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TRACE 3-D DOCUMENTATICN

by
K. R. Crandall
ABSTRACT

TRACE 3-D is an interactive beam-dynamics program that
calcutates the envelopes of a bunched beam, including linear
space-charge forces, through a user-defined transport system.
TRACE 3-D provides an immediate graphics display of the enve-
iopes and the phase-space ellipses and allows nine types of
beam-matching options. This report describes the beam-
dynamics calculations and gives detailed instruction for
using the code. Several examples are described in detail.

I. INTRODUCTION

TRACE 3-D is an interactive program that calculates the envelopes of a
bunched beam, including linear space-charge forces, through a user-defined
transport system. The transport system may consist of the following
alements: (1) drift, (2) thin lens, (3) quadrupcle, (4) permanent-magnet
quadrupole (PMQ), (5) solenoid, (6) doublet, (7) triplet, (8) bending magnet,
(9) edge angle (for bend), (10) rf gap, (11) radio-frequency-quadrupolz (RFQ)
cell, (12) rf cavity, (13) coupled-cavity tank, (14) user-defined element,
(15) coordinate rotation, and (16) identical element.

The beam is represented by a 6 x 6 o-matrix (introduced by the
TRANSPORT programl) defining a hyperellipsoid in six-dimensional phase
space (see App. A). The projection of this hyperellipsoid on any
two-dimensional plane is an ellipse that defines the boundary of the beam in
that plane. The most useful projection planes are the transverse and
longitudinal phase planes in which the eliipses are characterized by the
Courant-Snyder, or Twiss, parameters and emittances (see App. B). Using a
seqguence of matrix transformations, thes beam can be “followed" between any two
elements. The user can change any parameter and observe the effect on the
beam envelopes and on the output-beam ellipses. Also, several matching

options are available that determine values for the ellipse parameters or for



specified transport-system parameters (such as guadrupole gradien*s) to meet
specified objectives.

5 an example in which TRACE 3.0 is e«tvemely nseful, consider the
problem of matching the beam from the e«<it of an RFQ into the entrance of a
drift-tube linac (DTLY). This matching is a three-stage process accomplished
easily and quickly by TRACE 3-D.

The first stage in the process s to determine the matched-beam
characteristics at the output of the RFQ by treating the Tast two RFQ cells as
one period in a periodic focusing system. Because of space-charge forces that
couple the dynamics in the three phase pltanes. -hi: tasr involves solving six
simul taneous, noniinear equaftions.

The second stage 15 to rind the -orrec

[a¢e]
¢
-

“npnt team for the DTL by
treating the first two DTL cells 45 sne gerizd “n 3 perizaic fagusing system.
(One DTL cell consists of the foliowing sequence of elements: quadrupole,
drift, rf gap, drift, and gquadrupole.)

The final stage is to design a transport system between the RFQ and DTL
that will transform the matched beam exiting from the RFQ into the matched
beam wanted by the ITL. Quadrupoie strengths and drift lengths in the
transport syvstem can be automatically wvaried by TRACE 3-D in an effort to find
a solution to the matching problem. A satisfactory solution is found when a
calculated mismatch factor (see App. C) is less than 0.0001.

TRACE 3-D provides an immediate graphics display, including the beam
envelopes and the phase-space eflipses in the transverse and longitudinal
dimensions. This feature, along with the interactive capability, makes the
program a iearniny algd as well as a useful design tool.

TRACE 3-D is an evolution of earlier two-dimensional versions. The
original TRACE? was written in 1973 and was developed for use on the
controls computer of LAMPF. A modified version® was written for the
controis computer of the CERN linac in 1977: in 1979, the CERN version was
adapted to the Pion Generator for Medical Irradiations (PIGMI) controls system
at Los Alamos. This version was expanded extensively and was adapted for use
on the CDC-7600 computer at the central computer facility at Los Alamcs and on
the AT-Division YAX-11/750, and is documented in a Los Alamos report.‘1

The structure of TRACE 3-D allows the code to be easily modified and
expanded. Interaction with the program, which runs on the CDC-7600 and the
CRAY under the LTSS and CTSS nperating systems, i35 through a Tektronix
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4000-series terminal using the Tektronix Plot-10 Terminal Control System. The
program can be adapted for any cther graphics terminal by replacing the
Plot-10 subroutine calls by calls to any graphics package that draws lines,
plots dots, writes character strings, and allows a mechanism for interaction.

IT. GENERAL DESCRIPTION

The basic assumption of TRACE 3-D is that all forces are linear or can be
linearized. If the six coordinates of a particle are known at some location
S along a transport system, then at S5 the coordinates can be calculated
by a single matrix multiplication. That is,

>
x{s

_)
2) = R x(s1)

where X(s) is the 6 x 1 column vector of the coordinates at location s, and R
is a 6 x 6 matrix whose elements depend on the transport elements between S
and 55 and on the size of the beam (for computing space-charge forces) in
this interval. The R-matrix is referred to as the transfer matrix between
locations 5 and Sy Usually, a transfer matrix representing particie
transport over a long distance is determined by a sequence of matrix
multiplications of transfer matrices representing particle transport over
smaller intervals that comprise the total transport distance.

For the space-charge forces to be linear, one must postulate a beam
having a uniform charge distribution in real space. (The electric-field
components inside a uniformly charged ellipsoid are given in Sec. VII.)
Although real life is rarely so accommodating, it has been shown that for
distributions having ellipsoidal symmetry, the evolution of the rms beam
envelope depends almost exclusively on the linearized part of the
self-forces.” Consequently, for calculational purposes the "real beam”
may be repiaced by an "equivalent uniform beam” having identical rms
properties (see App. D). The total emittance of the equivalent uniform beam
(the beam followed by TRACE 3-D) in each phase plane is five times the rms
emittance in that plane, and the displayed beam envelopes are /5 times their
respective rms values. (Real beams have ill-defined boundaries. 1In general,
one can expect a few percent (<10%) of the particles in a real beam to be
outside the boundaries displayed by TRACE 3-D.)




If the transfer matrix between 5 and Sy is known, and if the beam
matrix at 5y is known, then the beam matrix at Sy is calculated by

o(sp) = R alsp) RT

where RT denotes the transpose of R. The dynamics calculations in TRACE 3-D
are done by a sequence of transformations as specified above. Starting with
an initial o-matrix, a transfer matrix is constructed from the external
forces for a small transport interval and a new o-matrix is calculated. The
size of the beam is obtained from elements of the o-matrix, and linear
space-charge forces are calculated using the beam size. An R-matrix is
constructed for the space-charge impulse, and a new o-matrix is calculated.
This process is repeated until the beam has been followed through the
specified elements.

At the beginning of a calculation, initial phase-space ellipses are
displayed at the graphics terminal. At each step, the beam boundaries in real
space are displayed, allowing the user to visualize how the beam is behaving.
At the end, the final phase-space ellipses are displayed.

ITI. COORDINATE SYSTEM AND UNITS

The internal coordinates and their units are

~% (mm} y
Cx' (mrad) |
py o (mm) |
X = ﬁ y' (mrad)? ,
i z  (mm)
L Ap
\p (mrad>

where x, y, and z are horizontal, vertical, and longitudinal displacements
from the center of the beam bunch (assumed to be on the equilibrium orbit), x'
and y' are the relative rates at which the particle is moving away from the
horizontal and vertical axes, and ap/p is the relative difference in the
particle's longitudinal momentum from the longitudinal momentum of the center
of the beam bunch. For input and output, however, z and Ap/p are replaced



by A¢ and AW, the phase and energy displacements in degrees and keV. The
relationships between these longitudinal coordinates are

By

2=~ 730 M
and

&p _ Yy OHW
p  y+ 1 H

where B and y are the usual relativistic parameters, X is the free-space
wavelength of the rf, and W is the kinetic energy in MeV at the beam center.
Phase and energy coordinates are more normal coordinates for discussion of
input/ouput parameters of accelerator-related transport systems than are z and
ap/p; however, internal calculations are simplified by using the z and ap/p
coordinates.

The units of the coordinate system define the units of the transfer-
matrix elements, which are either dimensionless, m, or m']:

) m ) m 1 m ]
m-1 ] m! 1 m-1 1
1 m 1 m ] m
m- ) m-) 1 m= 1
] m ] m 1 m
L m- 1 m-1 ] m-1 ]

IV. TRANSPORT-SYSTEM ELEMENTS

Each transport element is defined by a "type code" and by five or fewer
parameters, summarized in Table [ (parameter definitions fu:low the table).
Unless otherwise specified, all conventions assume a positvive beam, all lengths
are in millimeters (mm), all magnetic-tield gradients are in teslas/meter
(T/m), and all angles are in degrees (°). Positive magnetic gradients are

focusing in the horizontal plane and defocusing in the vertical plane for
positive beams.



TABLE 1

DEFINITION OF TRANSPORT ELEMENTS

Element

Drift

Thin lens
Quadrupole

PMQ

Solenoid

Doublet

Triplet

Bending magnet

Edge angle
Radio-frequency gap
RFQ cell
Radio-frequency cavity
Coupled-cavity tank
Special

Rotation

Identical

Type Code Parameter
1 D)
2 f . f ,f
X y y4
3 B', &
4 B', 4. ¥ r
j 0
5 B’ 1}
6 B', 2, d
7 BO , Qo’ d, B) , Q)
8 a, p, N
9 Ba ps ga K]l KZ
10 EOTL, ¢S, egf, dWf, h
2
11 V/ro, AV, L, ¢o‘ type
12 EO, L, ¢o
13 EOT, L, ¢S, ne
14 Length, (user defined)
15 e

16

n



DEFINITION OF PARAMETERS USED IN TABLE I

Element Parameter .Definition
1. Drift Q length (mm)
2. Thin lens fx focal length in x-direction (mm)
fy focai lengtn in y-direction (mm)
fz focal length in z-direction (mm)
3. Quadrupole B! magnetic-field gradient (T/m)
Q effective length (mm)
4. PMQ B! maximum magnetic-field gradient (T/m)
Q physical length of PMQ (mm)
rs inner radius (mm)
"o outer radius (mm)
5. Solenoid B magnetic field (G)
Q effective length (mm)
6. Doublet B! magnetic-field gradient (T/m) in upstream
quadrupole
0 effective length of each quadrupote (mm)
d distance between quadrupoles (mm)
7. Triplet Bo' magnetic-field gradient (T/m) in both outer
guadrupoles
QO offective length of outer quadrupole (mm)
distance betweern inner and each outer quadrupule
(mm)
Bi' magnetic-field gradient (T/m) in inner
quadrupole
Q1 effective length of inner quadrupole (mm)
8. Bend a angle of bend in horizontal plane (deg)
) radius of curvature of central trajectory (mm)
n field-gradient index
9. Edge 6] pole-face rotation angle (deg)
) radius of curvature of bend (mm)
g total gap of magnet (mm)
K] fringe-field factor (default = 0.45)
K2 fringe-field factor (default = 2.8)




Element Parameter Definition
10. RF qap EoTL effective gap voltage (MV)
b phase of rf (deg)
egf emittance growth flag
diWf energy gain flag
h harmonic (default = 1)
11. RFQ cell V/re maximum intervane potential difference
° divided by square of average vane
displacement (kV/mm)
AV product of acceleration efficiency and mzximiwm
intevvane voltaan 0
L cell length (mm)
bo phase of rf (deg)(see Sec. VI-K)
type = 0; standard cell, no acceleration
= 1; standard cell, ac-eleration
= 2; fringe-field, no acceleration
= 3; fringe-field, acceleration
12. RF cavity k4 average accelerating field (MV/m)
L length (mm)
do phase of rf (deg) (see Sec. VI-L)
13. Tank EoT effective acceleration gradient (MV/m)
L length (mm)
d¢ synchronous phase (deg)
Nc number of identical cavities
14. Rotation 8 angle through which coordinate system is rotated
about longitudinal axis (deg)
15. Identical n sequence number of element with which this
element is identical
V. DYNAMICS CALCULATIONS

The beam matrix is followed through a sequence of transport elements by
creating transfer matrices for small segments and calculating

o:RcORT

This calculation is done in several different ways, depending on the type of
element.



A. Elements Having Zero Length

The R-matrix has only three nonzero off-diagonal elements, the impulses
to be applied in the three orthogonal planes. Elements of this type are thin
lenses, rf gaps, and edge angles on bending magnets.

B. Elements Having Constant Fields and No Energy Gain

Each element is divided into an integral number of segments. An R-matrix
is constructed for a half-segment. For =ach segment, the beam is transformed
to the center of the segment u.ing -i2 R-matrix, a space-charge impulse is
applied, and the beam is transformed to the end of the segment using the
R-matrix. Elements of this type are field-free drifts, gquadrupoles, bending
magnets, and solenoids. Doublets and triplets are composite elements of
drifts and gquadrupoles.

C. Eiements Causing Energy Change ¢r Having Varving Fields

Each element is divided into an integral number of segments. For each
segment, the beam is transformed by a drift-impulse-drift, m=aning that the
beam is given a drift transformation to the center of the segment, an impulse
that is due to the element and space-charge, and a drift transformation to the
end of the segment. Energy charges and phase shifts, if any, are also
calculated. Elements of this type are permanent-magnet quadrupoles, RFQ
cells, rf cavities, and tanks. In some elements, it is possible to calculate
an emittance growth. For example, an rf gap will cause transverse emittance
growth because of the phase spread in the beam. Energy spread can cause
emittance growth in quadrupoles (chromatic aberrations).

VI. TRANSFER MATRICES

In this report, the 6 x 6 transfer matrices will be partitioned into nine
2 x 2 matrices:

r R IR
boooXX_ L Xy o XZ
R = R ! 'R
L S A A £
I R : R
L Zx ! zZy ' 2z
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Most of the elements are usually zero, and only the nonzero elements will be
defined.

The transfer matrices generated for each element, or for each segment of
length as, are defined below. In this section, 3 and y are the usual rela-
tivistic parameters. For elements that involve a change in energy, the sub-
scripts i and f will denote values before and after the energy change, and a
bar over a quantity will denote an average value.

A. Drift (@)

For a drift length 4s in mm, the nonzero elements of the R-matrix are

R - {\ As‘ ‘
XX Y (g -

il

and

' 27
Rzz - 1 As/y”
0 1
The y2 tn the denominator of the 1,2 element of R22 is present because
2
Aviv = (Ap/p)/y

B. Thin Lens (fy, fy, f2)

The focatl lengths specified by the thin-lens element are in mm;
therefore, the submatrices are

1 0
-1000
Ryx =1 —F ] '
I_X -
R 0 ]
-1000
R = —= ]

f +
ool ]
and

f ] C
! 2
R - | -1000vy :
22 ] f, J
LL




For any focal length that is zero, the corresponding submatrix is the identity

matrix.

C. Quadrupole (B', )

For a quadrupole gradient B', the 2 x 2 transfer matrices in the focusing

and defocusing planes are

r cos (k As) % sin (k As)
F =
| -k sin (k As)  cos (k As)
and
1 . 1
cosh (k As) K sinh (K As)
D = ,
k sinh (k As) cosh (k As) J
where
1172
Bl
|| B J

The quantity Bp is called the magnetic rigidity of the particle,
defined by

mOcBy
q 1

Bp =

where g and m, are the charge and rest mass of the particle, and c is the
velocity of light. The dimensions of As and x are m and m_], respective-
ly. When B'/Bp is positive, RXX = F and Ryy = D; when B'/Bp is nega-
tive, Rxx = D and Ryy = F. In either case, RZZ is the same as for a
drift:

] AS/YL

D. PMQ (B', 2, rj, rg)

The field of a rare-earth cobalt (REC) PMQ of standard design is known
analytically and has been verified experimentally.® A discussion of the

11



field formula is given in App. E. Typically, PMQs are quite short and have
strong pole-tip fields, resulting in "soft-edge" fringe fields that extend
beycnd the physical edge of the quadrupole for a distance two to three times
the inner quadrupole radius. When calculating the field gradient within or
near a PMQ, the gradients of all PMQs in the vicinity must be used for
determining the total superimposed gradient. The transfer matrices for the
impulses that are due to a field gradient B' acting over the distance 4s are

] 0]

Rxx = 5

L —k2 as 1
and

. 0
Ry = ] ’

L k2 As 1
where
K. B

is in inverse meters squared and As is in meters.

E. Solenoid (B, &)

A derivation of the solenoid transformation is discussed in Ref. 7. 1In
TRACE 3-D, the solenoid is divided into small segments of length As, and a
submatrix is constructed for the entry, central, and exit sections. This

constructiontis legitimate because all the internal (and nonexistent) entry
and exit sections cancel each other. The solenoid is divided into small
segments so that space-charge forces can be calculated and applied.

The transfer submatrices are

c? & sC
Ryx = yy 2 '
| ksc c
( sc Ls?
= —R = i y
kS SC



and

where

B
2Bp

C = cos (k as?

S = sin (k As)

+ . . -1 .
The dimensions of As and k are mand m , respectively.

F. Doublet (B', o, d)
The beam is successively transported with matrices already described for

a quadrupole in Sec. VI-C defined by B', 2, a drift length d, and another
quadrupole defined by -B', 2.

G. Triplet (By', %, d, Bi', ;)

The beam is transported with matrices already described in Section VI-C.
The outer quadrupoles are defined by BO‘ and Qo’ and the inner
quadrupole is defined by Bi' and Qi‘ The two drifts between outer and
inner quadrupoles have length d.

H. Bending Magnet («, p, N)

By definition, a positive bend (denoted by « > 0} benis the particles
to the right in the horizontal plane, regardiess of the sign of the charge on
the particle; a negative « bends particles to the left. The bending radius
of the equilibrium orbit is p, and n is the field index, given by

- _ | P
' {BW }X
y

@ L(QJ

> los)
n i

o

13




where B
sign of p should agree with the sign of «.

take precedence.)

o . mOCBY
-
=y
The transfer matrix for a horizontal
r ] B
| G K, x
Rxx= P
L _kxsx Cx J
T ] 1
 C — S
y k, "y |
Ry - T
L "kysy Cy J
- -
) -neek, s 85 s /|
| X X X
R = | .
Fara . |
L0 ] |
T 7
| o h(]—CX)/ki |
fz = ! 0 h S /k |
L ©ox |
and
s sk _ht-C )7kl |
R - X X X X
ZX 0 0
where
A
Tol Tl
, = Vamh?
K, = Vand |

14

is the vertical component of the magnetic field strength.

(The
If not, the sign of a will

The bending radius p is related to By by

sector magnet is




C = cos (kx As)

S = sin (kx As)

C = cos (k AS)
y

S = sin (k As)
y y

also,
As = |p| Aa

is the length of the segment in meters along the equilibrium orbit, and kx
and ky are in m_].

I. Edge Angle on Bending Magnet (8, p, g, Ky, Kp)

An edge angle is treated as a thin lens, with the transfer matrix

1 0
R =
X X ?
1000 tan B 1
L P
and
o 0
yw o ’
21000 4an (p-w) 1
L P
where p is the radius of curvature in mm, and the fringe-field correction

angle ¥ is defined by®

;2
_ g| 1 +sin” B g
¥ =K, o [ o B } [ 1 - K]Kz(p) tan B

Whether or not an edge angle is focusing or defocusing depends not only
on the angle B, but also on the sign of p, so caution is advised. The
correction angle ¥ is also dependent on the signs of B and p. If K, is

]
zero, its default value of 0.45 is used; if K2 is zero, its default vajue of

2.8 is used.

15



J. Radio-Frequency Gap (EqTL, ¢, egf, dWf, h)

In an rf gap, as in RFQ cells, coupled-cavity cells, and coupled-cavity
tanks, the energy of the beam would normally change. (There are situations
when one does not want acceleration to take place and wants only to consider
the focusing and defocusing properties in the gap: namely, when computing the
matched input in a periodic system.) When the beam energy is changed, the
transversa emittances will change. In this situation, it is convenient to
construct the transfer matrix in three separate stages:

1. A transformation that changes the initial x', y', and aAp/p to
(By)‘, (By)y, and A(By)z‘ by multiplying by the initial value of
(By>z, the longitudinal component of the normalized momentum.

2. The impulse transformation that calculates the changes in (By)x,
(BY)_\/’ and A(By)z.

.y, and Ap/p by dividing by
(By)f, the final value of the longitudinal momentum.

3. A transformation back to the x'

For an initial kinetic energy, W., the normalized momentum is

-'I T

By, = /Y? S,

where
'Y‘ = 1| + N]/Er

]

with Er being the rcst energy of the particle. If dWf4 D, the energy change
in the gap is given by

AW = ]qlEOTL Cos &

Therefore, the final energy is
Hf_. = l.«li + Aw

also,
Ye = 1+ Hf/Er‘
and

12
(By)f = ve - ]



The changes in the normalized momentum components caused by the gap
impulse are

—wh|gq|E.TL sin ¢
kK X = 9 5 X

X moc2 3534

—ﬂh'Q'EOTL sin L

k,y = 57 ¥
y m C2 BZYZX
0
and
2wh|q]EoT sin ¢,

k.z = z
Z 2 =2

moc BN

where the bars denote quantities calrulated at the average energy

W = W + AW/2

and h is the field harmonic (usually h = 1). The field harmonic is used if
the rf gap is operated at h times the basic frequency specified by the user
(see Sec. IX-A). The total transfer matrix for all three stages is

1 0 1 0 1 0
Ryx = o
0 (By); K, 1 0 By
[ 0
I kX/(By)f (By)i/(By)f
1 0]
R =
yy ’
ky/(BY)f (By)]./(By)f
and
1 0
R =
zz
kI (By) (By), /By



After computing this R-matrix and using it to calculate the new
g-matrix, if the emittance growth parameter egf is nonzero, the elements &f
the new uv-matrix are adjusted, as described in App. F, to account for

emittance growth in the gap.

K. RFQ (V/rd, AV, L, ¢,, type)

In an RFQ, as in a ¢oupled-cavity cell, the rf phase changes continually
as the beam moves invough the element. This statement is also true of the
beam energy (unless type = 0 or 2). When the beam arrives at the end of the
ziement, the rf phase will depend on the length of the element, and on the
dynamics as the beam passes through the element. MWhen one has a sequence of
RFQ cells, or coupled-cavity cells, the phase shift between adjacent cells is
180°. Therefore, it is more practical to have the parameter ¢0 indicate a
phase shift rather than an absolute phase. 1In a seauence of RFQ cells, all of
the ¢0 parameters will be -180° except for the first cell. Before
starting the dynamics calculation, TRACE 3-D sets the phase parameter & to
zero. When the beam arrives at the first RFQ cell, 4 gets changed to ¢ + o,
For the first RFQ cell,¢0 should be the synchronous phase for that cell (for
example, -30°).

The beam matrix is followed through the element by a sequence of drift-
impulse-drift transformations. The element is divided into 18 equal-tength
segments (if type = 0 or 1) or into 36L/BX\ segments (if type = 2 or 3). Each
of these segments is divided into half lengths of As/2. 1In each As/2 drift,
the phase is incremented by

¢=¢+

Gﬂm:
>

where B = v/c and X is the free-space wavelength of the rf. 1If an energy
change is permitted (when t = 1 or 3), the longitudinal electric field is
calculated, and the new energy is

We = W, + |q|EZ As
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The average energy is

W = (Ni + Nf)/2

The transverse and longitudinal focusing or defocusing forces of the RFQ, and
the space-charge defocusing forces, are calculated and applied at the center

of the segment. The beam is then drifted for another As/2, and this process

is continued through the element.

In an RFQ cell (specified by type = O or 1), the linearized electric
field components are

yi - __A! cos kg} x sin¢
"o

-

[
ME - —— cos kit y sin¢d ,
"o

KAV . -
Ez =~ sin kg sin ¢

where k = w/L and £ is the local longitudinal coordinate within the cell,
defined to be zero at the beginning (upstream end) of the cell. For each
drift of length As/2, £ is increased by As/2. As written, the expressions for
EX and Ey assume that the horizontal vanes (x - z plane) are closer to the
axis at the beginning of the cell. Positive values of the V/r parameter
indicate this situation; negative values indicate that the vert1cal vanes are
closer to the axis at the beginning of the cell. The sign of V/rg must
alternate in successive RFQ cells.

The changes in x' and y' that are caused by the RFQ fields, acting over
the distance As, are

= 2-7— -—2———cosk£x ,
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and
, = - —— (0§ kg) y o,
Aly'y = 22 2 Lro 4

where B and y are relativistic parameters corresponding to W.
The change in Ap/p caused by a partic': arriving at a particular £
when the rf phase is ¢ + Ad rather than ¢ is

ok
Alap/p) = _@_% —Z 5
moc By a9

Equating the phase displacemert A to the longitudinal displacement z,

Ad = ‘%1 z

B

the change in Ap/p is

Aap/p) = - 85T la] kA¥_§1E kg cos ¢ ,
mOCB Y A

When the type is 2 or 3, the element is the exit fringe-field region of
an RFQ linac. When the specified length L is 2B\ or longer, this element
would be called an exit-radial-matching section because the transverse
phase-space ellipses would be very similar at the end of the element. Lengths
shorter than BA/2 would be used for controlling the energy change in the
fringe-field region.

The electric fields are obtained from the potential function:

UCr,0.6) = Y IAT (r 8) + —8— T (r.6) cos 20| sin ¢ |,
2 | Ao 2 12
(kfro)

where

1

To(r,g) = [Io(kfr) cos (kfg) +3 Io(3kfr) cos (3kf£)J ,

i




and

3T L |
Tz(r,g) =7 LIZ(kfr) cos (kfg) v 57 12(3kfr) cos (3ka)J ,
with
m
¢ = 2L

The modified Bessel functicns IO and 12 are replaced by their series
expansion, dropping =11 terms in r higher than r2:

I(ker) = 1+ (ker)¥/4
L2
=1+ ;f (x2 + y2)
Ly(ker) = (ker)?/8

Then, using the identity
r2 cos 26 = x2 - y2 \

the potential function can be rewritten in cartesian coordinates, and the
electric field components calculated by

>
E = -V

The results are

v kuAV
EX= -r—ZC](E)——rCZ(E) x sin ¢ ,
B (o]
v kuAV
E, = g C(®) - —5— &) ysing
L (o]
and
K (A
EZ = =3 S() sin ¢



where

1
C](g) =3 (cos kfg +3 cos 3kfg)
CZ(E) = i (cos kfg + 3 cos Bfkg)
and
S(E) = 3 (sin ke + sin 3KcE)

The impulse coefficients for the RFQ fieids are

i L2ay i
|
as lq] siné ¢ V. f _
kx = . - C](§> - T Cng)

i 7
| k. “AV

(< fdalbine | oo - L )

y BVEr R BV IR 2

Y o ]
and
As « |aq ke AV SCE) cos 4

k:

z 2=3-

mc By

L. Radio-Frequency Cavity (Ey, L, $o

The main purpose of this element is for calculating the motion of a
relatively low-velocity electron beam through a coupled-cavity cell. An
example of such an element is the side-coupled cavity, often used for electron
linacs. When a low-velocity electron enters such a cavity, its veiocity can
change significantly in one cell. In this case, approximations of constant
velocity are not appropriate, and the motion must be obtained by integration
through the electromagnetic field in the cavity.

For this purpose, the cell is divided into 18 equal-length segments,

As = L/18. In each segment, the beam is given a drift-impulse-drif*
transformation. The impulse is calculated at the middle of the segment using
the values of the Ez' Er’ and Be field components; the beam energy;

and the rf phase. The impulse from the space-charge force is also calculated
and applied at the middle of each segment.
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The electromagnetic-field components depend on the geometry of the cavity
and on Eo’ the average on-axis accelerating field. SUPERFISH® runs have
been made for several types of cavities and at various cell lengths for each
type. The results are scalable with frequency; therefore, each run at a
particular cell length is associated with a value of 8 = 2L/X, an implicit
assumption for the cell length. For example, SUPERFISH runs were made for the
side-coupled cavity geometry used by the racetrack microtron designed by Los
Alamos for the National Bureau of Standards. Electric-field information was
calculated for cavity lengths having values <7 B from 0.55 to 1.0 in steps of
0.05. For each value of B, the fields near the axis were Fourier analyzed and
the first 14 nonzero coefficients were calculated. A table of these
coefficients versus f is stored in a TRACE 3-D subroutine, GENFC. Then, for
any given cavity length and frequency, a value is determined for B based on
L = Bx/2. The Fourier coefficients for this f# are obtained by a linear
interpolation in the table, and the field components are reconstructed from
the Fourier coefficients and scaled by Eo' For details on calculating the

electromagnetic-field components in a cavity, and on calculating the linear
impulse coefficients, see App. G.

M. Tank (EqT, L, ¢5. ng)

A coupled-cavity tank consists of n. identical cavities L/nc long.
The quantity EOT is the constant effective accelerating field, and ¢S is
the synchronous phase. Although most of the acceleration takes place in the

central portion of each cell, one can think of the rate of energy change as
being constant:

dW _
5z = |q|EOT cos ¢ .

In the tank element, each cavity is divided in two halves. In the first
half of a cavity, the electromagnetic fields are usually radially focusing and
in the second half they are usually radially defocusing. For a synchronous
phase near zero, these two effects essentially cancel each other when ions are
accelerated, but electrons can have a net inward motion. At each cavity in a
tank, the beam is drifted to the middle of the first half of the cavity, given
an impulse based on field quantities averaged over the first half of the
cavity and on the space-charge forces, and then drifted to the center of the

23




cavity. This procedure is repeated for the second half of the cavity and for
all cavitys in the tank. The details for calculating the impulse coefficients
are given in App. H.

N. Special (R, user-defined parameters)

This element provides a mechanism for the user to insert any special
glement of his choice. Of the five parameters availabla to define this
element, the first must be the total length of the element and the remaining
four are arbitrary. The length is needed by the graphics display when the
beam profiles are drawn. If more parameters are needed, up to 10 can be input
into EXTRA, an array designated for holding extra parameters.

The user must supply a subroutine called SPECIAL, with arguments P and
NEL where P is an array containing the five possible parameters and NEL is the
sequence number of this element.

Q. Rotation (&)

The transverse coordinates may be rotated through an angle 6 (deg@)
about the longitudinal axis. Thus a rotated element (such as a bending
magnet, quadrupole, doublet, or triplet) may be inserted into a transport
system by preceding and following the element with the appropriate coordinate
rotation. A positive angle rotates the beam clockwise (looking at the x-y

plane from the positive z-direction), simulating a counterclockwise rotation
of the elements that follow it.

The rotation is accomplished by the transfer matrix

C S 0 0 0
0 C 0 S 0 0

=S C 0 0 0

R = 0 -5 0 C 0 0
0 0 0 0 ] 0
e 0 0 0 0 1]

where C and S denote cos © and sin @, respectively.



P. 1Identical Element (n)

This element gives the user an easy way to duplicate any element defined
in the transport system. The only parameter required is the sequence number
of the element with which it is identical. For example, if there are several
guadrupoles in the system that all have the same characteristics, only one
needs to be specifizally defined by a type code anc parameter set; the rest
can be included using the identical element. MWhen any parameter in the
defined quadrupole is modified, all quadrupoles defined by the identical
element are likewise modified. The sequence number defining the identical

element must not be the sequence number of another identical element.

VII. SPACE-CHARGE IMPULSES

Approximate expressions for the electric field compcnents that are due to

a uniformly charged ellipsoid, as given by Laposto]le,10 are

1 30X (1-f)
EX i 4 o r (r ror
WEOCY X)(+yz
£ 1 3Ix (1-f)
y © 2
4neo cy ry(rX + ry)rz
and
EZ= ]QI_; f 4 R
dne  Cy rx ry rz

where T ry, and r, are the semiaxes of the ellipsoid; I is the average
particle current (the average electrical current is I|q|), assuming that a
bunch occurs in every period of the rf; X\ is the free-space wavelength of
the rf; c is the velocity of light; and £, is the permittivity of free
space. The form factor f is a function of p = er/JF;F;. Values

for f are given in Table II for specific values of p and 1/p.



The change in the normalized momentum components caused by applying the
space-charge force during the time interval required for the beam to move a
distance As is

q EUAS

mOCZB

A(By)u =

where u represents x, y, or z.

TABLE 11
SPACE-CHARGE FORM FACTOR
p = er//?;?g

b _f 1/p £
0.00 1.000 0.00 0

0.05 0.926 0.05 0.007
0.10 0.861 0.10 0.020
0.15 0.803 0.15 0.037
0.20 0.750 0.20 0.056
0.25 0.704 0.25 0.075
0.30 0.661 0.30 0.095
0.35 0.623 0.35 0.115
0.40 0.588 0.40 0.135
0.45 0.556 0.45 0.155
0.50 0.527 0.50 0.174
0.55 0.500 0.55 0.192
0.60 0.476 0.60 0.210
0.65 0.453 0.65 0.227
0.70 0.43 0.70 0.244
0.75 0.4"3 0.75 0.260
0.80 0.294 0.80 0.276
0.85 0.378 0.85 0.29
0.90 0.362 0.90 0.306
0.95 0.347 0.95 0.320
1.00 0.333 1.00 0.333



The above formulation is valid only for ellipsoids that are upright with
respect to the local coordinate system. When the beam passes through a
solenoid or a bending magnet, it is possible for the ellipsoid to become
tilted with respect to the local coordinate system. In this case, the beam
ellipsoid must first be transformed to a coordinate system in which it is
upright before calculating and applying the space-charge impulses. The
ellipsoid is then transformed back to the local coordinate system.

A tilted ellipsoid is indicated if the o-matrix elements Oy3» O35 OF

g5y are nonzero. If ¢,, is nonzero, the ellipsoid is tilted in the x-y

13
nlane. The angle between the x-axis and the axis of the elliptical projection

on the x-y plane is

1 2993

The ellipsoid can be brought upright with respect to the x-y plane by a
rotation of -6, accomplished by applying the transfer matrix

C 6 -5 0 0 0

0 C 0o -S 0 0

. S 0 C 0 0 0
0 S 0 C 0 0 ’

0 0 0 0 1 0

|0 0 0 0 0 1

where C and S denote cos 6 and sin 6. The rotated ellipsoid can be

checked to see if it is upright with respect to "he y-z plane. If not, it can
be rotated by a similar transfer matrix. It can be rotated a third time, if
necessary, to make it upright with respect to the z-x plane.

When the beam is in the upright position, the space-charge impulses can
be calculated and applied, and the three rotations given in the reverse
directions in the reverse order.

Before the initial rotations are made, the ellipsoid is expanded in the
z-direction by applying a transfer matrix that is equal to the identity matrix
except that the 5,5 element is the relativistic parameter y. After the
final rotation described above, the ellipsoid is contracted by the inverse of
the perturbed identity matrix discussed above.



VIIT. USER INSTRUCTIONS

In addition to the input and output files associated with the graphics
terminal, TRACE 3-D uses tapelO, tape20, tape30, and tape3l. TapelO is a
binary (unformatted) file written by TRACE 3-D whenever a parameter is changed
(through the "input" command) and after every dynamics run. This file
contains all the information needed for restarting the program if, for
whatever reason, it has been terminated. Tape3d0 is an ASCII input file
containing the initial vaiue of various parameters, including beam
characteristics and transport-system parameters. Tapel0 and tape3l are
described below.

Upon running TRACE 3-D, the message "enter 3 to read tape30 or 1 to read
tapel0" will appear on the graphics terminal. Unless a tapel0 exists and the
user is restarting the program, the normal response would be to enter a "3",
followed by a "return." The information on tape30 is read by a single READ
(30, DATA) statement, using the namelist feature of the FORTRAN Extended
Compiler for Control Data operating systems. This feature is extremely useful
because it allows one to enter a few or all of the parameters defined in the
NAMELIST statement.

After reading the initial input values, a few constants are initialized,
the terminal is put in the graphics mode, and a cursor (cross hairs) will
appear on the screen. The program is waiting for a command from the user. A
command is issued by striking 1 of 18 alphabetic characters on the keyboard.
(Some terminals require a "carriage return" to be struck after entering a
letter, and some do not.) The program performs the task specified by the
character. After the task has been completed, the cursor is again displayed
and the program awaits another command. Tabhle III gives the commands
recognized by TRACE 3-D.

The user terminates the program by typing an "e" for "end." Information
is then written on tape3l in a format suitable to be used as input data
{(tape30) for a future run.

The other file mentioned earlier, tape20, is a small file used to
facilitate the namelist feature after the "i" (input) command. After this
command, a prompt "?" appears, asking the user to type input information on
the screen followed by a return. This information is read using an A-format
and is written on tape20 after appending the characters "$DATA™ at the
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beginning and a "$" at the end of the character string. Tape20 is then
rewound and read with a READ (20, DATA) statement.

TABLE III

COMMANDS RECOGNIZED BY TRACE 3-D

Command Action

a (add) add (insert) elements in transport system

b (beam) print beam parameters

d (delete) delete elements from transport system

e (end) terminate the program

f (phase) calculate and print phase advances

g (go) draw graphics background and follow beam through
transport system

i (input) enter new parameters

j (projections) plot initial and final beam projections on the
Xx-y, x-z, and x-Ap/p planes

Q (ellipse) determine emittance ellipses from three profile
measurements

m (match) perform matching specified by the mt parameter

o] (mismatch) calculate and print mismatch factors

p (print) print parameters for beam, control, graphics, and
transport

r (R-matrix) print R-matrix from latest run

S (save) save ellipse parameters and o-matrix

t (trace) follow the beam through a sequence of elements and
display results on existing graph

u (update) replace ellipse parameters and g-matrix by their
stored values

W (W) print phase and ener-gy information

z (g-matrix) print modified g-matrix

IX. INPUT VARIABLES

Before giving a detailed description of the action taken when each
command is issued, all of the input variables will be defined. The internal

names of the variables will be written in capital letters. If the variable is

a dimensioned array, the dimensions as appearing in a DIMENSION or COMMON




statement will be enclosed in parenthesis. The variables can be grouped in
several categories: transport system, beam characteristics, control
parameters, matching parameters, graphics scales, print parameters, and extra

parameters.

A. Transport System [NT(NELMAX), A(5 NELMAX), FREQ, PQEXT, and ICHROM]

The elements of a transport system are defined in sequential order by a

"type code" in the NT arvay and by the associated pavameters (five or fewer)
in the A arvay. The quantities have been defined earlier in Sec. IV. (The
maximum number of elements, NELMAX, is defined in the FORTRAN program by
PARAMETER statements.) FREQ is the frequency of the rf in MHz. cven if no rf
elements appear in the transport system, FREQ i5 necessary for defining the
length of the beam bunch, which is specified in degrees at this frequency.
PQEXT defines the extension of the fringe fieid in PMQs. These fields will be
calculated for a distance of PQEXT times " from each edge of a PMQ, where

r; is the inner radius of the PMQ. ICHROM is a flag that, if nonzeio,
specifies that chromatic aberrations are to be taken into account when the
beam passes through a thin lens, a PMQ, and a gquadrupole (and, therefore, a
doublet and a triplet). Chromatic aberrations cause an effective emittance
growth, so the o-matrix is modified as described in App. I.

B. Beam Characteristics [ER, Q, W, XI, BEAMI(6), EMITI(3), SIGI(6,6)]

ER is the rest energy of the particles, and W is their kinetic energy
(units in MeV); Q is the charge state (+1 for protons), and XI is the beam
current in mA. The initial ellipse parameters are in the BEAMI array in the

order a, Bx, %y By, %y B¢. These are the Courant-Snyder, or Twiss,
parameters for the initial phase-space ellipses in the three phase planes.
The a's are dimensionless, Bx and By are in meters (or mm/mrad), and

B¢ 1s in deg/keV. The initial emittances in the x-x', y-y', and A¢-AW

phase spaces are in the EMITI array. The units are in wemmemrad in the x-x'
and y-y' planes, and in wedegekeV in longitudinal phase space. When space-
chaige forces are included (when XI 4 0Q), these emittances should be five
times the rms emittances. SIGI is a 6 x 6 array containing the initial

o-matrix. The elements cf the SIGI array usually are not, but can be, input
quantities,
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C. Control Parameters (N1, N2, SMAX, PQSMAX, IBS, NELI1, NEL2)
N1 and N2 are the sequence numbers of the transport elements through

which the beam is followed. HWhen the beam is followed in the forward
direction (normally the case), the beam starts at the beginning (upstream end)
of Element N1 and is followed to the downstream end of Element N2. If

N1 > N2, the beam starts at the downstream end of Element N1 and is followed
to the upstream end of Element N2. A negative value in Element N2 tells the
program to follow the beam backward through Element N1. SMAX is the maximum
step size (in mm) for the dynamics calculations in most of the elements. Near
PMQs, the maximum step size is PQSMAX (mm), usually a smaller value than

SMAX. In some elements, the step size is set automatically. For example,
each RFQ cell and coupled-cavity is divided into 18 segments, and each cavity
in a tank is divided into 2 parts. IBS is a flag indicating how the initial
o-matrix is generated. 1If IBS = 0 (the normal case), the elements of the
initial o-matrix are calculated from the BEAMI and EMITI arrays. [If IBS 4

0, the initial o-matrix is assumed to be in the SIGI array.

NELT and NEL2 are the sequence numbers of the first and last transport
elements to be plotted and printed. Their default values are 1 and NELMAX.
These parameters allow the user to select small segments of a transport system
that would have too many elements to plot legibly on one display.

D. Matching Parameters [MT, NC, MP(2,6), MVC(3,6), BEAMF(6), DELTA,
[JM(2,6), VAL(6), NIT]

MT specifies the type of matching desired. Types 1 through 4 specify
that the matched-ellipse parameters are to be found for a periodic system.
Types 5 through 9 indicate that values are to be found for specified element
parameters, called variables, that cause the beam ellipse parameters, R-matrix
elements, or modified o-matrix elements to satisfy specified conditions at
the end of Element N2. The meanings of the type codes are given below.

MT = 1: determines matched values of a Bx’ ay, and By'
MT = 2: determines matched values of «, and f,.
MT = 3: determines matched values of BX, By, and B¢, assuming

that ax=ay=a¢=0.

MT determines matched values of @ )

MT

1]
e

' Ly By’ %y and B¢.
determines values of the variables (<2) that produce specified
values for a, and Bx'

Il
(9]
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MT = 6: determines values of the variables («2) that produce specified
values for x, and By'

MT = 7: determines values of the variables (<2) that produce specified
values for %y and B¢.

MT = 8: determines values of the variables («4) that produce specified
values for Gy Bx, %y and By‘

MT = 9: determines values of the variables (<6) that produce specified
values for a s Bx‘ ay. By‘ %y and B¢.

MT = 10: determines values of the variables («NC) that produce specified
elements of the R-matrix.

MT = 11: determines values of the variables (< NC) that produce speci-

fied values of specified
(defined in Sec. X under

elements of the modified g-matrix

the "z" command).

NC is the number of conditions to be satisfied by the matching procedure
and is automatically set by the program for matching types 1 The
Tha MP
array contains the parameter and element numbers of the variables for matching
types 5 through 11.

through 9.
user must specify a value (<6) for NC for matching types 10 and 11.

MP (1.,n) contains the parameter number (1 to 5) and

MP (2,n) contains the element number (1 to NELMAX) for the nth variable.

the number of variables, NV, should equal the number of conditions,
When either MP(1,n) or MP(2,n), n < NC, is not within its legitimate

Ideaily,
NC.

range, that variable is not properly defined and is ignored.
attempted even though NV ¢ NC.

Matching is

It is possible fo "couple" one transport element parameter to each

variable parameter. For example, two drifts may be coupled so that when one

is increased the other is decreased by the same amount, keeping the total

distance constant. Or two drifts may be coupled so that they are both changed

by the same amount, a feature that could be used for maintaining symmetry.
The other type of coupling allowed is a proportional change in a parameter.
For example, two quadrupole gradients may be coupled so that when one changes,

the cther changes by the same proportion. The indices of the coupled

parameters and k, the type of coupling, are specified in the MVC array.
MVC(1,n) and MVC(2,n) contain i and j, the parameter and element number,
respectively, of the transport parameter A(i,j) that is coupled to the nth
variable. MYC(3,n) contains k, sither +1 or -1.
drifts, k =

If the coupled variables are
-1 keeps the sum of the two drifts constant, and k = +1 changes
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both drifts by the same amount. If the coupled variables are not drifts, when
the value of the nth variable is changed from X, to Xy the coupled parameter
is multiplied by klex}.

The BEAMF array contains the values wanted (for MT = 1 through 9) for
some or all of the ellipse parameters @, BX, ay, By. a¢, and B¢ at the end
of Element N2. For MT = 1 through 4, the values in BEAMF are adjusted by the
program; for MT = 5 through 9, the values in BEAMF are set by the user. The
indices for the R-matrix elements for MT = 10 are in the IJM array, and the
desired values for these elements are in the VAL array. IJM (1,n) contains
the i-index (row), IJM (2,n) contains the j-index (column), and VAL (n)
contains the desired value for Rij for the nth condition, where n ¢ NC. These
same arrays are used for MT = 11, except that they refer to the indices and
values of the modified o-matrix. A convergence factor is calculated each
iteration in the matching procedure. Ffor matching types 1 through 9, the
convergence factor is the largest of the mismatch factors calculated for the
ellipse parameters in the appropriate planes. (For a definition of ellipse
mismatch factors, see App. C.) Ffor matching types 10 and 11, the convergence
factor is the largest difference between the values desired and the values
obtained for specified elements of the R- or g-matrices. (If the specified
vatue has a magnitude greater than one, a relative difference is used.) DELTA
is a convergence criterion defaulted to 0.0001. When the largest of the mis-
match factors is less than or equal to DELTA, the solution is assumed to be
close enough and the procedure 1. “erminated. The procedure is also termi-
nated if convergence has not been achieved after NIT iterations. NIT is
defaulted to 10, but may be changed by the user.

E. Graphics Scales (XM, XPM, YM, DPM, DWM, DPP)

These quantities set values for the boundaries of the phase-space and
profile plots. XM and XPM set limits on the transverse phase-space plots in
mm and mrad, respectively, and YM (mm) sets the limit on the transverse-profile
plots. DPM (deg) and DWM (keV) are the 1imits of the longitudinal phase-space
plots, and DPP (deg) is the 1imit on the phase-profile plot.
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F. Print Parameters [NPRIN, TJPRIN(Z,20)]
Up to 20 transport parameters can be written on the graphics display to

identify the results with the more important parameters. NPRIN is the number
of parameters to print, and the i and j indicies of parameter A(i,j) are in
IJPRINCI,n)> and IJPRIN(Z2,n) for the nth parameter.

G.  Extra Parameters [NXTRA, EXTRACIO)]

Some additional storage space is reserved for any extra parameters, and

NXTRA of these parameters in the array EXTRA will be printed by the "p" (see
Sec. X) command. One use for this EXTRA array would be to provide a place for

the user to store additional parameters needed for defining a special element.

X.  DESCRIPTION OF COMMANDS

The following description of the action taken when each command is given,
rather than being in alphabetical order, will be in an order in which the user
might reasonably issue the commands.

To print most of the data file on the graphics terminal, type "p". The
location of the cross hairs determines the scope position at which the
printing starts. It is a good idea to give this command in the beginning and,
after any complicated input sequence, to check the accuracy of the data. When
a dynamics run gives unrealistic results, or when a matching procedure is
getting nowhere, something is probably wrong with the data.

If the printed output comes too close to the bottom of the graphics
display, printing will stop and the cursor will be displayed. Printing may be
resumed at the cursor by entering a "c". Any other command will cause the
program to exit from the print mode and to wait for another command.

If the data appear to be correct, perform the dynamics calculations by
typing "g". The scope is erased and the graphics background is drawn. The
initial phase-space ellipses are drawn, the horizontal (solid) ellipse and
vertical (dashed) ellipse on the same background, and the longitudinal (also
dashed) ellipse on a separate background. If the beam is going forward, the
initial ellipses (defined by arrays BEAMI and EMITI) will be drawn at the
upper Teft; if the beam goes backward, the ellipses will be drawn at the upper
right. As the beam is followed through the specified elements, the envelopes
are nlo’ ted on the lower part of the screen: the horizontal (solid line) and
phase (dots) on the upper half and the vertical (dashed line) on the Tower
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half. When the beam reaches its destination, the final ellipses (defined by
ellipse parameters in array BEAMO and emittances in array EMITQ) are drawn and
the following information is written in the space between the initial and
final ellipses: the beam current; the initial and final emittances; the
initial and final energies; the values of the NPRIN parameters, if any.

To see how a particular parameter affects the beam, one or more values
can be changed by getting into the input mode by typing "i". The location of
the cross hairs specifies the point on the screen at which the input will be
typed. After a "?" appears on this spot, type one or more parameter names and
their new values using the format

NAMET = valuel, NAMEZ = value2, ...,

Sequential values in an array can be entered without retyping the array name.
For example, to change the third and fourth parameters in the fifth element,
type

A(3,8) = 1., 2.

followed by a return. Any of the quantities defined previously in Sec. IX may
be entered. Any typing mistake detected by the namelist read will cause the
entire line to be rejected, and an error message will appear asking the user
to try again or to exit from the input mode. Each input line is limited to
100 characters.

After making some changes, one would usually want to see the effect on
the beam. Typing "t" causes the new input ellipses, the new profiles, and the
new final ellipses to be drawn on top of the previous ones, providing an easy
comparison.

To find the matched ellipse parameter in a periodic system, or to find
the values of some transport parameters that match the beam or give the
desired values for specified elements of the R- or o-matrices, type "m".
Depending on the matching type, specified by MT, a solution is sought for a
set of NC nontinear, simultaneous equations. The method used is that of
requla falsi, an iterative procedure that, starting with an initial "guess"
for the solution, usually converges to a solution in a reasonable number of
trials. (If the value of any variable is zero, that value will not be
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changed.) At each iteration, the convergence factor and the values of the
variables are printed on the screen, startin, at the position of the cross
hairs. If a solution has not been found after NIT iterations, the variables
will be set to their "best" values, those that give the minimum convergence
factor. To try again for NIT iterations, starting with the best results as
the initial guess, issue the "m" command again. If no progress is made toward
a solution after several of these tries, there are several possible reasons:

V. Something is wrong with the data. Check this by issuing the "p"
command.

2. The solution is too far from the initial guess to be found by this
technique. Using the "i" command, put in different parameters and try again.
3. No <olution exists. 1In this case, the transport system may have to
be modified, for example by adding more elements.

4. If the number of variables is less than NC, an exact solution
probably does not exist.

To insert one or mcre elements between any two elements, type "a". At
the location of the cross hairs, the message "enter ml, m2 (insert ml elements
before Element m2)" will appear. (If this command has been issued by mistake,
enter a negative number for mi and anything for m2.> To insert two new
elements between Elements 5 and 6, enter 2,6 (a comma or a space can be used
to separate the two integers). The program will move all type codes (in array
NT) and all transport parameters (in array A), starting at Element m2, to
locations increased by ml. [NT(6) is moved to NT(8), etc.] The program is
then put in the input mode. just as if the user had issued an "i" command.
Enter any needed parameters, including correct element type in the NT array,
followed by a return.

To remove one or more elements, type "d". At the location of the cross
hairs, the message "enter ml, m2 (delete m] elements starting with Element m2>"
will appear. (If this command has been issued by mistake, enter a negative
number for ml and anything for m2.) To remove Elements 6 and 7, enter 2,6.
A1l type codes (in array NT) and all transport parameters (in array A),
starting at Element m2, will be moved up by ml elements.

Sometimes it is useful to save the ellipse parameters by typing "s". The
following message will appear at the location of the cross hairs: ‘“enter two
numbers, which beam to save and where. BEAMI=1, BEAMF=2, BEAMO=3. Five posi-

tions available." After receiving a prompt "?", the user should enter two
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integers separated by a comma or a space. For example, to save BEAMI in the
third of the five storage areas provided, enter 1,3. The six ellipie
parameters in BEAMI will be stored in the array HOLO (i,3), i=1,6. At the
same time, the initial o-matrix, contained in the array SIGI, is stored in

the third of five storage arrays SIGS (i,3,3), i=1,6; j=1,6. Also, the
initial kinetic energy W is stored in WS(3). MWhen the beam is followed from
Element N1 through Element N2, the final ellipse parameters and the o-matrix
are in the arrays BEAMO and SIG, and the final kinetic energy is in WW. These
quantities can be saved in the second storage positions, HOLD(i,2),
SIG(i,j,2), and WS(2), by issuing the "s" command and entering 3,2.

If one wants to follow the beam from the end of Element N2 through
another element farther downstream (or upstream, for that matter), the initial
ellipse parameters, o-matrix, and energy can be loaded from the second
storage positions by typing "u". At the location of the cross hairs, the
message “"enter two numbers, which beam to restore and whence BEAMI=1,

BEAMF=2. Five holding positions possible." To load BEAMI, SIGI, and W from
the second storage positions, enter 1,2 after receiving the prompt.

To see what is stored in all beam arrays and storage positions, issue the
command "b". At the cross-hairs position, the BEAMI, BEAMF, BEAMO, and HOLD
arrays are printed.

Whenever the beam is followed between N1 and N2, by either "g" or "t"
commands, the transfer matrix for this distance is stored in the array RM. To
see what is in RM, type "r". The 6 x 6 transfer matrix will be printed
starting at the cross hairs.

If the beam has just been followed through one period of a periodic
structure, the phase advances and the matched ellipse parameters can be
calculated from the R-matrix by giving the command "f". The phase advance and
the « and B ellipse parameters for each of the three phase-space planes are

calculated, assuming the 2 x 2 R-matrix for each plane can be written in the
form

COS u + a sin u B sin pu J
R = .

-y sin u O3S - a Sinyp

where v = (1 + az)/B. The parameters are printed at the position
specified by the cross hairs.
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Several other print options are available. One is a print of the
mismatch factors, obtained by tvping "o". The mismatch factors between the
ellipses defined by the parameters in the BEAMO array and the parameters in
the BEAMF array are calculated and printed at the location of the cross
hairs. The definition of the mismatch factor and the explanation of how it is
calculated are given in App. C.

Some useful information about the longitudinal plane can be printed by
typing "w". At the position of the cross hairs, the following information is
printed: the phase and energy of the beam center, the phase and energy
half-widths, the length (mm) of the longitudinal semiaxis, the ap/p
half-width (mrad), and the longitudinal emittance in the z-Ap/p plane
(wremmemrad) .

The command "z" prints the modified s-matrix in the same format used in
TRANSPORT, namely:

Kmax

X max re

Ymax 13 r23

Y max "14 r24 r34

Zmax ) r25 35 Y45

(Ap/p)max "6 €26 36 rag 56

The maximum extent of the beam ellipsoid in the ith dimensions is given by

Joij. The correlations between the various coordinates are defined by

SRR
Because o is a symmetric matrix, only half of the ri.'s need be printed.

The command "@" provides a mechanism for determining the ellipse
parameters and emittances in the two transverse phase planes from measurements
of beam sizes at three locations. When this command is given, the message
"determine emittances from three width measurements” anpears on the screen.
The Tocations of the measurements are to be (or may have been) specified by
the user by three element numbers in the array LOC. The measurements are
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assumed to be at the downstream end of the specified elements. If LOC(1) = O,
the first measurement is at the beginning of the first element. If LOC(2) or
LOC(3) is not greater than zero, the program assumes that the information on
the locations and beam widths has not been input, and the user will be asked
to do so by the message "enter loc¢3), xhw(3), yhw(3). (loc‘1).1t.0
aborts.)". The user should then enter three values in LOC, three horizontal
beam half-widths in array XHW, and three vertical beam half-widths in array
YHW. Before issuing this command, the graphics display should be on the
screen because measured widths will be plotted and beam profiles will be
drawn as the program goes through five iterations in the attempt to solve the
problem. The details of the procedure are described in App. J. If the
solutions to the equations result in a negative value for the emittance in
either plane, the message will be written "unrealistic solution. check data.™

The command “j" causes the initial and final x-y, x~z, and x-Ap/p
projections of the beam ellipsoid to be displayed.

XI. EXAMPLES

A. Matching Between 400-MHz RFQ and DTL

This example is the one mentioned in the introduction. Figure 1 shows an

input fil. to be read as Tape30 as described in Sec. VIII. The input file

Sdata

er= 938.280, g* 1., ws 2,009, xi= ¢.eee.,

emiti(l)e 25.00., 25.00, 70¢.08,

beami(1)» -1.0020, 2000, 1.0000, 2000, .6200, 3000,
freqe*  400.000, pgextr 2.5@, ichrome= @,

xms '10.00, xpme E .0, yme 5.0, dpm= 32.0, dume 100.0, dpp> 30.0,
nl* 1, né= "2, smax* 5.9, pgsmax* 2.0, mi= 4,

ntC 1)= 1§, a(i, 1) 5.500 » 57.00 s ©4.43 +—30.00 » @
nt( 2)= 11, a(i, 2)+~-5.50@ . 57.00 s £4.43 »—180.0 . B, ]
nt( e 1, a(l, 3)= 100.0 ’

nt( 4)1e 4, all, 4)= 163.0 » 12.79 » ©.000 » 20.00 »

-

nt( S5)= 4, a(i, S)= 160.0 . 12.70 . B.C0OC + 20.09 »

nt( 6)~ 1, atl, 6= 11.73 »

nt( )« 18, a(l, ?)= 1.750 ,—35.00 , Q. s 9. ,» 0. »
nt( 8)= 1, a(l, 8)e 11.73 »

nt({ 9l= 4, a(l, 9)»-160.0 . 12.70 s+ B6.000 » ©0.00 »

nt(i@)= 4, a(l,10)=-1€6€.0 . 12.70 . 6.000 » £0.00 ’

nt(lil)= 1, add,11)= 11.73 »
nt(i2)e 10, ati,12)= i1.758 ,—35.00 PR . Q. , 0. »
nt(13)= 1, at1,13)= 11.73 ’
nt(14)= 4, a(l,14)= 160.0 ., 12.70 » 6.000 » C0.00 »
;t(éS)' 4, a(i,15)= 160.0 ,» 12.70 ., 65.000 ,» 29.00 »
en

Fig. 1. Input file (to be read as TAPE30) for Example A.
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defines a 2-MeV proton beam with a transverse emittance of 25 wemmemrad

and a longitudinal emittance of 700 wedegekeV. The transport system
consists of the final two cells of a 400-MHz RFQ and the first 2 cells of a
400-MHz DTL, separated by a 100-mm drift space. This drift space will later
be replaced by drifts, guadrupoles, and an rf gap for transverse and
longitudinal matching.

The current of interest is 75 mA but matching will first be done for
0 mA. If the design of the two structures has made the focusing strengths per
unit length about the same in each, a match found for zero current should be
acceptable for any current.'’ Multicurrent matches are desirable partic-
ularly when permanent-magnet quadrupoles are used, as they are in this example.

The first step is to determine the matched ellipse parameters at the exit
of the RFQ, first for zero current and then for 75 mA. For this purpose, the
two RFQ cells must be one period in a focusing system. Values for V/rg and
AV are 5.5 k\.-’/mm2 and 57 kV, respectively. Assuming that the horizontal
vanes are nearer to the longitudinal axis at the beginning of the first cell,
V/ré is +5.5 for the first cell and -5.5 for the second cell. The length
of each cell is 24.43 mm, which is fx/2 for 2-MeV protons at 400 MHz. A
synchronous phase of -30° is assumed, and the fifth parameter in both cells is
set to zero to avoid energy changes.

The input file is already set to do matching through the two RFQ cells
for zero current. That is. XI =0, NI =1, N2 = 2, and MT = 4. When the "m"
command is issued, the program finds the input ellipse parameters that equal
the output ellipse parameters in all three phase planes. It is important to
remember that none of the alphas or betas should be zero when the matching is
begun, because zero values will not be changed.

After the matching procedure, one can see the input and output beam
ellipses and the profiles through the RFQ ce'ls by issuing the "g* command.
The graphics display is shown in fig. 2. The results of issuing the "f" and
"w" commands are also shown in this figure. The "f" command determines the
phase advances and the matched ellipse parameters calculated from the transfer
matrix. The "w" command gives information on the longitudinal properties of
the beam, the output phase and energy of the beam center, the half-widths of
the phase and energy spreads, the half-widths in z- and Ap/p, and the
emittance in z - Ap/p phase space.
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Fig. 2.

Graphical display showing the matched output from the RFQ for zero

current, the Twiss parameters, and the longitudinal parameters

(Example A).

The zero-current ellipse parameters will be saved in the first of five

holding arrays by issuing the "s" command and responding to the question about

"which beam to save and where" by entering a 1,1.

The match for 75 mA is

found by getting into the input mode by typing "i", changing the current to
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75, and then issuing the "m" command. [f the matching process does not con-
verge after the first set of iterations, repeat the command one or more

times. The matched soluti. , along with the phase advances and the longi-
tudinal information, is shown in Fig. 3. This solution is saved in the second

holding position by again issuing the "s" command and responding with a 1,2.

As -2, 147 Be L2833 = Te 75.2 Aw =2,147 Be. 2233 W
as 2.377 - 2633 E*ITIe 26,32 25.20 700.20 as 5.377 B+ .3633 U
I¥[TT. 25.29 £5.2@ 7oe.e@ '
- 2.322 2,399

]

;
!
| } i
12.2 "™ x 522 MRAD [18.0 MM x 58,2 mMRaC .
r 5 |
ias 2639 B+ .6385 2 19- .969 3+ .6385 2
| ! |
| | |
: T TJ1SS PARAMETERS i ——
! e Tl 515 ALPHA 3 i P TN
t - | . X 11.8 -~2.147 .22 | - , -
: ! v 11.8 2,377 z : . : .

P i z 3.1 .983 .6 - ' S
? DTS . < e . - ‘
L . S

| | |
; !
; :
) ' .
|30-2 263 x 122 KEL [ 30.0 DEG X 13?.3 KE.

‘ L :
{5.a~~ 2. lgs i

PHI- :50.2 DEG, U= 2.20@ MEY., DP= 21.1 DEG, Cue 33.185 KEV !
l 2Z»  2.37 1M, DP,Pe 8.3 MRAD, EMITZ» 22.78 2] MM-MRAD
|
| BF gFQ PMG " PMQ 3 S RELY 3 |Pma.Pma
Pl 2 J 3 4 1s 6731 9 |1e]111B:3 :4[15
| :
PR S !
1
Fig. 3. Matched RFG curoyr tor 75 mé 0 Twigs parameter o ard Torqgityding
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The next step is to find the ellipse parameters that are matched to the
input of the DTL, the first two cells of which are represented by a seguence
of permanent-magnet quadrupoles, drifts, and rf-gaps. The transverse focusing
period of interest begins in the middle of the first quadrupole and ends in
the middle of the third quadrupole. The other halves of the first and third
quadrupole must be included in the transport system because they affect the
magnetic fields in their neighborhoods. The PMQ gradients are 160 T/m and
their lengths are 25.4 mm. The inner and outer radii of the quadrupoles are 6
and 20 mm, and because PQEXT = 2.5 in the data file, the fringe fields will
extend to 2.5 x 6 mm. The effective accelerating field strength, EOT, in
eack cell is 1.75 MV/m. The length of each cell is 48.86 mm, equal to B
for 2 MeV-protons at 400 MHz. To make the two cells identical, no energy gain
is allowed. The synchronous phase is -35°.

To find the matched ellipse parameters for zero current, get in the input
mode and set XI = 0, NI =5, N2 = 14, and MT = 3. Then give the "m" command.
When the solution is found, issue the "g", "f", and "w" commands. Thke result
is shown in Fig. 4. Save the solution in the third holding position using the
"s" command. Change the current to 75 mA, repeat this procedure (see Fig. 5
for the results), and save the solution in the fourth holding position.

Notice that the zero-current transverse phase advances in the two structures
are the same per unit length, 18.4°/Bx. The zero-current longitudinal phase
advances are nearly the same, 15.2°/BX for the RFQ and 16°/8X\ for the

DTL. If the quadrupole periodicity is continued upstream of the DTL and an
rf-gap is added, the output of the RFQ should be well matched into the DTL
both transversely and longitudinally.

We will add the necessary elements and reduce the length of the long
drif{ to a small distance that will change the RFQ output beam to one more
nearly round in real space; the shape it should be at the mid point between
guadrupocles where our periodic transport will begin.

The elements are inserted after giving the command "a". Figure 6 shows
the exact procedure, with a series of input commands to avoid a string longer
than 100 characters. Both the type array NT and the element array A must be
corrected for the eight new elements. Also included in the figure are the
results of a "p", to print the transport system, and a "b", to show the
contents of the beam holding positions from our saves during the first
matcning efforts.
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Fig. 4. Matched input to DTL for zero current, Twiss parameters, and
longitudinal parameters (Example A).
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enter ml, m2 (insert ml Elements before Element m2)

7B, 4

? ntiding,2,.1,18. 1.4.l.l.l(i.“ill.73.1(1.S)-165.25.4.6.28.1(1:6)-11.73
? ll1:7"2-5.‘“:.(108)'11-730.(1:9)"155:25-‘.6.200.(1)10)'11-73

? all,11'911.73,a(1,3)=3.7

UNITS: MM, MRAD., T/f, MaMPs5, MU/M

er« 535.28@ c* 1. we 2.000 x1e 75.000

emiti® 25.08 25.00 708.00

beami®  ©.0000 .3510 ©.0000 L1764  ©.0000 .58:9
beamf{= .8000 .3510 9.0000 .1764  ©.0000 .5B19
freqe 400,000 pgext' 2.50 ichrom= @

xm= 10.9 xpr= 5.0 ym+ 5.0 dpme= 30. dwm- 160. dpp* 30.
nls 13 n2« 22 smax* 5.0 pgsmax* 2.9

mit* 3 nus

n ntin} ati,n)
i i1 5.500 57.000 24.430 -30.000 0.00¢
c 11 -5.590 57.000 £4.430 -180.000 e.oee
3 1 3.700
4 1 11.730
S c 160.000 25,400 6.000
[ 1 11.730
? 10 2.500 -92.000 ©.000 ©.800 ¢.000
8 b 11.730
S 4 -150.000 25.400 6.000 £0.000
1o 1 11.730
11 i 11.730
ie 4 160.000 12.700 6.000 c0.000
13 4 100.900 12.700 6.9000 c0.000
14 1 11,730
15 1¢ 1.750 -35.000 0.000 0.000 ¢.000
16 1 i1.730
7 4 -1pC.000 ic.700 5.000 c0.000
18 4 -160.000 12.700 6.000 20.000
19 1 1.73e
co 19 1.75¢ -35.000 0.000 0.080 2.000
2l i 11.73e
ee 4 16¢€.00¢ 12.709 €.000 c0.000
e3 4 16¢.p0e 12.700 6.000 £0.9000
beam;* 0.002 .3510 2.000 1764 9.000 .5819
beamf = Q.000 .3510 e.000 .1764 8.000 .5819
baawos -.000 -3510 -.000 . 1764 900 .5819
holdl=s -—-1.365 1412 1.513 .1669 0837 . 3385
holdgs =-2.147 .2233 c. 377 .2633 .869 8385
hold3e 0.000 217 e.000 .1099 0.000 . 3806
hold4s 2.080 .3510 e.eee 2764 €.000 .5819
holdSe 8.000 2.0e00 e.oe0e 9.0000 ¢.000 0.0000

Fig. 6. Procedure for adding eight transport elements before Element 4, a
print of the data after the elements have been added, and a print of
the beam and holding arrays (Example A).
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Next, the matching section is tested by following the beam from the RFQ
to the begirning of the DTL and comparing the beam parameters with those of
the matched beam at that position. Two update ("u") commands must be made.

In response to the gquery about “"which beam to restore and whence," a response
of "1,1" moves the matched output for the RFQ to BEAMI from holding position 1.
Next, the matched beam for the DTL is moved to BEAMF from holding position 3
by responding 2,3. The current is set to zero, and N1 and N2 are set to 1 and
12 after an input command. The command "g" is given, then an "o" is typed to
compare the output beam to BEAMF and to print the mismatch factors as shown in
Fig. 7. To illustrate another command, the EOT parameter for Element 7 was
changed from 2.5 to 2.3 MV/m, and a "t" caused a second trace on the graph. A
repeat of the "o" command shows slight improvement in mismatch factors.

Before repeating the procedure for 75 mA, a printing option on graphics out-
put was initiated by going into input mode and typing "nprin = 4, ijprin (1,1) =
1, 5,1, 9,1, 7,1, 3". Now values for the first parameters of Elements 5,

9, 7, and 3 will be printed whenever a graph is drawn.

Next, BEAMI and BEAMF were updated from holding positions 2 and 4, cur-
rent was changed to 75 mA, a "g" command was issued, and the mismatch factors
were printed as shown in Fig. 8. Notice that the values of four element param-
eters are now printed.

The mismatch factors, all of which are less than 0.1, are almost
acceptable, but we shall go through a matching precedure to see if they can be
improved. MWe will use Matching Type 9, which expects six variables to be
changed. However, if fewer variables are given, matching will still be
attempted but an exact solution will not be found. Only four values will be
changed in our example: gradients for Elements 5 and 9, length of drift
Element 3, and EOTL of Gap Element 7. These are set by typing "mt = 9,
mp(1,1) = 1,5, 1,9, 1, 7,1, 3" in input mode. Successive typing of “m"
until there was no further decrease in largest mismatch factor gave the
results shown in Fig. 9. Because the optional printed parameters are the same
as the matching variables, the final selected values can be easily seen. With
all mismatch factors below 0.05, a good solution has been obtained.

47



As =1,365 <1412
AR+ 1.512 1669
As -1.365 1412
As  1.513 . 1669

CIxCx

we 2.320

19.2 "M x S22 MRAD

A= .937 B .338S
A= .237 Be .338S

2]

o

7 al1,?)=2.3

|
| 39.2 DEG x 104.0 KEV

I»
EITIs 25.00
E™ITCe 2%.23Q

XMM=  ,@35 vyMMs

XM= 345 yMMe

2.2
25.00
5.0

2.099

700.00
700.09

.18 Zmn- @830

.396 ZmMM=  ,Q06

As =,2114 2071 H
As 203 1343 v
Ae  ~ 302 ,2030 H
As 022 4319V
i
16.2¢ MM x 50,2 MRAD
A= -—.,932 Bs .3052 2
A= .012 B» »3196 2
/-‘ -..
1” “‘
~ \
‘ 3
M ]
\\\ "
~ e
N
39.9 DEG X 104.2 KEV

RFQ RFQ || PMQ 4 PMG | pralPme | g PMG |PMG G (Pma|Pme
i 2 pla 5 6 78 ) 10 11 [12 |13 | 141616 [ 17 | 18 [ 192821 {22 | 23
Fig. 7. Matched RFQ output for zero current followed to input of DTL. Run

repeated for rf-gap field changed to 2.3 MV/m (Example A).
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Fig. 8.

Matched RFQ output for 75 mA followed to input of DTL (Example A).
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Fig. 9. Matched RFQ output for 75 mA followed to input of DTL after the first
parameter in Elements 3, 5, 7, and 9 have been adjusted by the
matching procedure (Example A).
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B. Matching Between 80-MHz RFQ and DTL
A different approach to matching between an RFQ and DTL must be used

either when the periodicity of the quadrupoles is not maintained or when the
two structures have different focusing strengths. No buncher or rf gap will
be added, so longitudinal matching will be ignored. Transverse matching will
be accomplished by using the first four quadrupcles of the DTL as matching
variables. It is not expected that the solution will be appropriate for other
currents or emittances.

In our example, the frequency is 80 MHz, the energy is 2 MeV, the 100-mA
deuteron beam has a transverse emittance of 60 wemmemrad and a longitudinal
emittance of 1000 wekeVedeg. The initial step (not shown) is to find the
matched beam for the final two cells of the RFQ and save the beam as we did in
the first example.

Next, alsc not shown, we simulate (with electromagnetic quadrupoles,
drifts, and rf gaps) two cells of a periodic DTL with no energy gain. Instead
of the conditions at the beginning Of the DTL, we select those at the end of
Cell 4 and match into a periodic structure at that point. The energy is
2.594 MeV, BA is 196.7 mm, EOT is 1.05 MV/m, and the 96-mm quadrugoles
have a gradient of 26.2 T/m. The beam energy W must be changed to 2.594, and
the unnormalized transverse emittances reduced from 60 to 52.69 wemmemrad.

The longitudinal emittance EMITI(3) does nci have to be changed. A matched
beam for these two cells is determined and saved as in the first example.

Next, the two RFQ cells, a drift, and the first four cells of the DTL are
made into a transport system as shown in Fig. 10. Notice that the initial
energy is 2 MeV and that each rf gap element, Type 10, has an energy increase
as the fourth parameter. Each cell has been given the correct total length,
but the rf gap is not positioned off-center as it more accurately could be.
BEAMI has the correct values for matched input to the RFQ, BEAMF has the
values of the matched beam at the end of Cell 4, or Element 20, and will be
used to calculate mismatch factors. The drift space between the RFQ and DTL
is about one Bx, a distance long enough to ailow separation of the
structures, but is short enough to prevent extreme debunching of the beam.

The file has already been prepared for matching by entering the proper
parameter and element numbers into the MP array {(Parameter 1 of Elements 4, 8,
12, 16) and setting MT = 8 and NV = 4. (NV is not set automatically until
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UNITSt MM, MRAD., T,M. MAMPS, Mu/M

er* 1875.600 s 1. we £.000 xi* 100.000

emitie 60.0 60.20 1620.06

beamie  3.1140 7536 -c2.6202 .5789 .1210 .5687
beam{=  9.0000 ,4154  2.0000 1.32B8 ©.0000 3570
freqe  80.000 pgext= 2.5@  ichrom= @

xme 14.@ xpme 60.8 yme 20.0 dpme 30. dwm= 10@. dpp- 30.
ni= 1 n2* 20 smax* 5.0 pgsmax* 2.0

ngrin- 4 dgprinCi.g)=1 41 81121 16

mt= 8 4

nve
mp(i,n) mp(2,n) value muc value
{ 4 -26.29
1 8 26.20
1 ie -26.20
! 16 c6.20
n ntind sl1,n) '
11 -.712  110.400 B6.440 -28.700 e.e00
2 U .710  110.400 BE.440 -18C.000 ©.002
3 1 173.000
4 3 -26.200 96.002
& 1 38.750
6 1o 1.850 -40.000 €.000 .141 0.900
? 1 39.750
8 3 26.200 96.000
8 1 42.740
ie 1o 1.050 -40.000 0.000 .146 0.00@
11 1 42.740
ie 3 -26.200 96.000
13 1 45,740
14 10 1.050 -40.0e0 0.000 .151 @.000
15 1 45.740
16 3 26.200 96.000
17 1 43.730
ig 1@ l1.05¢ -40.e90 0.0080 . 156 0.000
18 1 48.730
2o 3 -26.c00 48.000

Fig. 10. Result of the "»" (print) command for the initial conditions of
Example B.

matching is requested, but it can be input at any time so the variables will
be pirinted.) Before matching, the input beam is followed through all the

elements and the mismatch factors printed (Fig. 11).
A match is now made by typing "m" until convergence is obtained. The

results are displayed by typing "g" and "o" as shown in Fig. 12. The new
guadrupole values, which are printed because of the previous setting of the
NPRIN and IJPRIN variables, are reasonable. The transverse solution is

exact. Notice the increase in enargy as shown by "W = 2.000 2.594" and the
apparent decrease in transverse emittances. There is, of course, no change in

normalized emittance; the values printed are unncrmalized.
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Fig. 12. Beam chavacteristics in Example B after quadrupole gradients in

Elements 4, 8, 12, and
procedure (Example B).
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C. Electron Linac and Transport System

This example shows the transport of an electron beam through triplets, a
Tinac tank, and some bending magnets. Figure 13 shows tne data printed by
issuing the "p" command, and Fig. 14 shows the graphics display produced when
the "g" command is given. A 1000-mA, 10-MeV electron beam is passed through a
triplet and then accelerated to about 20 MeV by a 153-cell, 1300-MHz linac
tank. Because of the increased energy, the unnormalized transverse emittance
is reduced from 6 wemmerad to 3.C6 wecmerad. After it passes through
the tank, the beam then passes through a gquadrupole triplet, three bending
magnets, and another triplet. In the absence of space-charge forces, the
three bending magnets would be an achromatic system. The space-charge forces
prevent the system from being completely achromatic, and a small change is
seen in the emittance in the horizontal and longitudinal planes.

UNITS: MM, MRAD. T/M, MAMPS, Mu/M

ere .511 * 1. we 10.000 xiv 100v.000

emitie 6.03 65.00 See.ee

beamy= 1642  1.5907 .0486  1.5097 -4.3974 .c860
beam{s £.0800 0.0000 0.0200 9.000@ ©.0000 Q.0000
freqe 1320¢.000 pgext: 2.58 ichrome= @

xme 16.8 xpme 5.8 ym+ 10.0 dpme= 38. dwm* 508. dpps 30.
nli= 1 no= 24  smax® 30.0 pgsmax+ 2.0

mt= @ gnue @

n nt(n) ali,n)

1 1 £85.000

2 7 462 100,800 Se.00e -. 4495 200,000
3 b 2860 .0006

4 i3 £.814 1739.000 ~1.000 15.000

5 1 181.000

) B . 894 100.000 5e.oeg -.B85 c00.000
7 1 50C.000

B 1 40¢ .000

S S 17.800 477.500 5¢.800 .255 0.000
10 B 6@.000 477.500 2.000

11 S 17.000 477 .500 50.800 .255 0.000
12 1 526.0600

13 S 17.008 477.500 50.800 .255 ©.000
14 B -30.000 -477.500 0.000

15 B -30.000 -477.500 e.000

16 9 17.000 477.560 5¢.800 .255 0.000
17 1 526.000

18 9 17.600 477.500 5¢.800 .55 ¢.9000
19 8 60 .000 477.500 2.000
c0 9 17.0060 477.500 S¢.Bee .255 0.000
el 1 120,000
ce 1 1020.000
23 7 1.035 100.9000 e .000 -1.081 £00.9000
24 b 1409.000

Fig. 13. Results produced by "p" command for transport system of Example C.
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Fig. 14. Beam characteristics for Example C.
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APPENDIX A

THE o-MATRIX

The general equation for an n-dimensional ellipsoid may be written as

n n
a,.U.u. = 1 s
151 jéx 1]

where Uy denotes distance along the kth coordinate axis. (In TRACE 3-D, n
is 6 and the coordinates are x, x', y, y', z and Ap/p.) There are two

coefficients for each Usus product when 1 £ j, namely aij and a,

J jr
Because only the sum aij + aji is important, we can define aij = aji
without losing any generality and express the ellipsoid equation in matrix

form. Let U be the column vector of the coorcinates,
Y
s

Un

~ i

/
I
i
|
;
i
|

and o~ ! represent the symmetric coefficient matrix,

r [,
3 Ay 3y |
a1 3 T T 77 9,
1
o =
i q % T T T 7 3, |

The reason for defining this coefficient matrix to be o'] rather than o
will become apparent later.
The ellipsoid equation in matrix form is

where UT is the transpose of U. For this to represent an n-dimeasional
ellipsoid, all of the diagonal elements of the o_‘—matrix must be positive.

57



Let 0;] represent a matrix that defines a particular ellipsoid,
and let U] be any point on the surface of the ellipsoid. Then

T -1
U]o] U] = 1

Let R be the transfer matrix that transforms point U] to point UZ:
U2 = RU]

The point U2 will 1ie on the surface of another ellipscid having the

coefficient matrix 051_ The following matrix manipulations show how to

obtain g;] from o;l and R.

|

T .

U]o] U] =
UIRT(RT>‘]G;]R‘]RU] o
and

(RUl)T(RT)']o{]R_](Rul) -

T T.-1
UZ(RO]R ) U2 = 1

This is the equation for the second ellipsoid, with

-1 T -1
o, = (RG]R )

or

T
g, = RG]R

Meaning of o-Matrix Elements

Define a function

Fy = u's U

The condition f(U) = constant defines the surface of a hyperellipsoid (if all

diagonal elements of o"] are positive) and f(U) = 1 defines the surface of

58



the particular hyperellipsoid discussed above. At any point U, the gradient
of f(U) is a vector normal to the surface of the hyperellipsoid passing
through U.

The gradient in n-dimensional space is defined as

af

Uk

1=

vf =

[ omp]

k y

P
[}

where Gk is the unit vector along the kth coordinate axis. MWriting f(U) in
terms of the matrix elements,

Y = :ﬁ Xﬁ a
— L

:] 1=

1391Y3

(S8
_—

the gradient is

n r n n
N o .
VFU) = 2;J i;z: akJuJ v a; s | Oy
k=1 | 3=1 =]

Because = a.

a,. .,
ij ji
is a1 in the kth row, the gradient of f can be expressed in matrix notation:

and Gk is a column vector whose only nonzero element

) = 207U

At the point Uk on the surface at which the kth coordinate has its

maximum extent, the gradient is parallel to Gk and has a magnitude (unknown)
of lvf(Uk)I. Then

-1 ] .
o Uy = 3lvFWp0,

from which

1 N
Uk = z|Vf(Uk)|on

] T
= 319F W) [(oty)
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For the hyperellipsoid for which f(U) = 1,

1 = UTO—]U

k k

1 2 .71 .
= I VEO T T 0l
] 2

where Ik is the kth diagonal element of the o-matrix. The magnitude of
the gradient at Uk is

|Vf(Uk)| = 2/May
and the point on the surface at the maximum extent in the kth airection is

U Gk/Jckk

k=0
The term Uk is the kth column (and, because ¢ is symmetric, the kth row)

of the o-matrix divided by /5;;. In particular, %k is the square of the
maximum extent of the ellipsoid in the kth direction, and ckiIJEEE (and
cik/JGE;) is the value of the ith coordinate at the maximum extent in the kth
direction. Each off-diagonal element is therefore related to two diagonal ele-
ments, and sometimes they are written as

= Tik Y955 9%

ik T ki T T

where T is referred to as the correlation coefficient.
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APPENDIX B

TWISS PARAMETERS AND THEIR RELATICNSHIPS TQO o-MATRIX ELEMENTS.

The ellipse equation often used in beam-dynamics calculations is

sz + 2axx’ + B(x')2 =€ ,

where ¢ = E/w, the emittance (area of the ellipse) divided by v, and 3
and y are positive guantities. In this form, «, B, and y are called the
Twiss, or Courant-Snyder, parameters and are related by

BY—OL2=]

The ellipse intersects the positive x-axis at xj = Je/y and the positive
x'-axis at x% = JelB, as sketched below.

The product of X and x&, the maximum extent of the ellipse in the x'-
direction, is equal to e, so x| = fye. Likewise, Xy = /Be. At the point

on the ellipse at which x' = x&, the x-coordinate is Xq = -avely, and at
X = = -
X Te a/e/B. Therefore,
X x!
e e
Q4 = - — = - —
X X

i i
For the ellipse shown above, a is positive.
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Relationship Between o-Matrix and Twiss Parameters

The 6 x 6 g-matrix can be partitioned into nine 2 x 2 submatrices:

Txx : Xy } %z }
ST T T T T T
o= "yx:oyy: yZE
! !
L Iox " Pzy 1 2z J
The Ty Oyy’ and 0,y submatrices are related to the Twiss parameters in the

x-x', y-y', and z-Ap/p planes, respectively. In App. A, it was shown that
the six diagonal elements of the o-matrix are the squares of the maximum
extent of the ellipsoid in each of the six directions and that 04 is the
product of the maximum extent in the jth direction and the value of the ith
coordinate at that maximum extent. Then

A
X< X X' ]
m e'm |
= l
Txx = | s
} X' X (x") J

| "e'm m

Using the relationships derived above for «, B, and v,

T B.e - a KX
1 X© X I 'm
i
|

o = |

XX . XiX € '
x i'm YyEx

where the subscript x has been appended to «, B, y, and e to denote properties

on the x-x' plane. Because Xixﬁ = X%Xm =€ this reduces to
r
Bxex T %y
Iux T
L “xEx YxEyx

having a determinant

2, 2
= ( _
det(oxx) ‘BXYX ax)ex
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APRENDIX C

MISMATCH FACTOR

As the name implies, the mismatch factor is a quantitative measure of the
difference between two ellipses having the same area and the same center. If
the two ellipses are not identical, one ellipse could be enlarged so that it
just encloses the other ellipse; the amount of enlargement is related to the
mismatch factor.

One way of looking at the problem is as follows (See Fig. C-1): First,
find the transformation that maps one of the ellipses into a circle, and apply
the same transformation to the second ellipse to get a modified ellipse.
Denote the radius of the circle by RC and the length of the major semiaxis
of the ellipse by RE‘ Because the ellipse and the circle have the same

area, RE will be greater than or equal to RC' The mismatch factor used in
TRACE is

Periodic beam-transport systems have matched conditions if they are
stable. That is, if one matches a beam to the transport system, and if one
could measure the size of the beam at the same location in each period of the
system, then one would see a constant beam size. A mismatched beam would
oscillate about this matched size, and at some places the beam would be larger
by a factor of 1 + M. For example, a mismatch factor of 0.1, defined as
above, would mean that the beam would otcasionally be 10% larger than it would
be if it ware matched. An example of two ellipses having a mismatch factor of
0.1 is shown in Fig. C-1.

A wo-d of caution is in order. It is quite common in the literature for
the mismatch factor to be defined as (RE/RC)2 - 1, which relates to how
much the area of the circle would have to be increased to enclose the
ellipse. If this definition is used, one would calculate a mismatch factor of
0.21 for the example given above.

The mismatch factor (as defined above) between the two ellipses

sz + 2axx' o+ B(X')2 =€
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and

GxZ + 2Axx' + B(x')2 = ¢

is given by

5 1/2
M:§R+R—4 —1,
where

R = BG + By - 20A

Fig. C-1. An example of two ellipes having a mismatch factor of
0.1, shown before (a) and after (b) being transformed to

a coordinate system in which the solid ellipse is a
civcle.
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APPENDIX D

RMS EMITTANCE AND THE EQUIVALENT UNIFORM BEAM

The emittance in any phase plane is defined as the area enclosing all of
the particle coordinates on that plane. In TRACE 3-D, the particles are
assumed to be contained within a six-dimensional ellipsoid, and the emittance
is the area of the ellipse that is the projection of the six-dimensional

ellipsoid. The ellipse equation in the x-x' plane is
yx2 + 2axx' + B(x"2 = ¢

where the parvameters «, B, vy, and ¢ are defined in App. B.

o] —
The second moments xz, (x')°, and xx' can be calculated if the density of
particles within the ellipse is known. Let f(x,x') denote the particle
density function in the x-x' plane, normalized so that

Jf(x,x‘)dA = 1

where the integraticn is over the area of the ellipse. Then

xz = xzf(x,x')dA

For a uniform density on the x-x' plane, f(x,x') is the reciprocal of the

ellip-e area, and the secnnd moments are easily calculated:

X
- -m
xz = L J xzh(x)dx R

~-X
m

where Xo = /Be is the maximum extent of the ellipse in the x-direction,
and h{x) is the width of the ellipse in x' at a given value of x,

hixy - & ¥Be - «

- B
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The results for the three second moments are

= Beld
(x% = yela
and

XX\ = —ae/bd

Because By - a? = 1

/

TI’ \/ x2 ()(')2 - WZ = wel/b

v

The term on the left-hand side is defined as the rms emittance. The rms
emittance can be calculated for any arbitrary distribution whose second
moments can be measured or calculated. The "equivalent uniform beam" is
defined to be the beam having a uniform charge distribution and having the
same second moments as the arbitrary distribution. Notice that a
longitudinally continuous uniform beam has a total emittance that is four
times its rms emittance.

In TRACE 3-D, we assume linear space-charge forces, which implies a
uniform charge distribution in an ellipsoid in x-y-z space. Let us assume
that the distribution in any three-dimensional projection of the six-
dimensional hyperellipsoid is uniform. MWhen calculating second moments for
the x- and x'-coordinates, take z to be the third coordinate of the uniform
ellipsoid and further assume that z is uncorrelated with x and x'. The
intersection of the ellipsoid with the x-x' plane is the ellipse defined by

yx2 + 2axx' + B(x')2 = ¢

At any z between -Z and +Z, where Zz is the extent of the ellipsoid in the
z-direction, the intersection of the ellipsoid with a plane parallel to the
x-x' plane is an ellipse defined by

yx2 + 2axx' + B(x')2 = g[1 - (2/2)2]

The area of the ellipse is reduced from that of the midplane ellipse by the

factor [1 - (z/i)z]. Then the second moments of the ellipse in this plane
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are

A~ D
x°(2) Bell - (z/2)°1/4

2o [1 - 2]

a0z = ko [1 - @?]

and

xx'(z2) = xx'(0) [1 - (2/2)2]

The second moments over the entire ellipsoid are obtained by integration over
z:

z
< x%0 j L - (z/i)z]f(z)dz
-Z

But f(z) is the area of the ellipse at z divided by the volume of the
ellipsoid:

f(z) =

t
T s

[1 . (2/2)2:]

Therefore

~

2 z <272
X (O e J-i [1 - (z/2) } dz

4

"l

no

il
no

x2¢0)

(8211

Be/5

Similarly,

(Xl)z = YE/S
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Xx' = -ae/5

and

2 (% e L (ers)?

The equivalent uniform beam in three-dimensions has an emittance five times
larger than the rms emittance.



APPENDIX E

FIELD FORMULAE FOR PERMANENT-MAGNET QUADRUPOLE (PMQ)

The PMQ field formulae are obtained from Ref. 6, to which we refer the
reader for further discussion and for the assumptions under which the formulae
are valid. The formulae are based on the REC quadrupole of the standard
design using trapezoidal blocks as shown in Fig. E-1 and are derived using a
semi-infinite model with a flat-cut end (Fig. E-2).

b
!
1

-

- P4

Fig. E-1. Cross section of seg- Fig. E-2. Cross section through semi-
mented REC quadrupole finite REC quadrupole (beam
(beam perpendicular to in drawing plane).
drawing plane).

The fringe field to first order is as follows:

Bx(x.y,2) = G(2)y = Gg F(2)y

By(x,y,z) = G(2)x = Gy F(z)x , and

BZ=O 4

where the gradient G(z) is expressed in terms of the peak value G. times the

0
fringe-field function F(z):

G(z) = GO F(z)

L]
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and where the fringe field function F(2), as shown in Fig. E-3, is given by

hY

) [ /’] . l’ v%vg v? * Vv, + vg + 4 4 8/v]v2
F(z) = 7 1 - % Tt N ,
1 1 "2 | 1Y
where
/. ) -1/2
V) = ] + — 1 = 112\'-'v
1 ri/
Go = 2BpCp(1/vy = 1/rp) = 2G(0) = G(-=)

B = magnitude of remnant magnetization of REC material,
r1 = inner radius of guadrupole,

ry = outer radius of quadrupole,

Cr = sin (3w/M)/(3w/M), and

M = number of trapezoidal blocks composing the magnet.

F(z)
— Lo
~0.5
N z
0
Fig. E-3. Quadrupole fringe-field function. Note that F(-z) = 1 - F(z).

To find the fringe field for a quadrupole of finite physical length
Qp, a second semi-infinite magnet of opposite sign is superimposed on the
first semi-infinite magnet with a nonoverlapping distance equal to Qp.

The fields are added, resulting in the fringe field as shown in the lower
portion of Fig. E-4.
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For doublets, triplets, or any combination of PMQs, the total fringe
field Gt is found by summing the individual gradients G(z) as follows:

n
Gt = iE] Gi(zi) = GOiFi(Zi) , i =1,n
i g P ws an o ol
»
]
= 0.5
J
P i
...|3 —— ]
f
- |
1P
r
0.8k Resultant
l: Fringe Fieid
0.4} ‘///A
3% 0 4 =
Fig. E-4. Two semi-infinite magnets, nonoverlapping by 2p. resulting in

fringe field for PMQ of length 2p.
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APPENDIX F

TRANSVERSE EMITTANCE INCREASE IN AN RF GAP

Weiss'? has calculated the increase in the rms emittance of a bunched
beam as it crosses an rf gap. The gap is treated as a thin lens, and the
impulse coefficients are given in Sec. VI.J of this report. The emittances
increase because the transverse impulses depend on ¢, the phase of the rf
when a particle arrives at the gap, and ¢ differs from one end of the bunch
to the other. The transfer matrix is calculated assuming that the phase is
constant at ¢s‘ the phase when the beam center is at the gap.

At the gap, the x-coordinate is unchanged and the x'-coordinate is
changed by

x% = nx% + k; sin ¢ .
where
n = (By)1/(By)f
o -*1115|EOTL
X 2=2-2

m.c By (By)fk

the i and f subscripts denote initial (before the gap) and final (after the
gap) values, and the bars denote average values.

The second moments before and after the gap are reltated as follows:

’

|2_2 |2 vy vlcia |22‘2
(xf) = n (xﬁ) + anx XiX;sin d + (kx) xis1n ¢

n
X Xb = n X.x! + k' xSsi
f°f Y kx 1S n ¢

Assuming that ¢ is uncorrelated with x and x', the averages are given by

— ™o

K sin g = xS sin b, FLa0)

~dJ
|4



xix% sin ¢ = Xyx; sin ¢s f(ag)

and

W sin? g = 1% glo_.ae)

where A¢ is the half-width of the phase spread,

N \ .
F(a0) = 1s [ 3 (s1n A¢)_ cos ap - ST A¢ ]

(e’ Lap? L% ol

and
b, A = + [1 + (sin & - cos® ¢.) F(240)]
AL -2 S S

In the limit, then A¢ » O, f(A4) » 1 and g(4_,A9) » sin2 ¢s'
Substituting the above averages into the equations for the second moments,

12 2 2 Do — 12 2
(xf) = n" Xy o+ anx sin ¢s f(ad) XX+ (kx) g(¢S,A¢) X

Vo 2
+ kx sin ¢S f(ad) X;

Xg = LX)
XeXe n XXy

If the original equation for x% is replaced by

Xg =N Xy o+ kx sin ¢ f(Ap) X

then one obtains the above second moments if a term A(x%)2 is added tc (x%)2
where

y

2 a2 . 2 2 2
A(xf) = (kx) [g(¢S,A¢) - sin ¢s f=(ad) ] X
The increase in the rms emittance is

—_—

Ae =N/ x A(x')2
i f

- Mo
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APPENDIX G

ELECTROMAGNETIC FIELDS IN CYLINDRICAL CAVITIES!3.14

For cylindrical cavities resonating in the TM standing-wave mode,

010

the only nonzero components of the electromagnetic field are Er’ E_, and

Z’

Be, and these quantities are independent of ©. The stationary solutions
have a harmonic dependence on time:; therefore,

Ez(r,z,t) = Ez<r,z) sin wt

where w is the angular frequency of the standing wave. The term Ez(r,z)
can be expressed by a Fourier series in z. Let L denote the length of the
cavity, and take the origin of the coordinate system to be at the center of
the cavity. Then

_\T ) Mz ooz
Ez(r,z) = &am(l, cos ot bm<r) sin L

L J
We now restrict ourselves to consider accelerating structures operating
in the w-mode in which alternating cavities are 180° out of phase (one
complete period consists of two cavities). We also assume EZ to be
symmetric about the center of the cavity. These restrictions imply that

bm = 0 for all m, and a = 0 when m is zero and even integers. Then
. mrz . -
Ez(r.z,t) = % am(r) cos =~ sin wt m=1,3,5, ...,

Inserting this expression into the wave equation

32E 2 2

z 1 éEZ . a Ez i 1 a EZ

az2 r ar ar2 c2 atz
we obtain

- B
\ :dza d a i
114 ; mo m 2 l

2 Yy Tdr T km amJ =0

m ldr

where
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(om)? (2"
LS\

I

Each term in the above sum will be zero if

2

a, = AmIO(kmr) when km >0
and

a_ = AJ (k1) when k2 ¢ 0
m mo m m

where JO is the standard Bessel function of order zero, and IO is the
modified Bessel function of order zero. The value of k; will normally be
positive (although if L > A\/2, k? will be negative), thus the modified
Bessel functions will be used below.

Having obtained an expression for Ez(r,z,t), similar expressions can be

obtained for Er(r,z,t) and Be(r,z,t) by using the Maxwell equations

>
VeE=0 |,
and
3 >
1 3t
VeB=——
CZ at

For our particular geometry and symmetry assumptions, these equations reduce to

13 . __z

r ar (rEr) T T3z
By 1%

aZ CZ at ’

and

18 (g, .1 %
r or 6" - c2 at

The results, which can be verified by using the recurrence formula,
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II(X) + X

ax 1
are
E,(r.z, ) = ] AT (kr) cos W2 sin ot
m
A m
oom s mmzo
Er(r,z,t) = P I](kmr) sin == sin wt
m
and
— A w
KON SIS Lo cos T2 cos wt
Gt

The Am coefficients can be determined for a particular geometry by
Fourier analyzing the Ez(r,z) values calculated by SUPERFISH. The results
are usually normalized so that the average axial accelerating field EO is
1 MV/m, where

1 L/2
EO =1 EZ(O‘Z) dz
-L/2

The field components are linearized by replacing Io(kmr) by 1 and
Ii(kmr) by kmr/z. Also, substituting 2wc/X\ for w and ¢ for wt, the
linearized components are

Ez(r,z,¢) = Eo ) Am cos E%Z sin ¢
m
mr . MwZ .
Er(r,z,¢) = Eo % Am oL sin /[~ sine r
and
s mmw2
Be(r,z,¢) = EO ) Arn o Cos T cos dr

In moving a distance As through a constant accelerating field Ez’ the
energy of the beam changes from W to W + AW, where
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AW = EZAS
The average energy over the distance As is

W= W+ AW/2

The change in the x-component of the normalized momentum that is due to
constant Er and Be fields applied for a distance As is

_Q4s (E

A(ByY = - - v_ B.) x/r
X m CZB Y z 9
nqf as 0T =
= 2_ /> Am igf sin mtz sin ¢ - % cos @%5 oS ¢ | x
m.c B8 &
=k X

where B is v/c for particles having energy W. The impulse coefficient ky is
identical to kX.

The change in A(By)z caused by a particle arriving at a particular
location in the cavity when the rf phase is ¢ + A¢ rather than ¢ is

3E

;

N Ay, | = g—éé: 555 b
m.c 3

The longitudinal displacement, z', of a particle from the center of the beam
is related to the phase displacement A¢ by

z' = -BX\ Ad/2m

so the change in A(BY)Z is

A[A(By)z] k_ z'

z

—quAsEo Mz
= —5— A cos £ cos $ z'
ZBZX m L
. e

m

In this appendix, z denotes the longitudinal displacement from the center of

the cavity, and z' denotes longitudinal displacement from the center of the
beam ellipsoid.
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APPENCIX H

COUPLED-CAVITY TANKS

A tank element implies a sequence of identical cylindrical cavities,
coupled in some way to permit power flow. The fields in adjacent cells
(cavities) are assumed to be 180° out of phase, and a standing-wave TMO]O
mode is assumed. Tank transformations are valid when the beam velocity-does
not change appreciably as the particles go through the tank, and the time-of-
flight through two cavities is approximately one rf period. In this case, the
detailed shapes of the fields in a cavity are not very important as long as
their averages over one cavity (or a half-cavity) are correct.

A reasonable approximation for the longitudinal electric field is

wZ .
— sin wt

Ez(r_z,t) = A Io(kr) cos )

where

k2 ) /E\Z ZI\Z
‘L/"x)
This is the first term in the Fourier expansion for EZ(r,z,t) given in
App. G. A quantity whose value is usually specified for a tank is EOT, the

effective accelerating field, the product of the average axial electric field,
and the transit-time factor. This quantity is defined by

p—

L/2
EOT =T E_(0,z) cos (wz/L) Jz
-tz °

Putting in the assumed form for EZ and integrating, we find
A = ZEOT

The three nonzero field components are

Ez(r,z,t) = ZEOT Io(kr) cos (wz/L) sin wt

ZWEOT
Er(r,z,t) = 0 I](kr) sin (wz/L) sin wt

»
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and

2E Tw
0 I,(kr) cos (wz/L) coS wt

Be(r,z,t) = 5 1

kc
where w = 2mc/A is the angular frequency of the rf and z = U at the
middle of a cavity. Using the assumptions mentioned earlier, wt can be
replaced by wz/L + ¢ + w/2, where ¢ is the phase of the rf when the
center of the beam arrives at the beginning of the cavity. Then

cos wt = cos wz/L cos (¢ + w/2) - sin wz/L sin (¢ + w/2)
= - cos wz/L sin ¢ - sin wz/L cos ¢ ,
sin wt = sin wz/L cos (¢ + w/2) + cos wz/L sin (¢ + w/2)

[}

- sin wz/L sin ¢ + cos wz/L cos ¢

The calculation of the averages of the field components over each half of
a cavity (assuming r is constant) involves finding the averages of cos2 wz/L,
sin2 wz/L, and sir wz/L cos wz/L. Over the first half of a cavity
(- /2 <z <O,

cos2 wz/L = sin2 wz/L = 1/2

]

sin wz/L cos wz/L = - 1/«

The average, linearized, field components in the first half of a cavity are

FE - 2ET sin ¢ + Los ¢

~z1 0 w 2

= "EoT fcos & . sin ¢

ri — L \ 2 ’

where we have used L = BX\/2. The change in the beam energy in the first
half of a cavity is
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AW, = q Ez\ L/2

i

‘tos & sin ¢
quTL(\Z + ﬂ>

The average energy in the first half is assumed to be

N] =N+AN-I/2 N

where W is the energy at the beginning of the cavity. The average normalized
velocity 5? is calculated from W;. The average radial force is

so the change in the x-component of the normalized momentum is

A(By)x = lex
wqk T . _ .
L PR A S KLY
23 | m 1 2
Zmoc B,

The vertical impulse coefficient kyl 1s the same as kyj. In the above
expression, ETZ should actually be ETB, where B = 2L/\, but the assumptions
imply that B] = B.

The change in A(By)z caused by a particie having a displacement z'
from the center of the beam is

A[A(By)z] = kZ]Z
3E_.
=J_I;_—Z]Q(PL_Z|
2m Czﬁ 9 9z
0 ]
B art, (%in ¢ cosd _.
om0 T Z/ ,
ot P ¢
where
2 =—[‘A¢



The

ANZ

and

In the second half of a cavity, the averages of the field components are

2ET<cos¢_sin¢> ‘
o) 2 LI

_ TrEoT ;"tos ¢ sin ¢ -

T L \ ™ 2 '
__"EoTB cos ¢ . sin ¢ -
- cL T 2

energy charge in the second half is

_ (cos d sin ¢
= qEOTL \ 5 - > ,

ki

the average energy E and the corresponding @ can be calculated.

impulse coefficients for the second half are

x2

y2

z2

_ "quT =2, sin ¢ T2, Cos ¢
=- 5= (1-82) 5 —(1+BZ) ,
2m c“B v

o 2 ]
=Ky
_ TrquT {/sin ¢ . cos q;\
- 2= 2 T
moc BZ \

The
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APPENDIX I

TRANSVERSE EMITTANCE INCREASE FROM CHROMATIC ABERRATIONS

The focusing and defocusing forces acting on a particle passing through a
magnetic quadrupole depend on the particle's momentum p. An energy spread
can, therefore, cause an increase in the effective transverse emittance. This
increase can be calculated if we approximate a quadrupcle by a sequence of
d-ifts and thin lenses. At each lens, the x'-coordinate of a particle having
a momentum p + Ap is modified by

xLo= x! - kx, /(1 + &)
f 1 X 1

where

§ = op/p

kx = qB As/mOCBY ,

and the i and f subscripts denote initial and final values. The quantity kX
is the impulse coefficient for 2 thin-lens equivalent for a quadrupole having

a magnetic g-adient B' and effective length As.

The second moments of the initial and final coordinates are related by

22

£ =%

2 )2 iy L 2 2 2
(S = (D -2k T 4 B+ K kD O

1 - 1 2
XeXg = xix1 - kX Xi/(] + 8)

The averages are calculated over the volume occupied by the hyperellipsoid
representing the beam. Let xix%(g) denote the average of xix% at a
particular &. Then

§
XXy = J(g xix%(S) f(s)ds
where & is the maximum value of & in the hyperellipsoid, and f(8§) is the
density function that satisfies
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§
f(8§)ds = 1
§

If we assume a uniform ellipsoid in the x,x', & space, then

3 2
f(8) = T [1 - (8/8)°1]

Also, if we assume x and x' are uncorrelated with &, then the effect of a
nonzero value of & is to reduce the space available to x and x':

a0 (s) = 00 - (8/8)2] LX)

Then
TR ROE. ’ [1 - (8/8)%1° ds
5= 55 a4,
4 —
=z Xixi(O)
and
A 242
X1X1/(]+6)=XX(O —g[ T+ 6 ds

I-D

e (5 1)

Xl 82/7)

[

Repeating this procedure for calculating the other two averages, we find

x/(l+6)-x']2<1+82/7>

and

xf/(] + 872 = xf Q ‘3 82/7>
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The second moments after the thin lens are

2 2
e =%y o

I2 |2 [} “2 2_ —A2
(xf) = (xi) - 2kX X: X3 (1 + 87/7) « kx x; (1 + 7 87
— . 2 <2
xf_.xf = X;Xg - kx X (1 + &7/

If the original equation for x% is replaced by

| ' z 2
Xe = X3 = kx(l + 6 /7)xi .

then the above second moments are obtained if a term A(xf':)2 is added to (x%)z,
where

12 2 2 3 .2 22,02
A(Xf) :kX )(1 [(1+‘7"8)—(]+6/7)}

i

The increase in the rms emittance is

P12
Asrms = Xe A(Xf)
2
= X kX 8§/V7
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APPENDIX J

CALCULATION OF TRANSVERSE EMITTANCES
FOR BEAM-WIDTH MEASUREMENTS AT THREE LOCATIONS

If the width of the beam is measured at three separate locations, and if
the transfer matrices between these locations are known, then the transverse
emittances and ellipse parameters can be calculated. Let s" denote the
g-matrix at the mth measurement location, where m is 1, 2, or 3. The
measurements define the 1.1 and 3,3 elements at each location. The unknown
guantities are 919 9991 T34 and 944 at each location. But if these
quantities are known at any of the three locations, they can be calculated at
the other two locations using the assumed known transfer matrices.

Let o1 denote the initial estimate of the o-matrix at the first
measurement location, and & denote the (unknown) corrvection matrix for

0]. That is, the actual g-matrix at the first measurement is 0] + §. Because

0}] and 0;3 are given by the measurement, the only nonzero elements of the
§-matrix are 5‘2 (= 52]), 522, 534 {= 643), and 644. Let R denote the
transfer matrix from the first to the second measurement location, and r1j
be the i,ith element of this matrix. Then

02 = Ro]RT + R6RT

From measurements at the second location, oﬁ] and o§3 are known, giving two
equations to be satisfiea by the elements of the &-matrix:

[o% - Ro]RT]]]

2 2
2ri1rg2812 + r12822 + 21314834 + r{4844

and

lo” - RO‘RT133 2r31r32812 + r%2522 +2r33r346834 + r%4644

Two similar equations exist for the beam measurements at the third location in
terms of the o]— and §-matrix elements and the transfer matrix between
the first and third locations. The elements of the &§-matrix can be
determined from these four linear equations.

When space-charge forces are involved, an iterative procedure must be
used because the transfer matrices depend on the beam profiles. In TRACE 3-D,
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the zero-current solution is used as the first step in the iteration.

Successive steps use the previously determined o]—matrix as the input beam

to be followed through the transport system to the measurement locations.
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