ATOMKI PREPRINT

HU ISSN 0231-245X

A/21 (1987)

Фенеш Т., Домбради Ж., Нраснахоркаи А., Нибеди Т. и
Тимар Я.
р∽n мультиплетные состояния в легких нечетно-нечетных
ядрах In и Sb

Institute of Nuclear Research of the Hungarian Academy of Sciences Debrecen, P.O. Box 51, H-4001, Hungary

р-л МУЛЬТИПЛЕТНЫЕ СОСТОЯНИЯ В ЛЕГНИХ НЕЧЕТНО-НЕЧЕТНЫХ ЯДРАХ

In и Sb

KEY WORDS. Light, odd-odd In and Sb nuclei, in-beam Y and electron spectroscopy, parabolic rule, cluster vibration model, proton-neutron multiplet states, nuclear structure calculations, truncated quadrupole model for odd-odd nuclei.

1. Веедение

В Институте ядерных исследований Венгерсной Анадемии Наук в Дебрецене проводятся систематические энспериментальные и творетические исследования для выяснения структуры легних нечетнонечетных ядер In и Sb. Исследования мотивируются главным образом следующими соображениями:

 а) Для упомянутых ядер имеющиеся экспериментальные данные чрезвычайно ограничены.

6) При описании энергетических уровней кечетно-нечетных ядер В. Паар вывел из кластер-вибрационной модели т.н. "параболичесное правило" [1].Оно подтверждалось очень хорошо для многих ядер (например для ¹²²₅₁Sb₇₁), в то же время в некоторых случаях появились и небольшие с ими расхождения (главним образом поблизости от дважды замкнутых оболочен, например для ⁹²₄₁Nb₅₁ и ⁹⁶₄₁Nb₅₅ [2]). Поэтому представляется целесообразным изучать справедливость и применимость правила систематически, в широной переходной области ядер. В то же время, правило является хорошим "компасом" для поисна протон--нейтронных мультиплетных состояний. в) Для объяснения де: алей струнтуры ядра в случае ¹¹⁴In мы проводили подробные расчеты с помощью модели OTQM (truncated quadrupole model for odd-odd nuclei). Нроме энергетических уровней, спинов и четностей эти расчеты дают также волновые функции, ядерные моменты и т.д. Результаты расчетов сравнивались с имеющимися энспериментальными и творетичесними денными.

2. Энспериментальное оборудование, методы и результаты

Эксперименты проводились в пучнах малогаборитных изохронных цинлотронов в Дебрецене /Венгрия/ и в Ювяскюле /Финландия/. Изучаемые изотопы получились из обогащенных мишеней с помощью (р,пү) и (α,рү) реамий.

Ядерноспентроскопичесние каналы дебреценсного цинлотрона и экспериментальные оборудования показаны на рис. 1.

В рамнах программы мы занончили экспериментальное исследование структуры атомного ядра 114 In [3], получили результаты для 112 In и 110 In [4,5], далее начали измерения для 108 In и 106 In.

3. <u>р-л мультиплетные состояния в 116,114,112,110 In и</u> 122,120_{Sb: расчеты по лараболическому правилу}

Основы расчетов. Низнолежащие энергатичесние уровни нечетнонечетных атомных ядер можно описать в первом приближении следующей формулой:

$$\mathbb{E}[(j_{p}j_{n})\mathbf{I}] = \mathbf{f}_{j_{p}} + \mathbf{f}_{j_{n}} + \mathbf{\delta}\mathbb{E}_{2}[(j_{p}j_{n})\mathbf{I}] + \mathbf{\delta}\mathbb{E}_{1}[(j_{p}j_{n})\mathbf{I}].$$
(1)

Здесь Е_ј и Е_ј и Одночастичные энергии протона и нейтрона, ј-полный угловой момент количества движения. Еј и Еј можно взать из соседних нечетных изотопое In, Sn и Sb, тен мак энергии, спины, четности и конфигурации низиолежащих состояний обычно известны. - 3 -

δE₂ и δE₁ учитывают нвадрупольнов и дипольнов взаимодейстия между протоном и нейтроном через ядерный остов. Для δE₂ и δE₁ В. Паар выводил следующи: формулы из иластер-вибрационной модели [1]:

$$\delta E_{2} = -\alpha_{2} \sqrt{\{\frac{[I(I+1)-j_{p}(j_{p}+1)-j_{n}(j_{n}+1)]^{2}+I(I+1)-j_{p}(j_{p}+1)-j_{n}(j_{n}+1)}{2j_{p}(2j_{p}+2)2j_{n}(2j_{n}+2)}} - \frac{1}{12}\},$$

$$\delta E_{1} = -\alpha_{1} \frac{\xi}{(2j_{p}+2)(2j_{n}+2)} \{I(I+1)-j_{p}(j_{p}+1)-j_{n}(j_{n}+1)\}.$$
(3)

Здесь $I=|j_p-j_n|,\ldots,j_p+j_n$ спин атомного ядра, a_2 и a_1 постоянные квадрупольного и спин-вибрационного взаимодействий. Спределения V и E коэффициентов можно найти в публикации [1].

Зависимость постоянных взаимодействый от весоятности заполнения уровней (**V**²) можно описать следующими формуламы:

$$\alpha_{2}(\mathbf{j}_{p}\mathbf{j}_{n}) = \alpha_{2}^{(o)} | (\mathbf{u}_{\mathbf{j}_{p}}^{2} - \mathbf{v}_{\mathbf{j}_{p}}^{2}) (\mathbf{u}_{\mathbf{j}_{n}}^{2} - \mathbf{v}_{\mathbf{j}_{n}}^{2}) |, \qquad (4)$$

$$\alpha_1(\mathbf{j}_{\mathbf{p}}\mathbf{j}_{\mathbf{n}}) = \alpha_1^{(o)}, \qquad (5)$$

где $U_j^2 = 1 - V_j^2$. Величины V^2 могут быть взяты например из систематики экспериментальных данных.

Расширания формул (2)-(3) на протон-фонон-нейтрон мультиплеты, а также на иластериие состояния межно найти в сообщении [6] Паара.

Ожидается, что параболическое правило дает хорошое

приближение прежде всего вдали от дважды замкнутых оболючек. где квадрупольное взаимодействие силиее.

- 4 -

<u>Результаты.</u> Энспериментальные и творетические результаты, полученные для ¹¹⁶,114,112,110 In и ^{122,120}Sb, поназаны на рис. 2-7. Изучались также более легние нечетно-нечетные ядра In и Sb, для них энспериментальные данные явно недостаточны.

На столбцах а) рисуннов показаны низколежацие энергетические уровни соседних нечетных ядер, а также главные компоненты волновых функций состояний. Данные относящиеся к конфигурациям были получены главным образом из реакций однонуклонной передачи, из приведенных вероятностей переходов и из ядерных моментов.

Столбцы b) и c) показывают результаты расчетов, полученные с помощью формул (1)~(5) параболического правила, в отдельности для положительных и отрицательных уровней. Теоретические энергетические уровни показаны в зависимости от I(I+1). Параметры использованные в расчетах суммировались в таблице 1.

Столбцы d) рисунков 2-7 показывают экспериментальные схемы уровней изученных ядер, а также главные компоненты волновых функций состояний, главным образом на основе реакций однонуклонной передачи. Экспериментальные данные исходят из следующих публикаций: ¹¹⁶In [16-20], ¹¹⁴In [3,21,22], ¹¹²In [5,21,23-25], ¹¹⁰In [4,22, 26-29], ¹²²Sb [11,30,31], ¹²⁰Sb [11, 31-34].

При идентифинации членов мультиплета мы учитывали экспериментальные энергии, спины, четности к конфигурации уровней, а также мультипольности переходов между уровнями, так маж между соседними (I+I+I) p-n мультиплетными состочниями ожидаются сильные M1 переходы.

При наждом р-л мультипляте проводчлось отдельное нармирование на база одного (или многих) надежно идентифицированных состояний мультиплета. Это нормирование означает только еертикальную линейную переденику для членов мультиплета, формы параболы оно не насается.

- 5 -

<u>Выводы</u>. Расчеты по параболичесному правилу оказались полезными для описания p-n мультиплетных состояний легких изотопов In и Sb.

а) Для больше чем 100 р-л мультиплетных состояний, идентифицированных в ^{116,114,112,110} In и ^{122,120}Sb, расчеты в каждом случае правильно репродуцировали форму парабол (например, что они вогнутые вверх или вниз). Члены мультиплетов, имеющие минимальную энергию, предсказывались также почти в наждом случае правильно.

б) В случае ¹¹⁶,114,112 и ¹¹⁰ In мы идентифицировали ≈ 75 р-п мультиплетных состояний. Используя одинановые α₁^(o) и α₂^(o) параметры для всех мультиплетов, с помощью параболического правила удалось описать энергии уровней со средненвадратичным отилонением от энспериментальных данных ≈ 80 кэВ (после нормализационной передвижни). α₂^(o) величины были близние к данным, полученным из натуральной параметризации.

Подобным образом расчитывались энергии ≃ 30 р-в мультиплетных состочний ^{122,120}Sp. Для них среднеквадратичное отклонение от энспериментальных данных было ≈ 55 кзВ.

Расхождения могут иметь много причин нроме неопределенности экспериментальных данных: смешивание конфигураций, пренебрежение членами взаимодейстия высшего порядка и другими корреляциями, не оптимальный выбор параметора и т.д.

в) Для идентифицированных мультиплетных состояний 116,114,112,110 In и ¹²²,1²⁰Sb α^(O)/α^(O) ≤ 0,02, следовательно

эффент дипольного езаимодействия относительно нвадрупольного слабый.

г) Вдали от заминутых оболочен квадрупольнов взаимодействие
 доминирует и получаются сравнительно гладиие параболы (см. например

при т $ilde{g}_{g/2}$, $v ilde{h}_{11/2}$ мультиплетв ¹¹⁶, 114, 112, 110</sup> In и при т $ilde{g}_{7/2}$, $v ilde{h}_{11/2}$ мультиплете ¹²²sb).

д) Вблизи дважды магничесним ядрам (или при замыкании подоболо где квадрупольное воздуждение не является сильным, другие взаимоден ствия (напр. б-силы)играют доминирующую роль. Определенные расхожднот параболической формы наблюдаются напр. при $\pi \tilde{g}_{9/2}, \nu \tilde{d}_{5/2}$ мультиплетв $\frac{92}{41}Nb_{51}$ и $\frac{96}{41}Nb_{55}$ [2], где неноторые точни "высыпаются". в) Заметно, что в ядрах $\frac{116}{49}In_{67}, \frac{114}{49}In_{65}$ и $\frac{112}{49}In_{63}$ 1⁺ основные состояния принадлежат к мультиплету $\pi \tilde{g}_{9/2}\nu \tilde{g}_{7/2}$, хотя в соседних $\frac{117}{50}Sn_{67}, \frac{115}{50}Sn_{65}$ и $\frac{113}{50}Sn_{63}$ нунлидах энергия $\nu \tilde{g}_{7/2}$ состояния состояния (712, 613 и 77 нэВ соответственно). Причиной этого является то, что $5 \tilde{g}_{9/2}$ протонное и $5 \tilde{g}_{7/2}$ нейтронное состояния состоянии перенрытие волновых фунций протона и нейтрона сильное. Следовательно выступает сильное взаимодействие между ними, 1^+ состояние понижается.

ж) Расчеты по параболическому правилу оказывают полезную помощь при поисках новых p-n мультиплетных состояний, так как они простые и легно проводимые.

На рис. 8 экспериментальные экергии уровней ¹²²Sb сравнивались с теоретическими результатами, полученными из параболического правила, а также из нвазичастичной модели (Артамонов и Исаков [35]) Нак видно расчеты по обеим теоретическим моделям довольно хорошо описывают экспериментальные данные, в то же время расчет по параболическому правилу существенно проще.

4. ОТОМ расчеты при ¹¹⁴In

В более высоком приб-лижении расчеты были проведены для случая ¹¹⁴In с помошью модели ОТQM разентой В. Пааром [6].

Гамильтониан модели можно запнсать в виде

$$H_{OTQM}^{=H}T_{QM}^{+} \sum_{i=p,n} H^{i} + \sum_{i=p,n} H^{i}_{PVI} + H_{RES}, \qquad (6)$$

- где Н_{ТОМ} SU(6) квадрупольфононный гамильтониан четно-четного остова.
 - Н¹ сферический квазичастичный гамильтониан свободного протона (1≈р); и нейтрона (1=n);
 - Н_{РVI} ~ Гамильтониан взаимодействия между частицей и нолебанием для протонов и нейтронов, Н_{РVI}=Н_{DYN}+Н_{EXC}, где Н_{DYN} динамическая, Е_{EXC} - обменная часть взаимодействия; Н_{RES} ~ Гамильтониан остаточного р-п взаимодействия,
 - ^HRES^{≈H}SDI^{+H}SSI^{+H}SS^{+H}QQ, где SDI, SSI, SS и QQ означают соотватственно поверхностные дельта и с⊓ин, спин-спин и квадруполь-квадруполь взаимодействия.

Детальное описание гамильтониана (6) можно найти в сообщении [6].

Диагонализация проводилась на базисные состояния |(j_pj_n)I; NR; J>, где j_p, и j_n полный угловой момент протона и нейтрона соответственно, I равнодействующий предыдущих двух моментов, N число, R угловой момент квадрупольных фононов, J угловой момент состояния.

Параметры расчетов были следующие.

Модельное пространство

Мансимальное число нвадрупольных фононов: 2.

(Предварительные расчеты поназали, что полный добавочный

- вилад трехфононных компонентов в волновой функции чистого
- мульмиплета был свего лишь неснольно %-ов.)

Энергия фонона: 1,2 МэВ (гармонический вибратор).

- Вероятности заполнения взяты из систематини
 - экс⊓ериментальных данных [8-15]: V²(πр_{1/2})≠ 0,78, V²(πр_{3/2})= 0,9, V²(πf_{5/2})= 1,0, остальные авличины см. в табл. 1.

Квазичастичные энергии"

- для протонов: $E(\mathfrak{K}_{9/2})=0$, $E(\mathfrak{p}_{1/2})=1,45$, $E(\mathfrak{p}_{3/2})=1,31$, $E(\mathfrak{f}_{5/2})=3,29$ MeV, с ноторыми можно было репродуцировать низнолежащие состояния ¹¹³In, для нейтронов: $E(\mathfrak{s}_{1/2})=0$, $E(\mathfrak{d}_{3/2})=0,37$, $E(\mathfrak{d}_{5/2})=0,91$,
- E(g_{7/2})≖0,93, E(n_{11/2})≈0,46 MeV, произведены из данных ¹¹⁵Sn так, чтобы правильный порядон мультиплетов репродуцировался в ¹¹⁴In.

Параметры связи между нунлоном и остовом ядра:

Г_р=0,72 МэВ, получен из расщеплении тв́_{9/2} однофононного мультиплета ¹¹³In,

Ар=0, т.е. предположены только нейтронные фононы (Z почти магическое).

- Г_п=0,31 МэВ (подобрано н мультиплету тб_{9/2} vĥ_{11/2} в ¹⁾⁴In),
- Λ_п≖0,83 (оценен из формулы Λ_п≃ľ_n √Ñ, где № число валентных нунлонов. Моррисон и др. [36]).

Остаточное взаимодействие:

близнодействующие номпоненты: V_{крт}= -0,427 МаВ.

V_{SSI}⁼ -0,047 МэВ, из систематики энспериментальных данных (Денин [37]), предполагая смесь типа Росенфелда; компоненты фононного обмена: V_{SS} =0,047 МэВ, V_{GĀ}-0,212 МзВ

(приведены в соответствии с вышеуназанной энергией фонона и с величинами Г_р и Гр).

Энергия, спины и четности уровней полученные в результате расчетов, а танже главные компоненты волновых функций приведены в таблице 2. OTQM запновые функции обычно имеют много компонентов, потому что учитывались и одно- и двухфононные возбуждения. Сила приведенных главных компонентов является суммой сил полученных для разных фононов.

ОТОМ энергии уровней, имеющием энспериментальные данные, а танже теоретические результаты Гунстерена [38] поназаны на рис. 9.

В модели использованной Гунстереном протонная дырна была связана с волновой функцией число-проенционной нейтронной квазичастицы предположением, что 2=N=50 в остове ядра. Пространство оболочечной модели составлялось из пяти подоболочен для протонной дыски и из восьми подоболочен для нейтронов. Взаимодействие было рекормализированиого типа Шиффера.

По ОТОМ расчетам расщепление энергии мультиплета имеет приблизительно параболическую форму, вызванную доминирующей ролью Н_{лум} во взаимодействии (1).

При мультиплетах т $\vec{g}_{9/2}v\vec{s}_{1/2}$, т $\vec{g}_{9/2}v\vec{g}_{7/2}$, т $\vec{g}_{9/2}v\vec{d}_{3/2}$, $\vec{z}_{9/2}v\vec{d}_{5/2}$ и $\vec{g}_{9/2}v\vec{h}_{11/2}$ можно идентифицировать = 18 состояний = энспериментальными уровнями. Средненевадратическое расхождение ОТЭМ энергий уровней от экспериментельных денных является =60 не8, оно иесколько меньше чем при расчетах по параболическому правилу (=80 не8). Улучшение обязано главным оброзом учету H_{SDI} взаимодействия. Сила главных компонентов ОТQM волновых функций (см. габл.2) в большинстве случаев совпадавт (в пределах «20 %) со силами приведенными Гунстереном. Большие расхождения обнаруживаются только при 4^{*}, 5^{*} и 6^{*} состояниях, что вызвано связью частицы с колебанием учтенным в ОТQM расчетах.

С программой ОТQM мы вычисляли маснитные дипольные моменты 1_1^+ и 5_1^+ состояний 114 In, потому что они известны из энспериментов и расчеты являются чу ствительной пробой добротности волновых фуннций. В расчетах использовались $g_R^{=Z/A}$ и $g_s^{=0.5}$ $g_{s,cBob}$. параметры (и для протона и для нейтрона). Результаты следующие:

Состояние J ^T	^µ отом (я.м.)	^Ц эксл (я.м.)	^µ адд (_{я.м.)}	μ _{reop} [12] (8.M.)	µ _{теор} [38] (я.м.)
114 In 1^{+}_{1}	2,82	2,815 <u>+</u> 0,011 [39]	3,04	2,837	2,93
5 ⁺	4,66	4,658 <u>+</u> 0,014 [40]	4,61	5,028	4,45

Здесь р_{адд} означает р величины, вычисленные с помощью аддитивного соотношения [41] из экспериментальных магнитных дипольных моментов соседних ядер с нечетнымимассовыми числами.

Нан следует из изложенного, начальные результаты полученные с программой ОТQM обнадеживающие. В дальнейшем мы будем распространять расчеты и на более легние нечетно-нечетные ядра In.

Часть экспериментов проводилась на цинлотроне Университета Ювяснюля (JYPL, Финландия). Мы благодарны д-р А. Пассоя и его сотруднинов за эффективное сотрудничество. Авторы признательны также проф. В. Паару, д-р С. Бранту и д-р Д. Вретенару (Загребский Университет, Югославия) за предоставление программы ОТQM и за полезные обсуждения.

- 10 -

Институт ядарных исследований Венгерсной Академии Наун, Дебрецен

Литература

- 1. Paar V., Nucl. Phys. A, 1979, v. 331, p. 16.
- Pényes T., In-Beam Nuclear Spectroscopy, ed. Dombrádi Zs., Fényes T., Budapest, Akadémiai Kiadó, 1984, v.1, p.67.
- Timár J., Fényes T., Kibédi T., Passoja A., Luontama M., Trzaska W., Paar V., Nucl. Phys. A, 1986, v. 455, p.477.
- Krasznahorkay A., Kibédi T., Timár J., Fényes T., Passoja A., Julin R., Kumpulainen J., Paar V., ATOMKI Ann. Rep., Debrecen, 1986, p.5.
- Timár J., Kibédi T., Krasznahorkay A., Fényes T., Passoja A., Paar V., JYFL Ann. Rep. Jyväskylä, 1986, p. 50.
- Paar V., In-Beam Nuclear Spectroscopy, ed. Dombrádi Zs., Fényes T., Budapest, Akadémiai Kiadó, 1984, v.2, p. 675.
- 7. Stelson P.H., Grodzins L., Nucl. Data A, 1965, v.l, p.21.
- 8. Fleming D.G., Can. J. Phys., 1982, v.60, p.428.
- 9. Calboreanu A., Mancaș S., Nucl. Phys. A, 1976, v.266, p.72.
- Emigh R.A., Fields C.A., Gartner M.L., Samuelson L.E., Smith P.A., Z. Phys. A, 1982, v.308, p.165.
- 11. Hjorth S.A., Ark. Fys., 1967, v.33, p.183.
- Van Maldeghen J., Heyde K., Sau J., Phys. Rev. C, 1985, v.32, p.1067.
- 13. Rosner B., Phys. Rev. B, 1964, v.136, p.664.
- 14. Markham R.G., Fulbright H.W., Phys. Rev. C, 1974, v.9, p.1633.
- 15. Harar S., Horoshko R.N., Nucl. Phys. A, 1972, v.183, p.161.
- Blachot J., Husson J.P., Oms J., Marguier G., Hoas F., Nucl. Data Sheets, 1981, v.32, p.287.
- 17. Rabenstein D., Harrach F., Vonach H., Dussel G.G., Perazzo R.P.I., Nucl. Phys. A, 1972, v.197, p.129.

- Schreckenbach K., Suarez A.A., Von Egidy T., Z. Naturforsch., 1973, v.28a, p.1308.
- 19. Alexeev V.L., Emelianov B.A., Kaminker D.M., Khazov Yu.L., Kondurov I.A., Loginov Yu.E., Rumiantsev V.L., Sakharov S.L., Smirnov A.I., Nucl. Phys. A, 1976, v.262, p.19.
- 20. Moorhead J.B., Cohen B.L., Moyer R.A., Phys. Rev., 1968, v.165, p.1287.
- 21. Hjorth S.A., Allen L.H., Ark.Fys., 1967, v.33, p.121.
- 22. Eibert M., Gaigalas A.K., Greenberg N.I., J.Phys. G: Nucl. Phys., 1976, v.2, p.L203.
- 23. Peker L.K., Nucl. Data Sheets, 1980, v.29, p.587.
- 24. Kohno T., Adachi M., Taketani H., Nucl. Phys. A, 1983, v.398, p.493.
- 25. Emigh R.A., Anderson R.E., Samuelson L.E., COO-535-766, 1978, p.64.
- 26. De Gelder F., Jacobs E., De Frenne D., Nucl. Data Sheets, 1983, v.38, p.545.
- 27. Hagn E., Zech E., Eska G., Z. Phys. A, 1981, v.300, p.339.
- 28. Eibert M., The Proton-Neutron Interaction in Odd-Odd Indium Nuclei, Thesis, State Univ. New York, Binghamton, 1977.
- 29. Béraud R., Charvet A., Duffait R., Meyer M., Genevey J., Thréherne J., Genoux-Lubain A., Beck F., Pyrski T.,
 - J. Phys. /France/, 1980, v.41, p.Cl0-159.
- 30. Alexeev V.L. et al., Nucl. Phys. A, 1978, v.297, p.373.
- 31. Emigh R.A., Fields C.A., Gartner M.L., Samuelson L.E., Smith P.A. Z. Phys. A, 1982, v. 308, p.165.
- 32. Kocher D.C., Nucl. Data Sheets, 1976, 7.17, p.39.

17
EDY?
x
[6-15
акацгй
3 y 6

∃E¢Ç

внагае

COCT

ó⇔лa

Систематика

61

теорегичесних

ž.

OCUBON DO DE

систематини

29

114 49 ^{In} 65	$\frac{15}{A} \approx 0, 13$	8,7	1145n: 4,1 1165n: 3,8 1145n: 3,8 1146d: 25,5	0,87			0,70	0,82	0,23	0,22
112 49 ¹⁶ 163	$\frac{15}{A} \approx 0,13$	8,7	112sn: 5,1 114sn: 5,1 112sn: 4,1 112cd: 21,4	0,87	•		0,70	0,78	0,17	0,18
19ult:	$\frac{15}{A} \approx 0.13$	s, 1	112 _{Sn: 5,1} 110 _{Cd: 19,4}	0,87			0,63	0,70		0,17
rt _{GS771}	$\frac{15}{A} \approx 0, 12$	Q	1205n: 4,1 1225n: 4,7 1225n: 4,7 122Te: 22,7		0,03	0,05			EE,0	0,41
1130 55 69	$\frac{15}{A} \approx 0, 12$	-0	118sn: 4,2 120sn: 4,1 120sn: 4,1 120re: 19,7		0,03	٥, ٥5			0,33	0,23
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	оне ем выннаго	g vrosegreddad Bu	2 и Е(2]) далных		бате фО	риули У	2 €3 62 B	2/ħw2.		
C ox	CHE SERVER	> /ATA: 0, 202 2000	57 XNHOBYNJBODG1 -		1010101	בבם הבב	ם כחרים		המחע ורו	

иравилу параболичесному 2 1 ax pacsed c) napane'⊱u, v≎

.

0,29

0,30

0,82

2 2/11/1/

3/2

2 S

vg7/2

5/2

v d

97/2 ۲^{2**}

F.

d5/2

E I

19,22

,Z *

натурально метризации

r

пригонни сп. данным

0 I 1 U I 1 U I 1 U

ğ

<u>0</u>_

ø

Ндро

20

87

ò

3,8 4,2 10,1

из "на параме 1165 1165 1165 11650

5 8

0,13

ų

5

73¹¹61

- **BUNNUS** ۲

- 13 -
- 33. Adachi M., Matsuzaki T., Taketani H., Nucl. Phys. A, 1979, v.314, p.80.
- 34. Emigh R.A., Fields C.A., Gartner M.L., Samuelson L.E., Smith P.A., Z. Phys. A, 1982, v. 308, p.173.
- 35. Артамонов С.А., Исанов В.И., Изв. АН СССР. Сер.физ., 1979, т.43, стр. 2071.
- 36. Morrison I., Faessler A., Lima C., Nucl. Phys. A, 1981, v.372, p.13.
- 37. Daehnick W.W., Phys. Rep. (Review Section of Phys. Lett.) 1983, v.96, p.317.
- 38. Van Gunsteren W.F., Nucl. Phys. A, 1976, v.265, p.263.
- 39. Nuytten C., Vandeplassene D., van Walle E., Vanneste L., Phys.Rev. C, 1982, v.26, p.1701.
- 40. Lattimer W.W., Stone N.J., Hyp.Int. 1979, v.7, p.61.
- 41. Brussaard P.J., Glaudemans P.W.M., Shell-Model Applications in Nuclear Spectroscopy, Amsterdam, North-Holland, 1977, p.256.

Результаты ОТОМ расчетов для неноторых низнолежащих уровней ¹¹⁴In

астаян _{УР} , кэ	⊀e 3 Jπ	Главн.комп. волн.функции*	Сила %	Состоя Е _{ур.} , кэ	ние В ј[¶]	Главн.комп. волн.функции*	Сила %
0.	1+	πg _{9/2} νg _{7/2}	100	789	2+	$\frac{\pi g_{9/2}}{2-d_{5/2}}$	84
317	2+		۶۶	870	3+	·· ··	89
501	3+	10 H	9;	1188	4 ⁺	11 II	77
822	4 ⁺	17 17	75	1173	5+	11 H	61
1136	5*	11 11	59			<u></u> g _{9/2} ,g _{7/2}	36
		<u>≖</u> g9/2⊻d3/2	33	1158	б +	<u>∎</u> 89/2 ² 2 ^d 5/2	89
1197	6+	<u>m</u> g _{9/2} , g	86	630	7*	11 11	88
1208	7*	11 If	88	1160	2	<u>π</u> g _{g/2} νh _{11/2}	27
590	8+	TT 59	99	1		$\frac{\pi p_{1/2}}{\sqrt{5/2}}$	26
173	4+	<u><u></u>g/2^{vs}1/2</u>	58	1046	3	<u>π</u> g _{9/2} νh _{11/2}	54
[π ^g 9/2 ^{νd} 3/2	39	839	4-	11 11	99
153	5+	^{<u>m</u>g} 9/2 ^{∨5} 1/2	70	739	5	11 H	100
		<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	27	605	6	" "	100
908	3*	<u>m</u> g _{9/2} vd _{3/2}	85	544	7	19 97	100
842	4 +	<u>#</u> 89/2 ^{vd} 3/2	52	555	8	¥3 \$\$	100
ļ		<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	37	643	9-	17 17	100
545	5+	<u></u> ∎ g 9/2 ^{vd} 3/2	68	1056	10		100
		#89/2 ^{vs} 1/2	23	597	0	"p1/2"51/2	53
362	6+	#89/2vd3/2	81	650	1	11 P	54

* Приведены только компоненты с силой выше 20 %.

- 16 -

Подписи и рисуннам

Рис. 1 Схема энспериментов. НФ: намера фарадея, СМС: Si(Li)

е-спектрометр со сверхпроводящим транспортирующим магнитом, СМЛС: сверхпроводящий магнитный линзовый спектрометр электронов, ПД: пневматическая диафрагма,ПНВ пневматичесний кварц, ПМ: поворотный магнит, НЛ: клапан, НВЛ: квадрупольная линза, ВС: вакуумная система. Пп: поглотитель нейтроков, ПН: подвижный коллиматор.

Рис. 2 p-n мультиплетные состояния в ¹¹⁶In.

- а) Энспериментальные энергии (Е_{ур.}) и нонфигурации низнолежащих уровней ¹¹⁵In и ¹¹⁷Sn.
- b) и c) Результаты расчетов по параболичесному правилу. На абсциссе поназано I(I+l), где I-спин ядерного состояния.
- d) Экспериментальные низколежащие уровни ¹¹⁶In.

Ссылки см. в тексте.

- Рис. 3 p-n мультиплетные состояния в ¹¹⁴In. Дальнейшие объяснения см. под рис. 2 и в тенсте.
- Рис. 4 p-n мультиплетные состояния в ¹¹²In.

Дальнейшие объяснения см. под рис. 2 и в тексте.

Рис. 5 р-п мультиплетные состояния в 110 In.

Дальнейшие объяснения см. под рис. 2 и в тенсте.

Рис. 6 р-л мультиплетные состояния в ¹²²sb.

Дальнейшие объяснения см. под рис. 2 и тенсте.

- 17 -

Рис. 7 р-л мультиплетные состояния в ¹²⁰Sb.

Дальнейшие объяснения см. под рис. 2 и в тенств.

Рис. 8 Энергии низнолежащих возбужденных уровней (E_{ур.}) ¹²²Sb в зависимости от I(I+1), где I - спин состояния.

Рис. 9 Энергин ниэнолемещих уровней ¹¹⁴In (E.d.

- а) и b) Теоретичесние результаты Гунстерена [38].
 - На абсциссе показано J(J+1), где J спин состояния.
- с) и d) Результаты ОТQM расчетов.
- е) Энспериментальные результаты.

р-л МУЛЬТИПЛЕТНЫЕ СОСТОЯНИЯ В ЛЕГНИХ НЕЧЕТНО-НЕЧЕТНЫХ ЯДРАХ Іл и Sb. Фенеш Т., Домбради Ж.,Нраснахорнаи А., Нибеди Т. и Тимар Я. Изв. АН СССР. Сер.физ., 198.., т. , №

Атомные ядра ^{114,112,110,108,105} In изучались с помощью номпленсных <u>у</u> и в спентроснопических матодов в (p,n<u>y</u>) и (<u>a,ny</u>) реакциях. Расчитано растепление энергий неноторы: p-n мультиплетов ^{116,114,112,110} In и ^{122,120}Sb с помощью параболичесного правила, выведенного из иластер-вибрационной модали. Расчеты дают хорошее описание изученных энергетических уровней. Наантовые харантеристики состояний ¹¹⁴ In, а также волновые функции уровней и маснитные дипольные мощенты некоторых состояний расчитывались по **ОТОМ с**рограмме. Результаты находятся в хорошем согласки с энспериментальными данными. КАНАЛЫ ЦИКЛОТРОНА, КАМЕРЫ РЕАКЦИИ, СПЕКТРОМЕТРЫ, ИЗМЕРЕНИЯ

Рис. 1.

Рис. З.

,

- 23 -

Рис. 5.

Рис. б.

- 24 -

.

ſ

1

٠

.

Рис. 8.

.

Рис, 9.

- 27 -

4

÷

2

1

Kiadja a Magyar Tudományos Akadémia Atommagkutató Intézete A kiadásért és szerkesztésért felelős Dr.Berényi Dénes, az intézet igazgatója Készült a Kinizsi Szakszövetkezet Nyomdájában

.

÷