paper still can be particularized to old minimal, new minimal or 
16-16 supergravity. 

The reduction to old minimal supergravity has been explained above, eqs 
(2.42-44). Old minimal supergravity does not contain an antisymmetric tensor 
gauge field. The coupling of the linear multiplet L to old minimal supergravity 
via the invariant superfield action ̂  

S * f M (5.1} 

would lead to a component field Lagrangian with inconvenient kinetic terms (the 
same situation arises in coupling the Kahler potential K($,(J> ) to super-

30 31) 
gravity ' ). Canonical kinetic terms are obtained by performing a Weyl re-
scaling in superspace and certain covariant redefinitions of the vielbein and the 
Lorentz connection superfields. Since f(L) is a real function, the Weyl rescaling 
will not leave the torsion constraints invariant. The superspace geometry in terms 
of the new torsions and curvatures is then, for suitable f(L), that of 16-16 
supergravity * ' . The corresponding superspace action is simply 

A. . - S E (5.2) 

and the same action in tenni of component fields has been worked out in ref. 14). 
It should be clear that a similar procedure, in superspace, holds for the case of 
the Kahler potential. 

For the coupling of Chern-Sioons fonni to supergravity it is therefore conve­
nient to start right away from the superspace geometry of 16-16 supergravity. 
This is obtained fro» U(l) superapace geometry as described in chapter two by 

the integration is over spaca-time and superapace. 
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the U(l) symmetry breaking 

A . - - 4 X , A « FX (5.3) 

(5.4) 

and by imposing 

U 
L • e (5-« 

4 
with some real constant b i* - -*- * In ref. 17) it was shown that in the presence 
of Yang-Mills Chem-Simons forms in 16-16 superspace (e.g. the superspace geometry 
described in this paper togethar with (5.3-5) and T • a • 0) the suparfield 
action (5.2) describes supersymnctrie Yang-Hills theory coupled to 16-16 super-
gravity via Chern-Simons forms. Again, the corresponding component field action 
has been worked out before in ref. 14). The general case including Lorentz Chern-
Simons forms (and possible non-linear modifications of eq.(5.5)) is discussed in 
detail in ref. 19). 

New minimal supergravity, without Chern-Simons forms, is obtained if one 
requires 

L - 1 <3-6) 

From eqs (4,32-34) one learns that then R - R « 0 and the superfield G is 
proportional to the dual of the superfield H . . In the presence of Chern-Simons 
forms, as discussed in our paper, eqs (4.32-34) tell us how the superfieids Et, R 
and G are expressed in terms of other geometric quantities: 

- aft+ - i (W) • i ôdr-ôv % w«éi (5.7) 
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For v i* 0 eq.(5.9) is a complicated implicit superfield equation for G . On 

the other hand \) • 0 does not mean that new minimal aupergravity prefers a parti­

cular combination of Larentz and chiral U(l) Chern-Simons forma. In fact, one 

still may add a Chern-Simons form (with arbitrary coefficient X) of the 

shifted U(t) gauge potential Ai defined as 

A,- A - ^ E * £ e 
(5.10) 

This corresponds, in particular, to 

F/(A,) = 0 

and the analysis of the Bianchi identities shows in a straightforward way that the 

ugly term in eq.(5.9) is then absent. 

In terms of component fields the super-covariant field strengths in the pre­

sence of Chern-Simons forms are slightly more complicated. Consider, for instance 

H . I, the lowest component of the super field strength of the antisynraetric tensor 
32 18) 

gauge field. Employing standard techniques ' one sees th»t it contains a term 

linear in T of the form 

e c

M WM - W ç ba| + cyl- f*w*. (fb«) (5.12) 

In turn, by using «qs (4.29-30) and (5.7-9) for v-0, ont realizes that H | contains 

itself H . | as well as T .— |, th« lowest component of the super-covariant 

field strength of the Rarica-Schwingcr field. For T ,—| a similar mechanism takes 

place but the iteration eventually terminâtes dut to the aneicotmutativity of the 

Rarita-Schwinger fields appearing at each step. In closing we would like to emphasize 

the importance of the knowledge of a complete auperspace «eonetry for the derivation 

of supersymmetry transformations and for the construction of the BRS differential 

algebra for component ficlda . 



24 

APPENDIX 

In order to compléta une description of U(l) superspace geometry of chapter 

two, we still have to discuss the properties of the Riemann curvature tensor R, , a 

acb 

Due to the vanishing torsion, T " 0 , the curvature tensor satisfies 

R, . * R. . . For many purposes it is useful to use its spinor decomposition 

defined as follows: 

Here X^o™ and XtAûi describe the Weyl tensor in spinor notation, \|i,. v* and 

(A.l) 

(A.2) 

(A. 3) 

X correspond to the Ricci tensor and curvature scalar, respectively. They are 

related to the basic superfields of chapter two in the following way: 

(A.5) 

(A.7) 

(A. 8) 

Using Che information presented in chapter two we present alternative expressions 

for some of the torsions and field strengths. For instance, from eqs (2.14), (2.15) 

and (2.31), (2.32), one finds 
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FjkÉ, - - f (<3ae + i <a?e")p * & <f tfTtb * CA.« 

F^-ît^iïOSt^^Ta,, 
and, conversely, 

(A. 10) 

T cbi * i ( WT%»'i(€<r t l i*F, b4_|(e? b) ;«F< c (A..2) 

The chirality conditions (2.37) 

^«Xi-O , 4*K«.= 0 CA.13) 

are equivalent to the equation» 

h Ôcf &CL " 4'' 3<^R (A.14) 

V ' ^ * --̂ '3«.R (A. ,5, 

On the other hand, eq.(2.39) in spinor notation reads: 

Finally, we define the spinor decompositions of H , and its dual, 

(A.16) 

(A.17) 
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as follows: 

(A. 20) 

In spiaor notation the second of eqs (A.18) reads 

where we have used the spinor decomposition of the totally antisyain^tric tensor 
Edcba ! 

^ss^p,i« = *ss6^6 ,Y^M 2-deba <A.22> 

At a consequence of this definition one obtains 

£ » » r * 4 ' ( evfy f i*%- f i*^ e*eiO (A.23) 

That this expression is indeed totally antisymmetric in the four vector indices 
66, YY» SB, eta may be easily verified with the help of the cyclic identity 

%x,+ £ r V e « * V - ° (A,24) 

32) Our superspace notations are the same as those of Weas and Bagger . 
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