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Abstract. The a+d and t+т cluster structure of Li is described

in a microscopic a+d cluster model through quantities that en-

ter into the description of cluster fragmentation processes.

The states of the separate clusters a, d, t and т are described

as superpositions of Os Slater determinants belonging to dif-

ferent potential size parameters. The model state space of Li

is a tensor product of the a and d cluster state spaces and

the statt space of zero-orbital-momentum relative motion, re-

stricted by antisymmetrization. To describe both the Li and

fragment states realistically, we constructed nucleon-nucleon

forces optimized for the model state spaces used. The frag-

mentation properties calculated are the g.s. fragmentation
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(or reduced-width) amplitudes, their squared Fourier trans-

forms, the corresponding potential overlaps, the spectro-

scopic factors Sai , S t T
 and the ad asymptotic normalization

constant Ц^. The forces constructed reproduce the energies

and charge radii of Li as well as of the fragments excel-

lently. The fragmentation properties predicted ;;•/ them slight-

ly differ from those calculated with some forces of common

use provided the latter are modified so as to reproduce the

a, d and Li energies. The fragmentation properties change

moderately in comparison with simpler versions of the cluster

model. The full model yields 5^=0.93, S
tl
_=0.58 and £^=3.3.

The results are consistent with phenomenological estimates

except for C,j. The shapes of our od fragmentation amplitudes

are in accord with a+p+n three-body calculations but our S„j

and Cai are substantially larger. We attribute this discrep-

ancy to the neglect of the Pauli effects in the usual three-

-body formula for the ad fragmentation amplitude. We give a

formula which contains the necessary remedy.



1. Introduction

It has been a challenge for some time both for experimentalists

and theoreticians to understand the cluster structure of the nu-

cleus Li. The main experimental tool invoked is quasielastic

cluster knock-out reactions ), while the theoretical efforts em-

brace all versions of the cluster model ). It has been conjec-

tured that the g.s. of Li is dominated by the two overlapping ' )

configurations a+d and t + т (т= He). This initiated the use of
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four-nucleon ) and, to a lesser extent, three-nucleon ) transfer

reactions from Li to probe the cluster structure of other nuclei.

. The link between the models of knock-out, transfer as well as

direct radiative capture ) reactions and structure theory is most

conveniently ) established through the fragmentation amplitudes

(or reduced-width amplitudes), which are the overlaps of the g.s.

nuclear wave function with those of the free fragments. The norr:

squares of the fragmentation amplitudes, the so-called spectro-

scopic factors, arc used to characterize the fragmentation prop-

erties in an integrited iorm.

The fragmentation properties -,.f Li have been studied i ri

micr .-;copic as well as semi-microscopic models. The former in-.-l'-Kle

the . irmonic-oscillator <h.o.) i*d model ) and dynamical cluster
which assume a pure (a+d) ) and the mixed {-j+d, ) or

' • 'Не+р) ' ) configurations, while the l a t t e r include the

3 + pf:> three-body models " Ъ) . There is a systematic difference

between the predictions of these two types of models. Whiic the

microscopic models give ad spectroscopic factors ( 5л^) around

unity, the three-body models yield S ĵ =0.5 ; 0.75.
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The experimental estimates cannot decide between these two

predictions. The results of recent high-energy (E>> 100 MeV)

kinematically complete quasi-free knock-out experiments support

the microscopic models. In particular, the (p,pd) data of

Hitching et al. ) (E =590 MeV) reanalysed ) result in 5^=1.08,

the (a, 2a) data of Dollhopf et al.
1 7
) [E =700 MeV) yield S

Kcl
=1.05,

and the (p,pd) data of Albrecht eX_al-
1 8
) (E =670 MeV) give

19
S_

d
=1.08. The radiative capture experiment of Robertson et al. )

takes a medium position with 5^=0.85. The lower-energy (£ =100 MBV)

(p,pa) data of Roos et al. ) , however, lean towards the three-

-body models (S_d=0.58). Further information on the spectroscopic

factor is obtained by a requirement of consistency with the values

of the asymptotic normalization constant extracted from elastic

scattering. This requirement leads ) to S^j^O.42, which, again,

favours the three-body models. As to t+т clustering, the relevant

(i.e. microscopic! models yield ' ) values S
i r
= 0 . 5 S ^ , while

the analyses of experiments do not exclude an opposite relation-

ship. Namely, the compnrati'/э analyses of (p,pa) and (р,рт) ex-

periments by Roos et___a_!•
 2 2
 ) produce Sét_-0. 73 S ^ or S(r =1. 35 S_,,

depomiing on the assumed snap'1 of the fragmentation amplitudes.

Fjrtr.ernorc, the radiative cmtjre data of Young et .j 1. ' ) and

Ventura et _aj_. ) yield tho surprisingly high values of S(r=0.69

.rid 0.79, respectively.

The i ii:crej;- a:icii'*s on '.iwten the^i1 expcrimen ta 1 results arc

genuine- ,jr> the exper i men t-ii errors arr- -.'ostly below 1o ».. The

d i á c r e p a n -;ei. r:ay r.:'<- p a r t l y • r- •••••-••il';= '-n '-''•'•'• r e a c t i o n

mechanism. It war, jr. ,,rJ<T to ?u: ̂ y M»: reaction mcjh.mi sn that,

vecy recently, electron borab-'irdne.' *. ^ .-. ".sec! h"7 L'nt
 ;'J: al. ) to
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bring aDOut knock-out reaction. Their (e,ed) experiment, perform-

ed at £"=480 MeV, resulted in SeJ=0.73iO. 09. Most analyses of

knock-out ) and radiative capture reactions rely upon assumptions

on the shape of the fragmentation amplitude, just as transfer re-

actions2 ) do. In fact, some tests '' ' ) show that these anal-

yses depend critically on these assumptions. Better justified assump-

tions can only be based on better theoretical calculations. Im-

proved theoretical calculations of the fragmentation amplitudes

are thus needed not just to understand the experimental estimates

of these functions but also to help further analyses of experi-

mental data.

Our aim in this paper is to pro/idcj an improved microscopic

calculation for the characteristics of the fragmentation. In our

9 5

earlier work ) we found that the admixture of He+p clusterization

to the a+d component has little effect not only on the g.s- energy

but also on the a+d fragmentation properties. On the other hand,

we found that the energy can be improved substantially by in-

cluding the breathing excitations ) of a and d. It is thus im-

portant to see what changes in the fragmentation amplitudes are

caused by this improvement on the model, and that is' the subject

of this paper.

The physical ingredients of the model are summarized in sect.2.

To produce good estimates for the fragmentation properties, the

description of the separate fragments also has to be realistic

and consistent with that of the composite system. Interactions

that satisfy this strict condition are presented in sect.3. The

results are presented in sect.4 and are further discussed in

sect.5.

6 -

2. The model

A general description of our model in technical terms was given

2 fi

in ref. ) , Here we only recall its essentials to expose the forth-

coming considerations and to explain our notation. We choose a

different presentation now to elucidate the physical aspects of

our concern.

To describe Li, our model uses the wave-function ansatz

I'i.i)} , (2.1)

where *i/ and у depend on the cluster internal and relative

coordinates, respectively. The functions •y- are antisymmetrized

and *A = M ltLjv{-) T is the rest-antisymmetrizer, where /V is the

number of terms in Л (for a+d, AN6!/4!2!). if the sum in (2.1)

runs over a complete set of cluster intrinsic states and ^ are

chosen appropriately, (2.1) may be an exact expansion. A reason-

able and tractable truncation should keep the g.s.'s of the in-

dependent clusters, ^ ( и ) and -у-Дс(), and, to allow for the dis-

tortion of the clusters in each other's field, a few excited

states. If the d-state admixtures, are neglected, as they will be,

the spatial parts of both functions -J/ are spherically symmetric.

To construct the functions ф we solve the problems of the free

clusters A=a,d on a basis {<tV^)J of translation invariant anti-

symmetrized Os h.o. states of different size parameters p^

(2.2)•f
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The basis states

determinants Vn

) are related to the corresponding Slater

centred around -3* as

(2.3)

where *Г is the c m . coordinate of cluster A of mass number A.

Inserting (2.2) in (2.1), we get

(2.4)

with K1(-í.*)=£llci*
)c£'Xi<(£«<*) and t«i • +*- ±"- We approximate

•f^i with a combination of orbital-momentum projected shifted

gaussians centred around a set of discrete points ^w,

where

(2.5)

(2.6)

(For simplicity, we suppress the coupling of the spin with the

orbital momentum.J It is now useful to employ the identity

where § ji"1-?** ' ~'i~i" ar"3 í"< Í* are any vectors obeying

Í" í^'í^' s o t n e v m aY be identified with the cluster c m . coor-

dinates introduced in (2.3). Substituting (2.7) into (2.5) and

!2.5) into (2.4), and using (2.3), we obtain

with

(2.8)

(2.9)

where

(2.10)

Eq. (2.8) contains a linear combination of functions ?t t char-

acterized by different values of the three parameters ft", eJ and

j. Thus, ~t can be regarded as the trial function of the gener-

ator-coordinate (GC) method (GCM) with the three GC' s б", 6
J
,

•i=|j.[ discretized. The model requires the solution of the Hill-

-Wheeler equation

One can recognize that §
 t
 are expressed in terms of Slater

determinants, so that the normalization and himiltonian kernels,

•̂fijt I Ф
4
'j'l')

 an<
3 ^$»jkl 41 §1.\'1,'У • т а

У
 Ь е

 calculated with the

29

well-known GC techniques ). It is seen that the translation in-

variant basis states ít,i< are related to the Slater determinants

§?t . through an integration over 5. Since 5 is a common dis-

placement vector of the two clusters, this integration can be in-

terpreted as a Pe: erls-Yoccoz momentum projection ) to c m .

momentum zero.

The problem of елсп separate cluster, formulated in (2.2),

leads to an equation similar to (2.11), with the single GC f> - £>"

or ji = 3* .

With the expansions (2.2), the assumption (2.1) amounts to

allowing for three degrees of freedom: the breathing vibrations

and the relative motion of the two clusters. Thus the physical-

ingredients of our model are nut different from other version:; of

the cluster distortion models " ) . Tt would add to the heurist•с

appeal of the model 'if the clustrrn were >jeen to be oxplicity
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deformed in each other's field ). It was shcm, however, that

the inclusion of cluster deformation is equivalent to inclusion

of a combination of one-particle one-hole cluster excitations

that has a large overlap with a breathing excitation ).

In order that (2.1) may represent the breathing-cluster pic-

ture faithfully, the sets of states {Ф„.(
л
),•"• = *>•••, ̂  ? {A=a,d)

and {ViÁ£mi- áj > ̂ -I,-.,^] should be reasonably complete. To

this end, we optimized the choice of the discretized values of

the GC's. For fP^j such an optimization may be viewed as a gener-

alization of the often quoted stability condition ), and was in-

deed found very effective. E.g., with the Volkov 2 (V2) force )

the g.s. energy of the deuteron with 14 equidistant ^ values is

Б
А
=-0.600 MeV [ref. )], while 5 optimized values yield £^ =

= -0.6076 MeV, in fair agreement with the exact value, E^= -0.6082

MeV. In general, to achieve a convergence of Е
д
, E

t
, E

r
 and Е

и

within H 2 keV, it was sufficient to take Л/̂ =5, A/
t
 = W

r
=4 (with

В »fl
r
) and W„=3. We adopted these values and the corresponding GC

values for the two-cluster nuclei as well. A variation of the [•vj

values in Li showed that an equidistant set is near the optimum,

and the adopted set, 1,2,...,12 fm, is good enough to yield a

similar accuracy.

It looks likely that the L * 0 admixtures to d. and Li play a

minor role in the decomposition properties of Li. We therefore

used central forces.

The breathing cluster model comprises a range of simpler

models as special cases, two of which will be considered here. By

choosing N„=N(=1,
 w e
 g

e
t a model, which is equivalent to the

conventional resonating group model (RGM) with no distortion. This
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we shall call the "RGM-type" model. If, furthermore, we fix the

single f>" to be equal to Ь^, and choose it so as to minimize

Е„
+
?^, we fall back to the conventional GCM ("GCM-type" model).

3. The interaction

3.1. SURVEY OF FORCES OF COMMON USE

The fragmentation of a nucleus is well-known to be very sen-

sitive to the separation energy. In our case it is therefore im-

portant to reproduce Eri-E ( Ы)-Ех-Е^ and E
tt
.= E( Li)-E£-E"r. Thus

the energies of the individual clusters should be correct, apart,

possibly, from a constant shift, which should be compensated for

by a similar shift in E( Li). We have found, however, that the ad

fragmentation amplitude is sensitive to the size of d as well ),

which, in turn, strongly depends on £^, owing to the weak binding

of d. This implies that all energies EK, Ej, Ef, E r and E( Li)

should be correct in an absolute sense. This imposes a very strict

condition on the interaction to be used.

From this point of view, we have examined the interactions of

34common use. The forces considered are the Volkov forces )

(VI,...,V8) the Brink-Boeker forces ) В.. and B
2
, the modified

version ) of force 2 of Hasegawa and Nagata ) (MHN) and three

forces proposed by the Minnesota group, viz. those of Thompson

and Tang
37
'

38
) (TT1 and TT2) and of Thompson, LeMere and Tang )

(TLT). The resulting binding energies and rms charge radii of the

single-cluster nuclei are collected in table 1. In all these cal-

culations the basis was optimized for each force.



- 11

It is seen that none of the forces reproduces all energies

and radii satisfactorily. This is not surprising, since a calcula-

tion on a truncated model space always requires an effective in-

teraction particular to the function space employed, and none of

the forces considered here has been constructed so as to match

just our model space. In particular, the Minnesota forces were

constructed so as to imitate the interaction of the free nucleonr.

Thus they give realistic results for the deuteron, whose function

space in our model is virtually complete, but not for the other

single clusters. In order that such a force may give realistic

results for the larger clusters as well, it has to show the cor-

rect nuclear saturation, which property also depends on the func-

tion space. The TTl and TT2 forces are seen to overbind the a par-

ticle; in fact they show proper saturation in the more restricted

space of a single h.o. model of realistic size parameter. The MHN

force gives too large bindings for similar reasons. It is an ef-

fective force whose parameters were tuned so as to describe the

deuteron in a single h.o. model. The Volkov and Brink-Boeker forces

are effective forces devised for broader ranges of application.

Considering that their parameters were extracted by fitting to the

properties of larger nuclei and nuclear matter in completely dif-

ferent models, their performances may be said remarkably good.

[Thn В^ and B^ interactions ), however, are not considered here

because they grossly overbind the nuclei of our interest.]

It should be noted that the degrees of discrepancy in the

energies and radii are correlated, especially for the deuteron.

We tested this correlation by varying the overall strengths of

the interactions. By making E^ correct in this way, we always

- 12

obtained reasonable values for tha r.idius ^ as well. This find-

ing points to the possibility of constructing interactions more

suited to the cluster distortion models.

We used effective interactions of three types. Firstly, we

constructed interactions by carefully deliberated optimization

procedures. Secondly, to test the interactions of the first typo

against something more accepted, we compared them to modified

versions of some of those given in table 1. And thirdly, to test

to what extent our prescriptions hinge on the cluster distortion

picture and to provide a basis of objective comparison with sim-

pler cluster models, we constructed interactions appropriate for

cluster models without distortion. These three types of inter-

actions will be presented in subsections 2,3 and 4, respectively.

3.2. OPTIMIZED INTERACTIONS

We have seen that the interactions of common use do not re-

produce all cluster energies and radii in the breathing model,

but there is hope that more appropriate interactions can be con-

structed. Attempting this, we chose the potential form

with

(3.1)

(3.2)

where 7̂  P. and P, • arc the coordinate-, spin- and isospin-ex-

change operators, respectively.
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It is easy to see that the potential kernels <ф^| Z ^

of the free Os clusters only depend on two combinations of the

exchange mixtures,

f = W+ M and i^B + H . (3.3)

In particular, the kernels of the singlet and triplet nucleon

pairs are proportional to ̂ - t^ and ^ + / , respectively, while those

of t, T and a are proportional just to £. The form of (3.1) gives

us freedom to fix !*•(!,= 1.

The nuclear potential kernel of a system of an a particle and

another Os cluster depends on what the kernels of the constituents

depend on and, in addition, on the combination

^1 = " • (3.4)

42
For <x + t(t) this was noted by Brown and Tang ) , but, to our

knowledge, it has not been observed in its full generality. We

therefore prove this statement. The proof, relegated to the ap-

pendix, is constructive in that it sets up a most economical frame-

work for calculating the potential kernels.

This beha-'iour of the kernels allows one to determine the po-

tential parameters step by step. We determined £, Vf , Vt , af--and

a by fitting them to the measured energies and rms charge radii

of the independent s-wave clusters simultaneously. In the course

of this parameter fitting we also constructed the optimal cluster

bases. In fact, because of the dependence of the optimum bases

on the interaction, a basis optimization had to be carried through

for each nucleus in each step of the variation of the force par-

ameters. We then fixed v so as to have £( Li) or, for test pur-

- 14

poses, £( Li) exact Wj^VÍ Li) or -n-^l Li) ] . [We included the

Coulomb potential in the two-cluster calculations with the method

4 3
described in ref. ).] One combination of the exchange mixtures

remains undefined. This free parameter facilitates future appli-

cations for, depending on the problem, it can be adjusted e.g. to

odd-L nucleon-nucleon phase shifts or to the energy of a more

complicated nucleus.

The parameters of four versions of the force, each with the two

different f\, are given in table 2. We label them with symbol D to

express that they are tailored for a distortion model. The forces

D,, D, and D were constructed by fitting to the properties of d,t

and a, of d,t,T and a and of d,T and a, respectively. The version

D~ is similar to D., but contains only Wigner and Majorana terms,

just like the Volkov forces. It is interesting that the results

are rather insensitive to whether Í is smaller or larger than

unity; even the constraint \ = 1 applied in D' yields reasonable

results. Obviously, in applications in which the singlet np pair

plays a pr. niinent role, a version, like D , in which 5,^1, could

only be expected to give reasonable results.

The energy and radius values produced by the D forces are con-

tained in table 3. In the parameter search we found that it is

easy to achieve arbitrary accuracy in the energies, but an exact

reproduction of the radii would require more flexibility. The

agreement is still reasonable for the radii as well except that

the large difference between the measured -tT and -t-f , 0.18 or

0.28 fm, cannot be reproduced. In our model there is no way to

The Li radius values obtained by the D forces are more
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44,accurate than those obtained with the forces of common use"
1
"
1
) .

The D forces also reasonably reproduce the g.s. energies of He,

7 "7 ft

Li, Be and Be and the energy of the first excited L = 2 triplet

as well as the electromagnetic properties of Li ).

3.3. STANDARP FORCES MODIFIED

Given the breathing cluster basis, the D forces appear superior

to the standard forces discussed in sect. 3.1. Nevertheless, be-

cause of the ad hoc manner they v/ere constructed, it seems desir-

able to test them against the standard forces. The standard forces

considered have the form

) • t{K ' M/P/B.,?; - "?[ )Ч ехр (- (3.5)

The tests should concern the fraqmentation properties them-

selves. Since these are closely related to the energy values prod-

uced and the D forces produce the exact values by construction,

the comparison will only be fair if the standard forces are also

readjusted to some extent. The dependence of the potential matrix

elements on the exchange mixtures allows one to set the deuteron,

a-particle and Li energies by readjusting ^„* <
v̂
 (or rather V,),

f
v
 and

 /
n

v
, consecutively.

The parameters of the modified forces (prefixed M) constructed

in this way are given in table 4. In the cases of the Vl, V2 and

7V potentials, whose terms v have common mixture parameters, we

bimply renormalized X,, ^
v
 and -qY independent of v. For the Bj, B

2

and MHN potentials all V
v
 and ^

v
 were renorroalized, but the

 6
Li

energy was set by changing «i only. The treatment of the TLT force

- 16 -

was somewhat different. This force yields nearly exact E^, and

thus no provision was needed for £,. Complying with the conven-

ient form of the TLT force,

we set Е„ and E( Li) by readjusting Ц and -a, respectively.

The energies and radii calculated with the M forces are also

displayed in table 3. We see that the predicted values, viz. the

three-nucleon energies and all radii, are mostly reasonable though

they are, of course, less good in most cases than the values ob-

tained with the D forces.

3.4. INTERACTIONS FOR THE RESTRICTED MODELS

The simplifications involved in the restricted models change

the energies and hence spoil the fragmentation properties. This

may only be offset by changing the interaction at the same time.

We attempted to construct interactions, of the form of the D

forces, that are suitable for the "RGM-type" model. We found,

however, that there is not enough freedom in this interaction to

describe the deuteron and the other single-cluster nuclei simul-

taneously in'this model. We therefore included one moie free

parameter by allowing ^
t
 to be different frcm ^

f
 . The parameters

of the resulting force R are given in table 5; its predictions

for the energies and radii can be found in table 3.

We also tried to tailor one of the standard forces, V2 , for

the "RGM-type" model. The force patterned upon the MV2 force

yields, however, an unrealistic deuteron radius (1.66 fm), and
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therefore we dismissed this idea. In this model the sizes of the

separate clusters are obtained to be more realistic even with the

use of the original V2 force. This gave us the idea of replacing

the requirement of the correct binding energies with that of the

correct separation energy F
-lt
. This can be easily ful-

filled by a simple adjustment of r^ or, equivalently, of the

Majorana parameter M. It is this prescription that we adopted

for calculations in the GCM-type model as well. The values of the

M parameter of the V2 force that yield the correct separation

energy in the "RGM-" and "GCM-type" models are 0.46091 and 0.57573,

respectively. The calculated properties of the free clusters are

again included in table 3.

4. Fragmentation properties

4.1. DEFINITIONS

In this paper we only consider the fragmentation of the g.s.

of Li into the g.s.'s of the a+d and t+x fragments. We now

present fragmentation amplitudes, fragmentation strengths, po-

tential overlaps, spectroscopic factors and asymptotic normali-

zation constants. We had presented calculations for the amounts

of clustering and for fragmentation fronand into excited states

elsewhere
9
'

1 0
) .

The a+b (=o+d or t+т) fragmentation amplitude is defined in

configuration space as

(4.1)
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This function appears in Born and impulse-type approximations to

the transition amplitudes of cluster fragmentation processes ).

In a plane-wave impulse approximation the Li (c,ca)b-type knock-

-out transition amplitude is just proportional to the Fourier

transform

(4.2)

Thus the function

U^ K ' ' ^ ' ' (4.3)

g

which we call the fragmentation strength ), may be extracted

directly from the cross section in this approximation. The po-

tential overlap, defined as

( 4
.

4 )

description of ( Li,a) and ( Li,b) re-

43,

enters into the

actions in the post form of the distorted-vave Bom approximation'
1
"
1
).

We also calculate the spectroscopic factor

J-IG .(-O!
2
= {AV\C, ÚM 2- (4.5)

and the asymptotic normalization constant )

J ^ >С - li (L-D), (4.6)

where ^ is the asymptotic wave number of the ab relative motion,

•n is the Sommerfeld parameter of the ab Coulomb interaction and

U/is the Whittaker function. The constant С
л Ь
 can be determined

e.g. from a+b elastic scattering data.
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We calculated the amplitudes q JJ-) analytically using the

direct evaluation method based on Jacobi coordinates as is given

47

in ref. ). The Fourier transformation was also performed ana-

lytically. The potential overlap was calculated analytically with
47

the equation - of - motion method ).

All these fragmentation properties are interrelated and show

parallel variations between the different models and forces. It

is thus not necessary to present all of them for all these cases.

Since the amplitude a (-f) seems to be the most fundamental of

these quantities and, through its close similarity to an inter-

cluster "relative wave function" ) , its meaning seems the most

transparent, we shall carry through all comparisons in terms of

such amplitudes. Furthermore, since both the model and its sub-

models are tailored primarily for the investigation of the a+d

structure, their comparison for the t+т fragmentation is less rich

in implications. Therefore, we snail illustrate the t+т properties

more sparingly.

In subsect. 4.2 we compare the ad fragmentation amplitudes as

predicted by the breathing cluster model and its submodels. In

subsect. 4.3 we present calculations for all of the ad and tT

fragmentation properties in order to compare the results with

phenomenology, lor the fragmentation amplitudes and potential

overlaps phenomenology will be represented by local-potential

mod-dj.s used to analyse cluster transfer reactions. The fragmen-

ts. . jn strengths will be directly compared with knock-out c'.^ta *s

interpreted in the plane-wave impulse approximation. The sub-

section will be concluded with a comparison of the calculated

spectroscopic factors and asymptotic normalization constant with

various phenomenological estimates.
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4.2. DEPENDENCE ON PHYSICAL INGREDIENTS

In this subsection we shall illustrate the force and model de-

pendence of the fj.agmentation properties through examples for the

ad fragmentation amplitudes.

In fig. 1 we show а ,(•+•) as given by the breathing cluster

model combined with the D-, D,, D* and D, forces. In tart, the

resolution of the figure does not allow to distinguish the curves

produced by D
2
 and D^. Fig. 2 shows 9Л^~) calculated with rep-

resentatives of the M forces, and, for the sake of comparison,

with D~. The results with the M forces that are not shown here

are simple to summarize. The Q
 4l
('O functions produced by the MVl

and MV7 forces compare with the MV2 curve much the same as the D^

and D, curves do with D,. The MB
2
 curve also runs pretty close to

its kin, МЕ^, while the MMHN curve is virtually indistinguishable

from the MTLT one.

It is due to note here that the relationship between the tT

fragmentation amplitudes is very similar to that between the ad ones. We can

thus assert that the dependence of the fragmentation amplitudes in

the breathing cluster model on the choice of the force is not

significant provided the forces produce realistic energies and

»adii. The slight differences appear mostly in the "extension" of

thft function as may be characterized e.g. by the position of the

node. Conferring with table 3, one can observe a strict parallel-

ism between the change of the Li radius and the shift of the node

of q (•*')• Since the experimental radius is reproduced most ac-

curately by the D forces, it seems justifiable to regard the D

forces as the most realistic ones for the fragmentation properties

as well.
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The model dependence of a i is illustrated in fig. 3. Here we

chose the breathing model with the MV2 force as the reference case,

and we test the restricted models with the interactions intro-

duced in sect. 3.4. We see that there is a definite model depend-

ence. The "GCM-type" model with the V2 force (adjusted in -)-> to

give the correct a+d separation energy) cives a result substan-

tially different from the "RGM-type" model with the same force

(although it is readjusted). The discrepancy between the "RGM-

-type" model and the full model is much less. Moreover, the force

R, tailored for the "RGM-type" model, gives almost the same Q ,(.-+)

as the V2 force in the same model. We can thus interpret the dif-

ference of these two from the MV2 results as a genuine difference

between the "RGM-type" and the breathing model. We can see that

this difference is less significant than that caused by the in-

correct size of the deuteron in the "GCM-type" model. We should

add that the model dependence of a {#) is also very similar to

that of gKi('*') •

Having seen the model dependence of Q , with energetically

adjusted forces, it will be easier to appreciate the role of this

adjustment. In fig. 4 the MV2 result is contrasted with four

curves calculated with the original V2 force (M = 0.6): one in the

breathing model, one in the "RGM-type" model and two in the "GCM-

-type" model, one of which calculated without the Coulomb force.

We see that the differences are substantially larger than between

similar but energetically consistent q results. Moreover, the

smallest deviation from the MV2 curve is produced just by the

roughest model, the "GCM-type" model without Coulomb force. This

is so because the discrepancy in Q d(
+) is closely associated with
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the extent of disagreement in £ (see the caption of fig. 4).

Being a difference of binding energies, the value of EKd is not

informative of the quality of the approximation. It is to elimi-

nate this accidental element that the forces have been readjusted

in all other cases.

Other test calculations reveal that the cluster internal

energies have their effect primarily through the cluster size. But,

as we have seen in sect. 3.1, the cluster size is closely corre-

lated with the energy, unless unphysical constraints are imposed

upon the bases ( ф̂ («)} , (ф
}
(^) ) , which would lead to spuriously

large distortion effects ). Another interesting observation is

that the a amplitude is more sensitive to E , than to Et itself.

All these facts indicate that no reliable estimates can be made

for the fragmentation properties without the description of the

nucleus and each pair of fragments being correct simultaneously.

4.3. COMPARISON WITH PHENOMENOLOGY

Due mainly to the accessibility of the a+d structure to experi-

ment, the phenomenological estimates and models for the ad relative

motion are numerous. We have recently reviewed both the transfer-

й Я 9

-reaction ) and knockout-reaction ) works, and so now there is

no need to repeat this. Instead, we shall compare our results with

representative works, just as in the case of the tr motion, for

which the phenomenological models are scarce. To represent the

breathing model and its "RGM-type" approximant, we chose the

results with the D
2
 and R force, respectively. We include no

"GCM-type" гь. llts in these comparisons because, as was mentioned
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in sect. 3.4, there is no force to describe all subsystems simul-

taneously in this model.

48 9
Our present results improve on those reported earlier ' ) in

several respects. In ref. ) we showed a breathing-model calcula-

tion for Q j and <<j, in which the ctd separation energy was set

correct but the cluster internal states were not realistic (and

Q

the Coulomb force was neglected). In ref. ) we presented я ^ and

•£>i( in a "GCM-type" model (with no Coulomb force) but with the

He+p clusterization included. The results were reasonable be-

cause E ^ happened to be aimost -orrfct (cf. the caption of fig.4).

The effect of the He+p cluslei ization was found to be small, ar.i

had the separation energy been readjusted, it would have been

even smaller.

Figs. 5 and 6 show amplitudes and potential overlaps for the

a+d and the t+т fragmentation, respectively. The phenomenological

functions have been produced by local-potential cluster models as

specified by the radial Schrödinger equation

49
Strictly speaking ) , the phenomenological counterparts of a^

and -wab are ЛлЪ и-^ь and (Е
а Ь
- ̂ tj^ab

 и
»ь ' respe tively, where

A
a b
 is the RGM overlap operator belonging to the cluster internal

states y-^(a.), -y,
f
(b). Since, however, in actual reaction analyses

A
a b
 is invariably neglected, we have to regard ii,

b
 and (E-^,- ̂ *.ь)и«ъ

= Vb'Vb as the phenomenological approxiraants of tf
 b
 and -%^.

In fig. 5 we see that the model dependence is more pronounced

in <ч^
4
 , especially in the important asymptotic region, than in

<J
-<(
. It is, however, remarkable that the phenomenological model
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of Kubo and Hirata (KH) ) proposed for the analysis of (
6
Li,d)

reactions are closer to the prediction of the full model than to

the simplified one. Based on previous calculations
4 8
'

5 1
), we ex-

pect that the KH and D^ potential overlaps result in a-transfer

cross sections differing at most by a factor of 2. Applications

of our potential overlaps to ( Li,d) reactions are in progress
5 2
).

In fig. 6 we see that, in keeping with the difference between

the separation energies ( E^= -1. 474, Etv= -15.794 MeV) , the tT

amplitudes are more localized than the ad amplitudes. It is thus

expected that the tr amplitudes gain contributions mostly from

regions of the configuration space that are richly covered by

basis states. Thus, although their proper asymptotic fall-off

cannot be maintained by an a+d basis, on the whole they are ex-

pected to be realistic. The phenomenological curves, due to

Hamill and Kunz (HK) ), were used to analyse ( Li,t) reactions.

These curves imply a t+т motion that is smeared out to a sub-

stantially broader region than that implied by the microscopic

calculations. The node Dositions of both а (̂ ) and -иг {-<~) as
(ftr tr

well as the main surface slope of the potential overlap are at

larger 4~ values than the respective parts of the ad functions.

This is entirely unrealistic and must cause the three-nucleon

transfer cross section to be grossly overestimated. This expecta-

tion seems to 1-е confirmed by the result that the ( Li,t) cross

sections calculated with this phenomenological potential overlap

are 8C * 320 times larger than the corresponding zero-range esti-

mates, while for (u,p) transitions between *-.he same states this

ratio is close to unity
 J

) .

Experimentally deduced fragmentation strength functions are
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available both for the a+d and t+т fragmentations. Fig. 7 shows

the predictions, for ^Mi , of the D and R forces compared with

those extracted from quasielastic Li(p,pd) ' ) and (a,ad) )

knock-out reactions, and fig. 8 shovs ^
t r
 compared with (р,рт)

22
results ). Table 6 contains ad and tt spectroscopic factors and

ad asymptotic normalization constants. (The tails of the tT ampli-

tudes are not accurate enough to allow an extraction of Ci77.)

We see that the predictions of the breathing model for S and

Q hardly depend on the force. As for the model dependence of S,

we see that the cluster size has more significant effect than the

distortion, while for C^d this statement should be reversed. For

the spectroscopic factors the experimental estimates are somewhat

inconsistent with each other, and the breathing model may be said

to be consistent with their average, but the discrepancy in C
B J

is significant.

The disagreement in £ t r is wall understood. Roos et al. ) have

shown that at this low energy ( E =100 MeV) the "distortions" of

the projectile and ejectile waves are significant. (The quotation

marks are to distinguish this effect from the distortions of the

cluster internal states in Li.) The data of fig. 8 -are thus to

be compared with what is called the "distorted" momentum distrib-

ution ) rather than with -i,tr\k). The "distorted" momentum dis-

tribution is 4 to 6 times smaller than £ir(k) around к=О and has

no diffraction minima. It seems thus likely that a "distorted"

momentum distribution based on our structure calculations would

be consistent with experiment.

The agreement in -{.„^ is much better, and a minor "distortion"

effect of the same kind would improve this agreement as well. A
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shift of the weight of £,a(k) towards higher | к I values, which

seems to be required, could, however, be achieved by an improve-

ment of the structure model as well, viz. by explicit inclusion

of short-range nucleon-nucleon correlation in the wave function
45
).

This would, at the same time, enhance the extrema of Q ,(-+-) at

the expense of its tail, and thus would improve the agreement in

Сы± as well.

However, the recent (e,ed) knock-out data of Ent et al.
25
)

published after our preliminary reports ) shed some new light

on our results (fig. 9). This reaction is more suited to extract-

ing •£»*('*) because the "distortion" effects are smaller here55) .

Our results agree with these data better than with any of the

knock-out data obtained with nuclear probes. Moreover, it seems

very likely that allowance for the slight "distortion" effects

would further improve the accord. Indeed, Ent et al. have shown

that the "distortions" scale down the theoretical curves in the

region -0.2 fm <k<0.5 fm by about a factor of 2/3 and fill up

the dip. Such a change on our theoretical curve would certainly

bring it even closer to experiment.

The consistency of our i^i^) with the data of Ent et al.

indicates that these data imply an asymptotic normalization con-

stant Ca4 close to our value, 3.3. This apparently contradicts

the fact that Ent et al. fit their data with the semi-microscopic

fragmentation amplitude of Parke and Lehman ), which implies

0.4 = 2.12. Comparing this amplitude with ours, one can find that

in the tail region they are much closer to each other than the

ratio of the two constants C.j. This makes conceivable why the

two fragmentation strengths are not more different. The expla-



- 27 -

nation of the finding that the ratio of the tails differs from

tnat of the normalization constants is that Lehman et al. ' )

ignore the Coulomb force, and so they have to calculate C ^ by

comparing the tail of о j(+) with an exponential rather than with

a Whittaker function.

Having come across such a prominent Coulomb effect, we made a

few exploratory calculations with the Coulomb force neglected and

Е„
4
 restored by readjustment of the nuclear force. We found that

this prescription reduces C^d by about a factor of 2/3, just

enough to bring our prediction for C„j in full agreement with ex-

periment. Lehman etal., however, use force parameters that could

be expected to yield the correct E
<c(
 only if the Coulomb force

were included. Imitating such calculations, we get a reduction

by 5/6, which, again, would bring our predictions closer to the

experimental data. Based on these tests, it is fair to assume that

the apparently perfect reproduction of the experimental С>л value

by Lehman et al. ' ) is also an accidental side effect of the

neglect of the Coulomb force.

5. Summary, discussion and conclusions

We have described the cluster structure of Li in the breathing

cluster model in terms of quantities related to cluster fragmen-

tation experiments. We anticipated and subsequently demonstrated

tr,- importance of reproducing the correct energies and cluster

sizes. It is a major success of the breathing cluster model that

it is able to reproduce all these properties with the same simple

effective interactions (D,, D,, DÓ r D,) . A single-clusterization
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RGM-type model yields less good cluster energies and sizes and

requires more complicated and unconventional interactions (like R).

The breathing model with the D forces also reproduces the charge

radii [as well as the other electromagnetic properties )] of Li

substantially better than the single-clusterization models. Draw-

ing on these results, we believe that for the fragmentation prop-

erties the most reliable force is D [or, alternatively, the

"optimized force" "f ref. ) which is very similar to D 2]. It is

nevertheless reassuring that some of the widely used forces give

fairly similar results provided that they are modified so as to

reproduce E^, E^ and E( Li).

However pre-eminent the breathing model is, the fragmentation

properties have changed moderately in comparison with the single-

-clusterization models. This can be understood by noting that we

have always described Li and its fragments consistently. Test

calculations show that the fragmentation amplitude of an improved

Li state into a pair of more primitively described clusters dif-

fers a great deal from the amplitude of the fragmentation of the

equally primitive Li state, but the difference is much reduced

by introducing the same degree of sophistication into the de-

scription of the fragments. Owing to this effect, the ad spectro-

scopic factor and asymptotic normalization constant in the breath-

ing cluster model remain as high as 5^=0.93 and Cei = 3.3. [The

earlier48'6) figure 5
яА
=0.85 was obtained with the V2 force,

which is highly irrealistic for the free deuteron.] The tT spec-

troscopic factor is obtAine*. to be S
tr
=0.58.

The value S
Mrl
=0.9 3 accords with the recent high-energy knock-out

déitJ (tablo 6) . Discordant, with these results are, first of all,
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the three-body calculations (see table 7). Noble's estimate ),

5.^=0.54, which is based on dispersion relations combined with

the ci+p+n picture, suggests that these three-body models are

bound to predict such low values of БлЛ largely independent of

the details of the models. The value Sj=O. 73^0.09 , derived from

(e,ed) data ) might also be influenced by the use of the three-

-body model ) in the analysis. The other point of major disa-

greement is in the asymptotic normalization, whose accepted

value
5 4
) is S.

a
 = 2.15+0.06.

In an attempt to explain the discrepancies, we now give a

critical comparison of the breathing and three-body models. The

exact wave function may be written in the form [cf. (2.1)]

where the spin-isospin coordinates of p and n are suppressed for

simplicity.

The three-body model omits the summation over the a internal

states and assumes or derives ) a three-body Schrödinger equation

for a function rí (í'f.K,-í"„d ) • The Pauli principle is allowed for

merely througr inclusion of a potential term, which is either re-

pulsive or con.ains a projection operator to exclude r.nir.v states.

This model is simple enough to accommodate a realistic force

between p and n and to keep as many angular momentum values in

the two-particle relative motions as are necessary.

The breathing model, nn the other hunu, keep;; Lhf> form (5.1,

but replaces "^("í ?•», 't,^) by л truncated t>;pai):iir,n J"J, -^/M) ̂ A*,i! •

The truncation is consistent with а лег о schuni'.ic nirelfon-nocb on

force, and confines both -v-.1 d) and ^ (+
 4
) to have orbitil moir.t:.n-
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turn zero, but within this approximation both may be considered

exact. In fact, the breathing model produces 1.6 MeV deeper

(i.e. more accurate) binding energy than the microscopic :i+p + n

model of Krivec and Mihailovic ) if the same force is used ).

Looking for defects in the breathing model, we quote two

estimates for the non-zerc angular-momentum component?. In our

previous work ) we obtained that a component with orbital momenta

L= 1 both between a and n and between otn and p, couplod tn 0, pumps

away only 3 % of the wave function from the í-i+ú)L_ -jubspace.

This is probably an overestimated value because in this model the

(a+d). _ subspace was fairly restricted. (Note that the two sub-

spaces overlap substantially because of the antisymmetrization.;

5 д
The other estimate, due to Kukulin et al. ), shows that the

weights of a - 1 non-zero angular momentum components in the three-

-body wave functions add up to 4.5 Ъ, out of which 3.4 \ Leing

due to the L-2 component of the pn motion coupled with ad relative

angular momentum zero. Corresponding to this L-2 component, how-

ever, fiei' * is m L =2 term in the wave function of the free

deuteron a , we] : so that their simultaneous inclusion ,.n both

nui.iei !oe". "Qt influence S^j appreciably
1
 ). Thus it seems that

L!: j : ijr-e or the discrepancy between the: two models cannot, be

put '. л the breathing model.

As to tr.e three-body model, the nerjlect of the :•- excitations

is weii-kn ,wn ti. b'..' an acceptable approximation. The energies and

tin- с !.et-tr onia jnetic properties of Li crj inq teproduted fairly

weii, the '..roatnent of the Pau]i cxcluslcn also appears t.-j be

ricoej-'tablu m the jrodel subspace of "*Li. Since, however, : he

f raameri t.at.;' :• amplitúdó is an overlap con ru:: с t. i n •; the stjto spaces



- 31

of Li and of its fragments, the straightforward prescription

adopted in the three-body model,

- £) (5.2a)

^/^М^,^*,£„()>, (5.2b)

does not necessarily work. Indeed, the state vectors in (5.2b) do

not show the permutation invariance observable in (4.1). We will

now show that this simplification is bound to lead'to a serious

error.

Let us expand -n as

" (£.j) , (5.3)

where { уг(<1)} i' a complete orthonormal set of states including

the g.s. of the deuteron, ^{d). Because of this orthogonality,

the only contribution to G , comes from ^fy(ci):

G.,(i)-£„(*), !5.4)

and hence Sai = <jf(< !£,,)• The terms of (5.3) with •£* 1 represent

the distortion of the deuteron in Li. The breathing model calcu-

lations show that the weight of the distortion terms is large,

and if the three-body model is a good approximation in this re-

spect, which we have no reason to doubt, this weight ought to bo

la-ge in that model, too. It is therefore not surprising to find

rh.it in the three-body model S„ 4«l. The case of an antisymmetrized

nodel is, however, quite different. The terms ^[^("Oy^Wx^Wí.i)]

with l>\ are not orthogonal to -Alf,(•"••)-f,W S'i't-t.j)) , and G a i(í)

does gain substantial contributions from them. Indeed, even the
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weight of jA{'f-í(.
u)nlíWxli('td)} is sizeable, and yet S a i is hardly

reduced.

This argument can be illustrated by the example given in table

V of ref. ) . [See also fig. 2 of ref. ).] This contains the

weight of each clusterization subspace in the g.s. of Li described

in the breathing model with a force very similar to D2• The weights

of subspaces (k,£) - (1,2) and (1,31 are, 0.131 and 0.389, respec-

tively, and yet the specttoscopic factor of the fragmentation into

the g.s. is 0.929. Assuming that the three-body model assigns simi-

lar weights to the distortion terms, we would indeed expect

^Хц\ХцУ to be around 0.5; 0.6.

To make the three-body model capable of reproducing 5яЛ, one

should find the correct relationship between its wave function

'^(íimií'.í) a n d a microscopic wave function

(5.5)

where

(5.6)

.,59In this matter we are guided ) by the correspondence of their

normalizations Т \Ъ ) ( = 1) . This may be r e w r i t t e n as

where Aa ^, is the integral operator defined as

with

( 5 - 9 )
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Eq. (5.7) suggests that

(5.10)

Г'А
In fact, \f,r\V, i s

 distinguished from the other possible inter-

cluster "wave functions" by being an eigenfunction of the inter-

cluster eigenvalue problem, derivable from the six-nucleon

Schrödinqer equation H"t-E"t, that belongs to an hermitean

hamiltonian, ̂ «p7v""»p-4 , where H is the integral operator with

kernel ("fc? ̂ .IHI"аг
?(̂
'У- All three-body models use hermitean hamil-

tonians, so they must correspond, in some approximation, to this

eigenvalue problem. All the more so because it is only in this

framework that the invariably neglected three-body forces are

smal l
6 0
) .

JJ.V1

The function А
и
-

п
-и

1
 is contained in the subspace of the eigen-

functions/ of A ^ ^ , that belong to non-zero eigenvalues. On this

~~ л1 * А
subspace ^ ^ - ^ — ^ can be inverted, to result in

(The function *n may as well be defined to contain a component

outside this subspace. However, owing to -A, the contribution of

this component to Evanishes in any case.) By substituting (5.5)

and then (5.11) into eq.(4.1), we get

(5.12)

This is to be contrasted with eq.(5.2a). It would be reassuring

to confirm that with this definition the discrepancy disappears

indeed.
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In spite of the inexactness of eq.(5.2), it yields amplitudes

which are fairly similar to our microscopic ones, apart from

their normalization, especially when local potentials and the

Coulomb potential are used in the three-body model. As a con-

sequence, the asymptotic normalization of the normalized fragmen-

tation amplitude, C ^ / S . ^ is more or less the same in each

calculation (see table 7 ) . It is thus obvious that the disagree-

ment between the two models in C^ is also rooted just in the

improper prescription (5.2). It looks then likely that, with the

use of the proper formula (5.12), all calculations would uniformly

overshoot the experimental value С =2.15.

As for the resolution of this problem, it may give a hint that

all other experimental estimates, though scatter considerably and

are believed less reliable, give substantially larger values )

for Cai (except those which neglect the Coulomb potential). On

the other hand, it is clear that any additional admixture to the

wave function of Li is likely to reduce S^, and hence C ^ . How-

ever, the near completeness of t'ae microscopic models for cluster

distortions of angular momentum zero and the near completeness of

the three-body models for higher angular momentum admixtures do

not leave much scope for further reductions. Indeed, short-range

correlations, by reducing cluster distortion, might even increase

5
к А
 slightly. We therefore believe that the true values of S„

4

and С , can be but a few per cent lower than the values obtained

in this work.
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Appendix

Exchange mixture in the nuclear potential kernels

From (2.9) it is seen that the potential kernels, i.e. the

matrix elements of V = £w,V(«?i) between i 4 j and §t'j'f can be

expressed in terms of the corresponding unprojected kernels as

For simplicity, we assume the form (3.1) for V(""»v,n.). The func-

tions $ are Slater determinants. (For brevity, we shall write §

for $,.jk , and I for ii'jiLi • ) For the a+N system, where N is а

Os cluster containing N nucleons, we can write them in the form

where > is the total antisymraetrizer defined as Zri'"> "P and

S2 (Í2') and X are space and spin-isospin functions, respectively.

For N-а the functions Si. and X may be defined as

(A2)

(A3)

where

f U) - (£A) V+ exP
t £ $i- #4,
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and the X a r e ^h 6 s.p. spin-isospin eigenvectors with an obvious

notation for the г -projections. (The function -Si' is defined with

primed quantities analogously. ) Omitting the last one, two or

three factors of (A 2) and (A 3), we obtain functions correspond-

ing to N=t, d and n, respectively. As the kernels are independent

of the projection of the total isospin, the formulae to be derived

are also valid for N=T and p. The formulae for N=n+n and p+p

(singlet) can be obtained from those for N=d by exchanging the

mixing parameters В and -H in the final result. So the only Os

cluster N excluded is the singlet p+n pair.

It is now useful to decompose the unprojected kernel as follows:

(A4)

with

Х-

These are now to be evaluated by letting each V(*,^/ act on the

right. Uwing to the antisymmetry of the bra and to the validity

of

ejeh of the operators Tw and ~P* can be substituted either by í

unit operator or by *P̂,- .

For V such a reduction results in

()$(J] (A5)
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where

By reducing the determinant A\3.X}, it is easy to show that

S 'c&(bS)y{xi)f(x3)p(xt) for N'l,

)f(*})i>(x,) for <V=2,

for ,V-4,

(A6)

where

It is apparent from the structure of S that in the square brack-

ets in (A 5) the positive and negative terms cancel out pairwise

except for Л/=2, when the only simplification is that the contri-

butions of iL^n) and -̂ (̂ 24) are equal. We can thus write

Eliminating TJ.* and ~P* , for "Уы, we obtain

where the terms that contain subscripts larger than N+4 are to

be understood to be zero. The terms in the square brackets cancel

out again, except for N=2, when there is just one non-vanishing

term. We may thus write

r„~W+n) В <EI^/52^£.(3*H)<2I£K)IS2'> <A8)

The evaluation of ^ is simplified by the relationship

(A9)
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For Л/=1 this is trivial. For N=2 and 4 the contribution of

Hi^V(-i,J) is independent of j. ; this is plausible because such a

contribution depends solely on the signs of the spin and isospin

projections of nucleon i relative to the other nucleons in the

ket, and in these cases the ket is symmetrical in this respect.

For W = 3, however, each nucleon ^-(=5,6,7) is in a unique position

with respect to the others, and a detailed calculation shows that

each term 2)^ V(-t,̂ ) gives a contribution different from the others.

It appears accidental that < (2^ V(i,5)l > = < 11 Zj_ V(i,(>)*-V(-i,7)]l > so

that (A9) still holds.

An elimination of Tit and "P. now yields

(AlO)

To proceed, one can easily verify that each ^ of (A 6) has the

symmetry properties

0-?,Ж|2>-15> (v-2,3,4).

Multiplying the bra conjugate of this equation by ^(^5)l£2'>

from the right, one can derive

Applying this equation to (A 10), one obtains

(All)

A view on (A6) shows that, depending on N, some of the inter-

action terms in (All) yield equal contributions. In particular,

<2I ^С^
г5
)-^(^з

Г
)|5г.'>=0 for all cases butW=2.
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Thus, conferring with (A7) and (A8), we conclude that the

nuclear potential kernels of a+N systems only contain the ex-

change mixtures in the combinations ^-W+M and r^-4W-M*-2b-!H,

except that, when N=d, the combinationdj="B
+
H also appears. As an

exchange of В with -Й is equivalent to replacing ,̂ £,, ̂ by

,̂ -d>, ij, the kernels for a+2p and a+2n also depend just on i,, u,

and "n. As to N being a singlet p+n pair, an analogous derivation

reveals that, again, the potential kernel depends solely on f,^

and ly\.

The evaluation of the kernels is then continued for each system

individually by substitution of eq.(A6) into (A7), into (A8) and

into (All) and the latter three equations into (A4). This is still

easy to carry through. What remains to be done afterwards is to

substitute the formulae of the overlaps iifltf'} ,... and of the two-

-body matrix elements <ff I £|<f '̂ '> , ... and to perform the integra-

tions in (Al), which are straightforward though tiresome mechanical

jobs.
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Table 1

Energies and rms charge radii of the Ail nuclei with forces

of common use

Force

VI

V2

V3

V4

V5

V6

V7

V8
B l
B 2

тР]

TTl

ТГ2

TLT

E<
(№V)

-0.545

-0.608

-0.350

-0.451

-0.468

-0.534

-0.497

-0.543

-1.016

-2.448

-7.456

-2.226

-2.213

-2.201

(fin)

3.655

3.541

4.295

3.812

3.855

3.673

3. 798

3.662

2.854

2.071

1.505

2.084

2.108

2.105

(MBV)

-7.706

-8.138

-7.275

-7.199

-7.436

-7.786

-7.486

-7.697

-8.384

-9.151

-9.266

-9.861

-7.943

-6.028

(fin)

1.893

1.909

1.851

1.824

1.915

1.907

1.922

1.914

1.853

1.784

1.735

1.582

1.725

1.874

(№V)

-6.991

-7.427

-6.527

-6.440

-6.725

-7.074

-6.779

-6.988

-7.660

-8.398

-8.473

-8.920

-7.103

-5.287

(fin)

1.912

1.928

1.872

1.844

1.935

1.927

1.942

1.933

1.869

1.798

1.749

1.599

1.747

1.898

E„
(MsV)

-27.740

-28.563

-28.359

-28.245

-27.241

-27.908

-27.188

-27.613

-28.460

-29.311
-30.714

-42.233

-33.717

-25.592

-fi

(fin)

1.694

1.702

1.619

1.606

1.693

1.697

1.700

1.701

1.702

1.676

1.606

1.354

1.461

1.618

Experiirenl. -2.225 2.095(6)c) -8.482 1.7O(5)c)
1.88(5)c ) 1.674(12)c)

-7.718 ,, -28.296 .,
1.976й5Г' 1.671(14)°'

The proton charge distribution i s represented by a gaussian of
squared width 0.43 fm2.

The weak at tract ive tensor force not included.
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Table 2

Parameters of the forces desiqned for cluster distortion models

Synbol

(fm) (fin)

Ч
(MeV) (VteV)

0.4

0.3

0.34

0.44

1.2 1748.5

1.42 2706.9

1.41 1989

1.44 1038.5

-180.82 1.07188

-108.07 1.01997

-113.65 1

-117.26 0.94772

1.16685 1.43328

1.09227 1.30216

1.0962 1.2818

1.08872 1.19535

X

LU "

v a

v а

CM

1.
99

'

ГМ

1.
99

'

ГМ

2.
01

Í

ГМ

1.
99

.

(N

1.
99

ГМ

1.
99

'

ГЧ

1.
99

'

ГМ

1.
99

1

ГМ

1.
99

1

T

ГМ

1.
99

'

ГМ

1.
97

:

ГО
1

fl rO
1 1

ГО ГО
1

ro
1

ro
1

m
1

ro
1

m
I

29
6 

1
-2

8
1.

78
0

29
6 

1
-2

8
1.

63
5

30
8 

1
-2

8
1.

83
5

29
7 

1
-2

8

PI

s

29
6 

1
-2

8

8

29
6 

1
-2

8
1.

93
2

29
6 

1
-2

8

ГМ
ГМ
СЛ

29
6 

1
-2

8
1.

87
2

29
6 

1
-2

8
1.

81
4

29
6 

1
-2

8
1.

78
8

29
6 

í
-2

8

t-i

CO
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Table 4

Parameters of the modified versions of the standard forces

Symbol

(fin) (MeV)

MVl

MV2

MV7

MB,

MB,

MMHN

MTLT

a)

1

2

1

2

1

2

1

2

1

2

1

2

3

1

2

3

0.82

1.6

1.01

1.8

0.81

1.8

0.7

1.4

0.6

1.2

3.4-*

1.127~*

2.5

1.487"
11

О.639"
15

0.465"^

180.88

-104.06

76.319

- 75.708

94.832

- 69.128

443.05

-i.59.93

881.05

-243.60

1301.6

-429.42

-4.*7189

200

-178

- 95.461

0.80665

O.80665

0.79833

0.79833

0.79692

0.79692

0.87725

0.87725

1.00391

1.00391

1.04549

1.02559

1.13313

1

0.5

0.5

1.06110

1.06110

1.01404

1.01404

1.02835

1.02835

5.82931

1.73809

5.56671

1.85851

1.78803

1.57439

0.44964

1.35230

0.61707

. 0.73523

a
 Central part only.

b )
U=o.94092; ^ + ̂ 3=0, cf. eq.(3.6).
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Table 5

Parameters of a force constructed for a conventional

"RGM-type" model

Symbol

1

2

(fm)

0.45

1.89

4
(MeV)

3036.6

-125.43

0.

0.

10249

39161

0.

0.

Ъ

19022

72682
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Model

Table 6

Fragmentation constants of Li

Force C.4

(MBV) (MeV)

full
full

full

full

full

full

full

full

full

full

full

"KM-type"

"SOI-type"

"QCM-type"

Experiment

a ) Kitching
b ) Dollhopf
c ) Albrecht

D l
D 2
D 2
D 3

MVl

MV2

MV7

мвх

мв2

M4HN

MTLT

R

V2

V2

et al. 1 6,

et al. 1 7,

et al. 1 8,
d> Ent et a l . 2 5 )

Bomand <* a l . 5 4 )

-1.474
-1.474

-1.474

-1.474

-1.474

-1.474

-1.474

-1.471

-1.474

-1.474

-1.475

-1.474

-1.474

-1.474

-1.474

0.926
0.930

0.930

0.929

0.921

0.921

0.920

0.927

0.929

0.919

0.912

0.973

0.974

1.076

O.78±O.la)

1.08 a ' b )

1.05+0.12b)

1.08±O.lc)

1.31±O.18c!

O.73+O.O9d)

3.14
3.30

3.30

3.35

3.42

3.56

3.51

3.51

3.36

3.08

3.10

3.84

3.72

3.71

2.15+O.O6e)

-15.803
-15.774

-15.837

-15.829

-16.850

-16.641

-16.855

-16.086

-15.357

-16.379

-18.683

-17.504

-15.794

-15.794

-15.794

0.574
0.580

0.579

0.581

0.579

0.571

0.571

0.557

0.558

0.577

0.564

0.462

0.476

0.722

(0.73*1. 35) S,,/'

Table 7

Theoretical ad fragmentation constants

Model

Three-body

Three-bcdyc)

Three-body

Three-bodye>

Three-bodyf)

q)
Breathing

0.52

0.654

0.613

0.66

0.753

0.93

Q

2.6

2.182

2.034

2.71

3.3

Coulcmb cor-

rected a ) Cmi

2.6

2.62

2.44

2.71

3.3

с /s1/l

3.61

3.24

3.12

3.12

3.42

Multiplied by 1.2 when no Coulomb force was used. See sect.4.3.

Bang and Gignoux ).

Lehman and Rajan ).

d ) Parke and Lehman ).

Voronchev et a l . ).

f )Kukulin et a l . 1 5 ) .

^Present work.

f ) Boos et a l . 2 2 )



- 51 - - 52 -

Figure captions

Fig. 1. The ad fragmentation amplitude in the breathing model

with the D forces.

Fig. 2. The ad fragmentation amplitude in the breathing model

with some of the M forces. For reference, the D
2
 curve

is also shown.

Fig. 3. Model dependence of the ad fragmentation amplitudes.

For the restricted models see sect. 3.4.

Fig. 4. Energetically adjusted versus non-adjusted ad fragmen-

tation amplitudes. The E ^ values in MeV: -1.474 (MV2,

correct value), 0.165 (V2), 0.608 (V2, "RGM-type"),

-0.919 (V2, "GCM-type"), -1.675 (V2, "GCM-type", no

Coulomb).

Fig. 5. Microscopic versus phenomenological (KH) ad fragmentation

amplitudes (a) and potential overlaps (Ы. KH stands for

Kubo and Hirata ) .

Fig. 6. Microscopic versus phenomenological (HK) tt fragmentation

amplitudes (a) and potential overlaps (b). HK stands for

Hamill and Kunz
53
).

Fig. 7. Calculated ad fragmentation strengths compared with those

extracted from knock-out experiments induced by nuclear

probes [Albrecht et al.
1 8
), Kitching et al.

l 6
),

Dollhopi et al.
17
)1.

fig. 8. Calculated and extracted ) tT fragmentation strengths.

'.-ig. 9. Calculated ad fragmentation strengths compared with that

extracted from an (e,ed) experiment ).
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