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1.  INTRODUCTION

Green and Schwarzl) have proposed a modification of the system of ten dimen-
sional N=] supersymmetric Yang-Mills theory coupled to supergravi:yz) (viewed as
the low-energy effective field theory3) of superstring theory) which is free of
Yang-Mills and of gravitational anomaliea by chosing as gauge group either 50(32)
or Eg x Eg and by adding suitable local interactions. The local counterterms
are higher derivative terms parvametrised in terms of Chern-Simons formsA’S) for
both the Yang-Mills gauge potentials and the Lorentz connection. The counterterms
proposed by Green and Schwarz are purely bosonic and thus vioclate supersymmetry.
Green and Schwarz speculated "that restoring it would require introducing the

entire infinite expansion of the superstring effective action".

The complications encountered in the attempts to supersymmetrize the Green-
Schwarz anomaly cancellation mechanism are mainly due to the Chern-Simons forms
associated with the Lorentz group. Partial answera, to low orders in a', have

been obtaired both in component field56’7'8) and in the framework of superspace

geome:ryg’lo’ll’lz) in ten and six dimensions.

It is of course suggestive to study Chern-Simons forms in four dimensional
supersymmetric theoriecl3'la'15'16’]7) which are much better understood than the
ten dimensional ones, Besides being technically less complicated we found this te

be an interesting problem in its own right.

In this article we describe the complete four dimensional superspace geometry
for Yang-Mills as well as supergravitatioral and chiral U(1) Chern-Simons forms in
N=1 supergravity. The knowledge of the complete superspace geometry allows to
obtain supersymmetry as well as BRS transformationsls) for the component fields in
a compact way and is essential for the construction of invariant superfield

actionsl7’ls).

In chapter two we give a compact review of U(l) superspace geometry, in
chapter three we transcribe Chern's formula and the triangular equation, obtained
from methods of algebraic geometryzo). to superspace geometry. In chapter four
we present the complete superspace geometry for Lorentz, chiral U(l) and Yang-
Mills Chern-Simons forms in curved U{l) superspace and in the conclusisns we
discuss some details of different N=| gsupergravities and comment on the cons-

R : . . 9
truction of invariant superspace actiona "’.



2.,  SUPERSPACE GEOMETRY AND LOCAL R-INVARTIANCE
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In contrast to other Nm=l gupergravity theories new minimal supergravity
possesses local R-invariancezz . For its geometric description it is therefore
patural to start with a superspace geometry which contains the Lorentz group as
well as a chiral U(]) as struccture group. It was pointed out by Hﬁllerlk) that
such a superspace geometry can account for old minimalzs) and 16-16 super=-
gravi:yZA'zs) as well by imposing suitable torsion constraints and by removing
afterwards the local U(l) symmetry in particular ways. The important point is
that there exists a set of natural torsion constraints which corresponds to a
reducible supergravity multiplet of 16 bosomic and 16 fermionic components
The reducible multiplet contains a component field of (mass) dimension two and
cannot therefore be used for the construction of a Poincar® supergravity theory.

Its superspace geametry can however be further specified to describe, alternatively,
old minimal, new minimal or 16-16 supergravity, Besides this advantage of covering
three supergravity theories at the same time, U(l) superspace has a rather simple
geometrical structure. This is in particular useful for our present purpose, the
discussion of Chern-Simons forms especially of the supergravitationel type where
complicated higher polynomial expressions are expected to show up. For this reason
and in order to be self contained we shall briefly review the properties of U(1)

superspace in this section and come back to the various subcases later on.

The basic superfields of U(1) geometry are the supervielbein EHA(z) and
the superconnections ¢HBA(Z) and AH(z) for the Lorentz group and the chiral U(l),

respectively. From the corresponding or- forms
A M A
g =d2 E,
A M A
¢s = dz ¢Ms 2.1

A = dA,

and the exterior derivative d in superspace one defines torsion, curvature and

U(1) field strength

TA - dEP+ E8¢3A+ W{EA)EAA
RE.A d¢;A+ ‘t’scd)CA
F =dA

(2.2)



as two forms, covariant with respect to local Lorentz and chiral U(1) transfor-

mations of the basic superfields.

The chiral U(l) weight w(EA) for the vielbein form is diffe.znt for

different values of the superindex A v (a,a,&) :

WEN=0 |, w(ET) =1, w(Es)= -1 @5

The nonvanishing parts of the Lorentz connection,

A a o p‘ )
‘ (2.4
<i>E5 ~ (ci,ﬁ ) ci’p' { <#> v )
are related among each other as usual:

Cbpd = ”Z(dba)pd‘f’ba

&= 4@ due

Remember that with our choice of structure group the Lorentz curvature and the U(l)

(2.5)

field strengths

c A (2.6)

A D

F = .é__ ECED Fbc 2.7

are completely defined in terms of the coefficients of the torsion two form

A ! B_¢C A . .
T = L EE T .9

. s s . 6 : :
and their covariant derlvatlveaz ) as a consequence of the superspace Bianchi

identities

B A Ay A
DT -E°Re "-w(ENE'F = © 2.9)



In addition to the particular choice of structure group certain natural torsion
constraints are imposedlA). They allow to express all the coefficients of torsion,
curvature and U(1) field strength in terms of the covariant superfields R, R* and
Ga of canonical dimension one and HI%S' H.B& of canonical dimension 3/2 (x
hag dimension =-1) and their covariant derivatives. A detailed discussion of the
torsion constrainta and their consequences can be found in ref. 14). Here we just
present the catalogue of nonvanishing torsion coefficients. At dimension zero

one has

1
pa 1.8y P
T P22 .10
3 €,
All the torsion coefficients of camonical dimension 1/2 wvanish whereas the super-
fields R, R* and G& are located in the dimension one torsions
NPT - U & ML %
T'Kb" =~t Cby ) b { (2.11)

= (6c,‘6b) G T'X . - —z;t'(ggdb)i :,G-C (2.12)

Nl

The Weyl spinor superfields W 8 and W.B& appear in the dimemsion 3/2 torsion

coefficients cha and ch&- This becomés most transparent in spinor notacion

with vector indices replaced by pairs of undotted and dotted spinor indices,

T%’&H‘ 6'“ m‘TCb ) a’a& = 6:;, (A (2.13)

The dimension 3/2 torsions are then given by the following expressions:
' = 5. .g.. , - ) !
Tog pf « = 2446 Maps *+ § €5 Sy €S- 26040 s«
Tdé a =" ;;- (aﬁG‘f.* 3&&,@ 2.14)

5 ZSKR + 2 233@—.6,‘



T@f o = 7;'- (251@/35 + JF,G.@) (2.15)

It should be noted that the covariant derivatives appearing in the last two equations
are covariant with respect to Lorentz and chiral U(!) tramsformations. For a zero
form superfield XA of chiral weight U(XA) for instance, the covariant derivative

is defined as

3o Xn= Eg Xy~ Ban Ko+ wlke) A Xa 16
and, consequently, the graded commutator

(46, ) = 38201752 .
of two covariant derivatives takes the form

(Jc,ée)XA =-Tee Fa;XA‘ Ree 4 FXF + W) FeaXa (2.18)
The chiral weight of the covariant derivative is determined from that of the vielbein,

W(Zg) = ~w (EA) C a9
If the vielbein transforms under a chiral U(l) transformation as

w(g’
EA’= E \/() (2.20)

then 9A and AA transform under the same transformation as (DA = EAMaM)



! -w(e®)

3
>
1

D)
A (2.21)
/ ~w()

-l
A=Y (AmY DY)

>
n

Similarly the chiral U(l) weights of the coefficients of the torsion two form

(2.8) are determined from those of the vielbein through the relation

w(Tee?) = wlE) - w(E)-w(E®

(2.22)

The chiral weights of the basic covariant superfields describing torsions and
curvatures follow from eqs (2.11-15):

W= -2 , w(Rl==+2

W (Ga,) = 0 (2.23)

W(W ,)- +1 W(W"i)-—"

Ag already mentioned above the coefficients of Lorentz curvatures and U(l)
strengths too are expressed in terms of these few superfields.

field
At dimension one

we obtain
1-
Rs'd' ba = 8 (6“6)31 R (2.26)
RSX ba * =) (gbae)szs R . (2.25)

Rs"é ba * ~2i Gd(éce)s'zs '3 dcloq (2.26)

for the Lorentz curvatures whereas the chiral U(l) field strengths are given by

Frumo | FF o



Fo® = 36%).° G, a.m

At dimension 3/2 one finds

[

. 5 . £, s
RSc ba = léCSS'TBG +i dbsé-rca_ +1 84 séTbc (2.29)
s . - 88 . —§§ , — 88 .
R cba =t Oc TbaS"'Léb Tcas*(-éa_ Tbcs 2.30)
and
3 : -
Fsc = .L-I bSGC + i 6c 28 X (2.31)
R Y 88§ i
Fc‘ZéG‘c"‘i‘_ é Xsg (2.32)
with the definitions
§ A .
rxs = JSR -3 G (2.33)

4

— .+ 58
?(G = JSR t ZsG (2.34)

Finally, having expressed torsions, curvatures and U(l) field strengths in terms
of few covariant superfields the Bianchi identities themselves are now represented

by a small set of rather simple conditions for these superfields:

+ o
%R =0 I R=0 C@as
B W@ o s Ww=‘0 (2.36)
Y 20 S Xy =0 (2.37)

5
X - 2:K° =0



o
25« Teba t 2iTeb =0 (2.39)

The expressions for the Lorentz curvatures and U(l) field strengths at dimen-
sion two and some additional notational informations are collected in the appendix.
We conclude this section by showing how covariant recdefinitions of the vectorial
part Aa of the U(l) gauge potential change the form of eqs (2.12), (2.28) and
(2.31=32), call A° the U(l) gauge potential of the geometric situation describead

in this section and define

A1 = A, + 2. (2.40)

The superspace geometry of ref. 14) is then obtained from

= i’: a (2.41)
ZE: = - EL EE l;;.ﬂl 2

In particular, FBd(A,) = 0.
On the other hand the superspace geometry corresponding to old minimal super-
27)

gravity is obtained from A; = 0. As a consequence the torsions of eq.(2.12)

become

T

o.m, a

¢ " v AC, =
1k = %" S?f Gui—@- (dcdb)'d ¢ (2.42)

4

. . + . [e) - 1
T"‘ %ba} == % S'E @b_.?‘-:G (6.;6&.)1 o (2.43)

and from Xg = 0, X& =0 and eqs (2.33),(2.34) it follows that

!

‘58R= JSG' 88 3 Jsﬂ+= - bSGss (2.46)

in accordance with ref. 27).

New minimal and 16-16 supergravity contain antisymmetric tensor gauge fields.
We postpone therefore the discussion of these cases after the description of the

superspace geometry of the two form gauge potential.



3. CHERN'S FORMULA AND THE TRIANGULAR EQUATION IN SUPERSPACE

In this chapter we establish the superspace version of Chern's formula and

20)

the triangular equation in a general curved superspace without agsuming any

constraints for the gravitational and Yang-Mills parts of superspace geometry.
We use the triangular equation to calculate how the Chern-Simons forma change
under gauge transformations and under covariant redefinitions of the connection.

Consider a superspace Yang-Mills potential

A = EAA,A (3.1)

subject to superspace gauge transformations,

] -1

A= X (A-d)X

Its covariant field strength

FA) = d+ AR 6.
satisfies Bianchi identities

d?-ﬁ.?*?ﬁ’o (3.4)

Chern's formula and the triangular equation in this geometrical setting are special
cases of the superspace version of the extended Cartan homotopy formula of Mares,

Stora and Zumino™ ’.

For the super Chern formula take two super Yang Mills potentials f% and Jkl.

The convex combinatinn

Ay = (1-t) A+ t &, (3.5
with t € [0,1] = T, is still a connection. The covariant field strength

?(ﬁt\ = ?t = dxﬂt fﬁfﬁ.t (3.6)



satisfies Bianchi identities
(i SF;t - Cf*Lt E*;t + 3;; J‘k‘t = 0 3.7

The symmetric invariant polynomials Jn(’}'.....‘F) are closed with respect to the
superspace exterior derivative due to the Bianchi identities and the super Chern

formula reads

Jn(ﬁ,---,a]‘]h(ﬁ,---,'}:\) = sz»m (‘Ao,\ﬁu\)
(‘ﬁo,‘ﬂ') n g:’ (d‘ﬁ—t; y ?t\

(3.8)

Zn't

In this equation the integration is over the unit interval and d, denotes the

exterior derivative with respect to t,
0‘2=O dd, +d,d = p 3.9)
t + t

in particular:

d, R, = dt (Ro-A) -

As can be directly seen from its definition the 2n-1 form Qo (Jlo,fh) is

antisymmetric in its arguments,

Qz,\_1 (\ﬁ'a, Aﬂ == Q2“-4 (\ﬁ./\) Uq.°) (3.1

and invariant under simultaneous gauge transformations of JQO and Jh.

From Chern's formula one sees immediately that

4] Quns (o)t Qont Pt At Qorna )y =0 0o

The triangular equation describes the exactness of this same combination,



Gih-1 (‘Ao)ﬁd) * &Zn-4 (&4) ‘Az} * QZq-’i (ﬁzlﬁo}r‘d in_z(‘ﬂg\“ﬂq)‘ﬁz)
(3.13)
'in.g (‘ﬂo,\ﬁd)ﬁ'zj= L;\_.ﬂ_gsh (d.ﬁq*)d{&) 3 ?ﬁ)
2
where now '&t interpolates between the three connectiona 'ﬁ'o’ Otl and 3‘:2,

‘A't - ‘74:0 + -td(Aq—‘A‘a} + tz(t?‘t,_‘ft,) (3.14)

with t! e [0,1] for i =1,2. d: is the corresponding exterior derivative and

the integration is over the standard two simplex in parameter space, T,.

The derivation of Chern's formula and the triangular equation in ref. 20) is
purely algebraic, employing the homotopy operation ¢  defined on .ﬂc, '}':, d, &,
4. %,

Lm0, G dehe
nd satistyiog

Ld-dt, = d; -

Lydy-dy & = 0 317

It is therefore completely legitimate to apply these constructions to superspace

geometry, as we are doing here. A useful relation we shall need later arisess when

taking A to vanish and & to be a pure gauge in eq.(3.8):
0 .

-1
\7°(0=O)\ﬁ.4=—)(dx :ﬂ)

(3.18)

dal+00 =0

It follows that



a Qz,\_q (D‘.O_\ =0 (3.19)

We introduce a family of gauge transformations parametrised with s & [0,1] such
that s ~ 0 corresponds to the identity, x° =1 and X, = X and define

1)_5 = - x—;oﬁxs (3.20)
Making use of the homotopy ocperation

{sﬂ-s = )(15 dsXs (3.2
we arrive at

&%-« (OrQ) = d"lg '(samiq (D,-Qs) (3.22)

In physical applicatious one usually encounters Chern~Simons forms which depeund on

oue conmectiou only,

&‘Zn-1 ('ﬁ) = &zh-1 (J‘t,,o) (3.23)

and oue may ask how this expression changes under a gauge transformation of ot

alone. This amounts to calculate
Qanat ch- X dX ) 0) = Qo (#A,0)

The answer is easily obtained from the triangular equation (3.13) and froém eq.
(3.22). In eq.(3.13) take

'S - -1
A, = Ao XAX - XdX

\7q:;1 = JFt

(3.24)



and use the fact that
-1 X
Qann (X\Ao,‘ﬂaw = Qaii (l‘A’D"‘A'd) (3.25)

to arrive at

an.q (xﬁ.a’ﬁ,) + &‘Zn-1 (‘A-O)x‘ﬂ‘)

%! (3.26)
+ Q?.h-1 (A,| \A‘b)= dx‘ln-z (AO) ‘A'O ) IA')
Then take jko = 0 and use (3.22) to obtain
%
th_1 (0.&\‘@2»1 (D. A) = d A‘Zh-z
(3.27)

A'Zn-?. = 7('2'\-2 (o|- de1\ ‘A‘) + § (SG?J\A (DI'Q‘E)

This shows that the physicist's Chern-Simona form changes under a gauge transfor-

mation of the Yang-Mills potential by a total derivative,
X
anﬂ("lﬂ -Q2n-1 ('ﬂ\ = ‘dAzn-z (3.28)

Observe that one might construct a gauge invariant object at the expense of intro-

ducing 2 2n-2 form gauge potential BZn—Z with gauge transformations

7
&Zn-z = BZH-‘)_ + Dppp d xz,‘-3 (3.29)

The 2n~1 form
th_1 = dB,,., + Qops QA) (3.30)

is then gauge invariant and savisfies Bianchi identities

O\Hzn-q = jn (3:' 3:) (3.31)

PR
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What is the effect of a covariant redefinition of the commection on eq.(3.30)7

Suppose T to be some gauge covariant Lie algebra valued one form and define
A= R+ T (3.32)

The Chern-Simons forms for the two connectionsa are related through the tna.ngular
equation. Taking & =0 in eq.(3.13) one obtains

Zn‘l( ‘\} QZ»\-( )’ @zm (\7‘\4\ﬁ)+c\7(2n_,(ﬁ,.ﬁ,,o) (3.33)

In eq.(3.30) Xy, _,(, &, 0) can be absorbed in a redefinition of Byy-z and
the gauge covariant quantity an_‘(.ﬂ., A.) gives rise to the new field strength

H 2n-1 (\A.,‘) x H?.p\.1 (‘A) t+ &'-2“-1 (AM\A-‘ (3.34)

For illustrative purpose we have, in this chapter, only considered the super Yang-
Mills potential. It should be clear that the same arguments hold for the conpection
forms which correspond to the structure group of flexible (curved) superspace.
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4.  CHERN-SIMONS FORMS IN U(1) SUPERSPACE

In four dimensional superspace we are concerned with Chern-Simons forms

Qs ("oq = Jz(‘ﬁ-)?‘éﬂ.ﬁ_) G

d@3 (.M = 7, (?1 ?] (4.2)

These equations are obtained from (3.8) if one takes n=2, JLO - JE, d*i =0 and
performs explicitly the t-integration. ot denotes the superspace connmection of
some supersymuetric Yang-Mills theory formulated in ficxible (curved) U(l) super-
space. Ia addition we introduce the Chern-Simons forms constructed from the super-
space connections ¢BA and A corresponding to local lorentz and chiral U(1)

transformations, respectively, as defined in section 2:

By (3) = (6, R-1 )
Gy (A)

]

F 4.4
:]2 ( /\ ) ] (4.4)
They satisfy, of course,

d&;!, (‘b\‘ :I,_ (R|R ) (4.5)

405 (A= T (F,F)

In section two it was pointed out that, as a consequence of the choice of structure
group and torsion constraints, all the torsions and curvatures of U(l) superspace
can be expressed in terms of the few superfielda R, R‘, G-, W, e’ W.B& and their
covariant derivatives. Likewise the field strengths of supersymmetric Yang-Mills

theory,

A_BR
$'= %—E E :'FQA .7
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can be expressed in terms of the superfields ku’ Xd as a consequence of the

constraints

?'Pq=0 ) ?P".-o 3"“4-0 (4.8)

The remaining field strengths take the form

PR XA 10
Foa = (€6ba_) 3')« +2?'(6ba,€/ Z),; o (4.11)

and the Bianchi identities reduce to

=0 8,3 =0 (4.12)

édﬁ, - éaf_)\; = 0 6.13)

The covariant derivatives are now supposed to be covariant with respect to local
Lorentz, chiral U(l) aud non-abelian gauge transformations in superspace. The
chiral U(l) weights of Aa’ 2 are

W(ﬂ.]' +1 ) U(N&]-—'] (4.14)

Following the ideas presented in the previous chapter, we introduce a two form gauge

potential in superspace,
M, N
=3 dz dz BNM (4.15)

in order to construct an invariant three form

as + &3(\740* Q3(¢)+ GG:.(A) (6.16)
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The corresponding Bianchi identities then read
dH= 3, ($|$) +1, (R,R) + 3, (F/F) (417
So far we have not considered constraints for the invariant three form
1 _A_B_C
H = é_‘. EE E HC‘-‘&A (4.18)

28,29) how to impose

In the case of vanishing Chern-Simons forms it is well koown
the standard constraints which define consistently the superspace geometry of a
multiplet containing a real scalar field, an antisymmetric tensor gauge field, a
Majorana spioor and no auxiliary fields. It is however mot guaranteed that the
same conatraints can be maintained in the presence of Chern-Simons forms. One has
to convince oneself that the constraints in the various geometric sectors of super-—
space geometry are compatihle with eqs (4.16) and (4.17).

13,14) that the

For the case of Yang-Mills Chern-Simons forms alone it is known
usual constraints for supersymmetric gauge theory, eqs (4.8), and the standard
constraints for the three form H are indeed compatible with (4.17), even in
flexible (curved) superspace. In order to accommodate Lorentz Chern-Simons forms
as well one has to allow for additional quadratic terms to appear in the covariant
components of the three form R, as described in the following. We replace the

invariant polynomials in (4.17) by symmetrized traces, e.g.

3, (FF) =t (FF) (4.19)

a b
—E_' Rb Rq_ (4.20)

3. (RR)

S FF _ %.21)

1, (F.F)

T and o are constants and t stands for some suitably normalized trace. The
Bianchi identities (4.17) are equations which are four forms in superspace,
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A_B& ¢ D
I =7£E"EEE Ipga=
= %FEAEEECED{ ‘rbDHCM + 6 TncFH FBRA (4.22)

e \
-2{(?DC?M)-T RDC-? RMC '26 FDCFBAg‘O
It is straightforward to convince oneself that the constraints

» s 10
H =H.. "=H Pd=H'ﬁu = 0 (4.23)

e ks 3
are compatible with the properties c_)f F, Rba, F and eq.(4.22). Otherwise stated
the Bianchi identities IGYBG' IGYBa and their complex conjugates do not contain
any quadratic terms in field strengihs or curvatures. This is no longer true for
the equation of index structure .EGYBa and its complex conjugate and we are there-
fore led to demand

. ad ¥ |
H'BP e = it &G R (o’ade)w (4.26)

H.&F a ==1bcT thR (gade)*ﬁ (4.25)

Furthermore we define

. b
Hxﬁn. = -2 (Ge)%prq (6.26)

and require the antisymmetric part of Hb; to vaniah,

Hoa = Hao (46.27)

This can always be achieved by a covariant redefinition of the vectorial part of
the two form gauge potential B. The traceless part of H‘b. is then determined
from the Bianchi identity IGYBa and we parametrize the trace part such that
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H ¢ a =~ 21 €y F(L-4T RR+-TGbi)

+2i €), * (vr VGG,

3
(6.28)

8

Y a

L 1is a nevw independent, real superfield. The Bianchi identities I, and

3y s A
T ga SeTve to determine Hyba and H ba’

9, +. ¢ %
HX kg < 2(6bn)~5 qu‘BtRTbQK +4t 6'5'6GCTL“
~(v $pa Ga (Fe -3 3,Go) .29
HY ba = Z(Eba\chva-B‘tRRq 4t 6&5&':7—’”-6
—iv Sﬁ:@m (cm- %‘ Z)X&CJ (4.30)
de
V= 3g+4tT | e = 8‘;8;- SESZ (4.31)
The Bianchi identities I6Ybl and Is;bu then take the following compact form:

(8‘54 '8'R+] L= % (ﬁ&—i&)'l' i’" ‘-X-a xa—Bf W@ qué: 4.32)
(3 F-eRIL = %( ,]-I- %’X’"XN -8t Www (4.33)

Obgserve that (as already indicated above) for t = T = v = 0 one obtains just the
superspace geometry describing the supermultiplet of the antisymmetric tensor
gauge field.

We still have to discuss the remaining Bianchi identities. From I we

§ b
learn what the 08 componeat of the superfield L 1looks like, it contains the

field strength of the antisymmetric tensor and some non-linear terms:
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(3,21~ 4 6% L Ga + (ATs) + ¥ % K4
decb ;
+él!- Cday T a ]) 2H cogt 16T (ch qF?a-TCbQ an_) (4.34)

§
dcba’ I cba and Idcba do not

contain new information. They are trivially satisfied as a comsequenca of the

The higher dimensional Bianchi identities, I

results obtained so far.
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5.  CONCLUSIONS

We have presented the complete superspace geometry for Yang-Mills, chiral
U(l) and Lorentz Chern-Simons forus in four-dimensional N=1 supergravity. The
analysis was carried out in U(1) superspace which has local R and Lorentz
transformations in its structure group. For the case of Lorentz Chern-Simons
forms consistency of the superspace Biauchi identities requires new additional
terms in certain super field strengths of the two form gauge potential (which was

introduced to comp te the gauge variations of the superspace Chern-Simons forms).
The additional terms are quadratic in the covariant fialds which describe all the
torsions and curvatures in the supergravitational sector. The superspace geometry
exhibited in this paper still can be particularized to old minimal, new minimal or

16~16 supergravity.

The reduction to old minimal supergravity has been explained above, eqs
(2.42-44)., 01d minimal supergravity does not contain an antisymmetric tensor
gauge field. The coupling of the linear multiplet L to old minimal supergravity

via the invariant superfield action‘)

S EJF(L) .1

would lead to a component field Lagrangian with inconvenient kinetic terms (the
same situation arises in coupling the Kidhler potential K(¢,¢+) to super-
gravi:y3°’3l)). Canonical kinetic terms are obtained by performing a Weyl re-
scaling in superspace and certain covariant redefinitions of the vielbein and the
Lorentz connection superfields. Since f£(L) is a real function, the Weyl rescaling
will not leave the torsion constraints invariant. The superspace geometry in terms
of the new torsions and curvatures is then, for suitable f(L), that of 16~16
24,25,!4).

supergravity’ The corresponding superspace action is simply]

£1‘-16 = S E ¢

and the same action in terms of component fields has been worked out in ref. 14).
It should be clear that a similar procedure, in superspace, holds for the case of
the Kiahler potential.

For the coupling of Chern-Simons forms to supergravity it is therefore conve-
nient to start right away from the superspace geometry of 16-16 supergravity.
This is obtained from U(l) superspace geometry as described in chapter two by

.)ths integration is over space-time and superspace.
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the U(l) symmetry breaking

A, = - éqX Aa = 6°'X (5.3)

)
A = 3—{ G "";: [25.,21.'.] X (5.4)

and by imposing

bX
L=¢ (5.5)

with some real constant b ¢ - é-. In ref. 17) it was shown that in the presence
of Yang-Mills Chern-Simons forms in 16-16 superspace (e.g. the superspace geometry
described in this paper together with (5.3-5) and T = 0 = 0) the superfield
action (5.2) describes supersymmetric Yang-Mills theory coupled to 16-16 super-
gravity via Chern-Simons forms. Again, the corresponding component field action
has been worked out before in ref. 14). The general case including Lorentz Chern-
Simons forma (and possible non-linear modifications of eq.(5.5)) is discussed in

detail in ref. 19).

New minimal supergravity, without Chern-Simons forms, is obtained if one

requires

L = 1 (5.6)

From eqs (4,32~34) one learns that then R = R" = 0 and the superfield Ga is

proportional to the dusl of the superfield H In the presence of Chern-Simons

cba®
forus, as discuesed in our paper, eqa (4.32-34) cell us how the superfields R, Rt

and G, are expressed in terms of other geometric quantities:

~aR = £ (A + ¥ XX a0 Wips W R4

-8R = L (o9,) + £ X% -8t W Wiy, 5.0



4G = t(Paha) +F A Xe

"‘51_1‘ Sui geba f2 Hepat kt(chqua‘Tc.bq Fe) o

+ o ZGWF#,E@-SNGC (2F -3 26Ga) ﬁ

For v # 0 eq.(5.9) is a complicated implicit auperfield equation for G,e On

the other hand v = 0 does not mean that new minimal supergravity prefers a parti-
cular combination of Larentz and chiral U(l) Chern-Simons forms. In fact, one
still may add a Chern-Simons form (with arbitrary coefficient A} of the
shifted U(l) gauge potential A; defined as

;=%
A= A-3EG, e
This corresponds, in particular, to
a
Ff" (AJ =0 11

and the analysis of the Bianchi identities shows in a straightforward way that the

ugly term in eq.(5.9) is then absent.

In terms of component fields the super-covariant field strengths in the pre-
gence of Chern~Simons forms are slightly more complicated. Consider, for instance
cha[' the lowest component of the super field strength of the antisymuetric tensor

32,18)

gauge field. Employing standard technigues one sees that it contains a term

linear in Tt of the form
ecm Ve 1 ‘H@ ba.l + oyl pena, (cba) (5.12)

In turn, by using eqs (4.29-30) and (5.7-9) for v=0, one realizes that Hlb‘l contains
itself ch.I as wall as Tcﬁg]' the lowest component of the super-covariant
field strength of the Rarita-Schwinger field. For ch5| a similar mechanism takes
place but the iteration eventually terminates due to the anticommutativity of the
Rarita~Schwinger fields appearing at each step. In closing we would like to emphasize
the importance of the knowledge of a complete superspace geomatry for the derivation
of supersymmetry transformations and for the construction of the BRS differential

algebra for component Eieldlla).
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APPENDIX

In order to completa the description of U(l) superspace geometry of chapter
two, we still have to discuss the properties of the Riemsnn curvature tensor R

Due to the vanishing torsion, ch° = 0, the curvature tensor satiafieas

Rdc ba ~ Rba de* For many purposes it is useful to use its spinor decomposition
defined as follows:

a
deb *

b
-;3‘5#6-:& Rdcbq 4.1

Rsi‘m?péwi =4€§8€“,;, ,"(’L'ft“ + 468"«6}&1 'X(‘}HL“.

(A.2)
"4 G Yol 4 Eoya Vi B
r)(§j pe = % syt + (€$€3'+€5¢€m‘\9{ (A.3)

Rigio = Nagin + leipsp remeip) X

Here X and YXjp-.a: describe the Weyl temsor in spinor notation, Y, -+ and
§yBa &yba 8y Ba

X correspond to the Ricei tensor and curvature scalar, respectively. They are
related to the basic superfields of chapter two in the following way:

Keges = 7 (DsMls * g + Sy - g "

Riga = 4 (s = 800 + 40+ M)

q’gé - T1§ Z%:‘- ([éhap]G!., -2 GSPG' ,-,) “ A

&
; : ] +
6% = -4 (F4Rs 2, )+ 5[5 w2 F G+ 1288 a8
Using the information presented in chapter two we present alternative expressions

for some of the torsions and field strengths. For instance, from eqs (2.14), (2.15)
and (2.31), (2.32), one finds
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F(sa =- %’ (ﬂae*% Gagap ¢ E»Q{‘Cbé_{; chb N
Fhas-3(ger 4860 422G T
nd, comversely,
Teba™"3% (€6cgb)ww\ag “'i' (5@)«: Foo- é(ébé)., eI'l-'.'«;
Tova= (M- b Rk Fa 563, Fac
The chirality conditions (2.37)
JuXu=0 , Xu=0
are equivalent to the equations
80q Ga = 4 %R
8,2%Ga = -4 JaR
On the other hand, eq.(2.39) in spinor notation reads:
$Wygpa = -+ Z (24 a\"’a,q; +30 3 ";G.{;)
EWgio = 2,_/% (5(&5"@‘# +3 846 )

Finally, we define the spinor decompositions of Hc and its dual,

dcba

ba

d
Hdaé'!—i Heog , Heoa =~H 2dcka

(A.9)

(A.10)

(a.11)

(4.12)

(A.13)

(A.14)

(A.15)

(A.16)

A7

(A.18)
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as follows:
. ¢ b Q
H-u"ﬁsq& = 6“‘5 H’;64¢' Hcba {4.19)
d
Heg = 6“ssHd (w20

In spinor notation the secound of eqs (A.18) reads

H

H!{‘ ﬁ;‘ “w - 2 e&gé‘.‘.qHF.& "2L'€KF,€.3;, ‘é (a.21)

where we have used the spinor decomposition of the totally antisymratric temsor

€dcba |

b
Ege Wopas = 6dsg‘éc.8%‘,6 ”'6%.' & deba (4.22)

As a consequence of this definition one obtains

(A.23)

Esdg pf o = 4 (Coplpuliyi - CanbipCiys)

That this expression is indeed totally antisymmetric in the four vector indices
88, vy, BB, oo may be easily verified with the help of the cyclic identity

EW Ao t é‘/,, ’)r,Zf + e.,%, ’XF_ = 0 (A.24)

Qur superspace notations are the same as those of Wess and Bagger32).
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