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ahbstract. The a+d and t+t cluster structure of 6Li is described
in a microscopic a+d cluster model through quantities that en-

ter into the description of cluster fragmentation processes.

The states of the separate clusters a, 4, t and 1 are described

as superpositions of Os Slater determinants belonging to dif-
ferent potential size parameters. The model state space of 6Li
is a tensor product of the a and d cluster state spaces and
the stat« space of zero-orbital-momentum relative motion, re-
stricted by antisymmetrization. To describe both the 6Li and
fragment states realistically, we constructed nucleon-nucleon
forces optimized for the model state spaces used. The frag-

mentation properties calculated are the g.s. fragmentation

+
Present and permanent address.
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{or reduced-width) amplitudes, their squared Fourier trans-
forms, the corresponding potential overlaps, the spectro-~
scopic factors S&d ’ Str and the ad asymptotic normalization
constant CL&- The forces constructed reproduce the eneraies
and charge radii of GLi as well as of the fragments excel-
lently. The fragmentation properties predicted 5y them slight-
ly differ from those calculated with some forces of common
use provided the latter are modified so as to reproduce the
a,d and 6Li energies. The fragmentation properties change
moderately in comparison with simpler versions of the cluster
model. The full model yields S.4=0.93, 5, =0.58 and C =3.3.
The results are consistent with phenomenclogical estimates
except for C“. The shapes of our ad fragmentation amplitudes
are in accord with a+p+n three-body calculations but our 5_4
and é,i are substantially larger. We attribute this discrep-
ancy to the neglect of the Pauli effects in the usual three-

-body formula for the ad fragmentation amplitude. We give a

formula which contains the necessary remedy.



1. Introduction

It has been a challenge for some time both for experimentalists
and theoreticians to understand the cluster structure of the nu-
cleus 6Li. The main experimental tool invoked is guasielastic
cluster knock-out reactionsl), while the theoretical efforts em-
brace all versions of the cluster modelz). It has been conjec-
tured that the g.s. of 6Li is dominated by the two overlappingz'
configurations a+d and t+t (1=3He). This initiated the use of

1 4
four-nucleon™) and, to a lesser extent, three-nucleon’) transfer

3

reactions from 6Li to probe the cluster structure of other nuclei.

The link between the models of knock-out, transfer as well as
direct radiative capturesi reactions and structure theory is most
convenlen:lys) established through the fragmentation amplitudes
{or reduced-width amplitudes), which are the overlaps of the g.s.
nuclear wave function with those of the free fragments. The norm
squares of the fragmentation amplitudes, the so-called srectro-
scopic factors, are used to characterize the fragmentation prop-
erties in an integrited form.

€ . .
The frajgmentation prepertices € 'Li have been studied in

mics sUupic as well as semi-microscopic models. The former wnclake
the .:rmonic-oscillatar th.o.) 1+d model3) and dynamical cluster
me. - ., which assume a pure (a+d]7) and the mixed (x+d,u+d*}8) or
P 9,10 PR .. ) . ,
He+p} } configuraticns, while the latter include the
oy 11-1s : . Ve
a+p+ three-body models ). There is a systematic diffarence

between the predictions of these two types of models. Whiis the
microscopic models give ad spectroscopic factors (SQJ) ar-und

unity, the three-body models yield S,, =0.5: 0.75.

The experimental estimates cannct decide between these two
predictions. The results of recent high-energy (E>> 100 MeV)
kinematically complete quasi-~free knock-out experiments support
the microscopic models. In particular, the (p,pd) data of

Kitching et al.16) (E =590 MeV) reanalysedl7) result in fid=1.08,
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the («,2a) data of Dollhopf et al.” ') (E =700 Mev) yield 5. =1.05,

and the (p,pd) data of Albrecht g;;gg.la) (E =670 Mev) give

S.4=1.08. The radiative capture experiment of Robertscn et al.lg)

takes a medium position with S  =0.85. The lower-energy (E =100 Mev)
(p,p2r) data of Roos et al.zo), however, lean towards the three-
~body models ( id=o.58). Further informaticn on the spectroscopic
factor is obtained by a requirement of consistency with the values

of the asymptotic normalization constant extracted from elastic

21

scattering. This requirement leads™ ™) to E&A=0-42: which, again,

favours the three-body models. As to t+T clustering, the relevant
3,10

(i.e. microscopic) models yield S,.20.55_, , while

) values tr -

. the analyses of experiments do not exclude an opposite relation-

ship. Namely, the comparative analyses of (p,pa) and (p,p1) ex-

puriments by Roos g;ngi.zz) produce Str10'73 Sd or Sir:1'355‘d

depending on tine assumed shape of the fragmentation amplitudes.

. 23
Fortrnermore, the radiative cuipture data of Young et 21.77) and

ventura et 14) yield the surprisingly high values of Str=0.69

and 0.79, respectively.

The liscrepancies bnutween theso exporimental results are
grnuine as the experimental errors are wostly below 10 %. The
discrepan “iet may onre parkl, fro. imoorities an Lhe reaction

mechanism. 3% was 105 order bt our.iy “he react.on mechanismothat,

. . 25
very recently, electron tombardmest w o nsed by, Ent ot al.”7) to



bring apout knock-out reaction. Their (e,ed) experiment, perform-
ed at E =480 MeV, resulted in S, =0.73:0.03. Most analyses of
knock—outza) and radiative capture reactions rely upon assumptions
cn the shape of the fragmentation amplitude, just as trarsfer re-

action527) do. In fact, some te5t522'26'27

) show that these anal-
yses depend critically on these assumptions. Better justified assump-
tions can only be based on better theoretical calculations. Im-~
proved theoretical calculaticns of the fragmentation amplitudes
are thus needed not just to understand the experimental estimates
of these functions but alsc to help further analyses of experi-
mental data.

Qur aim in this paper is to proride an improved microscopic
calculation for the characteristics of the fragmentation. In cur
earlier workg) we found that the admixture of SHe+p ciusterization
to the a+d component has little effect not only on the g.s. energy
but also on the oa+d fragmentation properties. On the other hand,
we found that the energy can be improved substantially by in-
cluding the breathing excitations28) of a and d. It is thus im-
portant to see what changes in the fragmentation amplitudes are
caused by this improvement on the model, and that is the subject
of this paper.

The physical ingredients of the model are summarized in sect.2.
To produce good estimates for the fragmentation properties, the
description of the separate fragments also has to be realistic
and consistent with that of the composite system. Interactions
that satisfy this strict condition are presented in sect.3. The

results are presented in sect.4 and are further discussed in

sect.5,

2, The model

A general description of our model in technical terms was given
in ref.zs), Here we only recall its essentials to expcse the forth-
coming considerations and to explain our notation. We chocse a
different presentation now to elucidate the physical aspects of
our concern.

To describe 6Li, our model uses the wave-function ansatz
’£=§A{%(a%ﬁ(0{)){“(fu‘)} , (2.1)

where 4 and X depend on the cluster internal and relative
coordinates, respectively. The functions y are antisymmetrized
and A :'VEUﬁzb(‘f? is the rest-antisymmetrizer, where N is the
number of terms in & (for a+d, N=6!/4121). If the sum in (2.1}
runs over a complete set of cluster intrinsic states and X are
chosen appropriately, (2.1) may be an exact expansion. A reason-
able and tractable truncation should keep the g.s.'s of the in-
dependent clusters, Yﬁ(“) and vg(d), and, to allow for the dis-
tortion of the clusters in each other's field, a few excited
states. If the d-state admixtures, are neglected, as they will be,
the spatial parts of both functions + are spherically symmetric.
To construct the functions 1; we solve the problems of the free
clusters A=a,d on a basis {4, (A)] of translation invariant anti-
gsymmetrized Os h.o. states of different size parameters ﬂi

A
=M nucleoan,‘/b

~. _ .
. (A)= Z C:l $,.(4) (moet, Ny Aze, d) 0 2.2)
™ me o



The basis states ¢M(A) are related to the corresponding Slater

determinants gﬂ(A,g") centred around 4 as
Fuld$) (AL /) exo - 3ABL(2"- 51T b (4), (2.3

A
where +" is the c.m. coordinate of cluster A of mass number A.

Inserting (2.2) in (2.1), we get
Y=2Z A{d)((m)d)}(d)ﬁj(fud)} , (2.4)
Y3

. N (e} () & .
with y:_l(’ﬁ.a)— Zace g Xut(Lad) and #4494+, We approximate
Y5 with a combination of orbital-momentum projected shifteq

gaussians centred around a set of discrete points 3.,

&z(i.d)='g{itskgagkYLA(gk)%}(f_ 1) (2.9
where
u\z d \3/s o d
?"1,(5*(4%> exp(-zi—,——fs—\“i‘z ‘- x‘) (2.6)
(4&-*2?;) 4?’«*2'?; /7
(For simplicity, we suppress the coupling of the spin with the

orbital momentum.} It is now useful to employ the identity

P, (Ta-2)=[4 @jzg;j/wlj”“ Sa Sexp{- L[A7(™ £ ) 52804 54 ] (2.

da o
where §_=%1 pég‘ , 4=%4-4" and 1, f“ are any vectors obeying
4 . s ey :
f«-*“:t‘A, so they may be identified with the cluster c.m. coor-

dinates introduced in (2.3). Substituting (2.7) into (2.5) and

{2.%) into ({2.4), and using {(2.3), we obtain

Y=z {c,k§45h )

<k (2.8)
with
§¢§L= gA'QﬁYLA(ﬁ‘) SA.S. éc,& 3 (2.9)

where

%‘3:(: ALBL0aD ] (2.10)

Eq.(2.8) contains a linear combination of functions €, char-
acterized by different values of the three parameters ﬁ} F* and
2. Thus, ¥ can be regarded as the trial function of the gener-
ator-coordinate (GC) method (GCM) with the three GC's ﬁﬂ P‘,
A=|4| discretized. The model requires the solution of the Hill-

~Wheeler equation
JEL (&I, > - E <E 8 ) o =0 (2.11)

One can recognize that éw‘ are expressed in terms of Slater
determinants, so that the normalization and hamiltonian kernels,
(¥¢)k,@("y> and <§¢;kikfl§93rp> , may be calculated with the
well-known GC techniquesgg). It is seen that the translation in-
variant basis states §4)k are related to the Slater determinants
§t)k through an integration over é, Since § is a common dis-
placement vector of the two clusters, this integration can be in-
terpreted as a Pelerls-Yoccoz momentum projectionao) to c.m.
momentum zero.

The problem of cach scparate cluster, formulated in (2.2},
leads to an equation similar to (2.11}, with the single GC pﬁrﬁ“
or @Afﬁd.

With the expansions (2.2}, the assumption (2.]) amounts to
allowing for three degrees of frecdom: the breathing vibrations
and the relative motion of the two clusters. Thus the physical
ingredients of our model are not different from other versions of

1

the cluster distortion models3 }. Tt would add to the heurist:c

appeal of the model “if the clustryrs were seen to be explicity



deformed in each other's fieldBZ). It was shown, however, that

the inclusion of cluster deformation is equivaient to inclusion
of a combination of one-particle one-hole cluster excitations
that has a large overlap with a breathing excitationaa).

In order that (2.1) may represent the breathing-cluster pic-
ture faithfully, the sets of states {¢g(A)(n=1rn,Ag§ (A =a,d)
and {?q(i24‘ 3.), ket Ny3 should be reasonably complete. To
this end, we optimized the choice of the discretized values of
the GC's, For {&:} such an optimization may be viewed as a gener-
alization of the often guoted stability conditional), and was in-
deed found very effective. E.g., with the Volkov 2 (v2) force>’)
the g.s. energy of the deuteron with 14 equidistant F‘ values is
E, = -~0.600 Mev [re£.28)7, while 5 optimized values yield Ef
=-0.6076 MeV, in fair agreement with the exact value, E = ~0.6082
MeV. In general, to achieve a convergence of E,, E,, E_ and E,_
within 1+ 2 keV, it was sufficient to take N =5, N, =N_=4 (with
Pt-p') and N,=3, We adopted these values and the corresponding GC
values for the two-cluster nuclei as well. A variation of the {4“}
values in GLi showed that an equidistant set is near the optimum,
and the adopted set, 1,2,...,12 fm, is good enough to yield a
similar accuracy.

It looks likely that the L# 0 admixtures to d and 6Li play a
minor role in the decomposition properties of 6Li. We therefore
used central forces.

The breathing cluster model comprises a range of simpler

models as special cases, two of which will be considered here. By

choosing N_=N‘=l, we get a model, which is equivalent to the

conventional resonating group model (RGM) with no distortion. This

we shall call the "RGM-type" model. If, furthermore, we fix the
single ﬁ" to be equal to Fd, and choose it so as to minimize

E,+E,, we fall back to the conventional GCM ("GCM-type" model).

3. The interaction

3.1. SURVEY OF FORCES OF COMMON USE

The fragmentation of a nucleus is well-known to he very sen-
sitive to the separation energy. In our case it is therefore im-
portant to reproduce E“=E(6Li)-E~-Ei and E"=E(6Li)—Et-E,.. Thus
the energieé of the individual clusters should be correct, apart,
possibly, from a constant shift, which should be compensated for
by a similer shift in E(GLi). We have found, however, that the ad
fragmentation amplitude is sensitive to the size of d as welllo),
which, in turn, strongly depends on Ed' owing to the weak binding
of d. This implies that all energies E,, E;, E,, E_ and E®Li)
should be correct in an absolute sense. This imposes a very strict
condition on the interaction to be used.

From this point of view, we have examined the interactions of

34)

the modified

common use. The forces considered are the Volkov forces

(vi,...,Vv8) the Brink-Boeker forces35) B, and B,

version36) of force 2 of Hasegawa and Nagata7) (MHN) and three

forces proposed by the Minnesota group, viz. those of Thompson

37,38 9

3
and Tang ) (TT1 and TT2) and of Thompson, LeMere and Tang 7}
(TLT) . The resulting binding energies and rms charge radii of the
single~cluster nuclei are collected in table 1. In all these cal-

culations the basis was optimized for each force.



It is seen that none of the forces reproduces all energies
and radii satisfactorily. This is not surprising, since a calcula-
tion on a truncated model space always requires an effective in-
teraction particular to the function space employed, and none of
the forces considered here has been constructed so as to match
just our model space. In particular, the Minnesota forces were
constructed so as to imitate the interaction of the free nucleonc.
Thus they give realistic results for the deuteron, whose function
space in our model is virtually complete, but not for the other
single clusters. In order that such a force may give realistic
results for the larger clusters as well, it has to show the cor-
rect nuclear saturation, which property also depends on the func-
tion space. The TT1 and TT2 forces are seen to overbind the a par-
ticle; in fact they show proper saturation in the more restricted
space of a single h.o. model of realistic size parameter. The MHN
force gives too large bindings for similar reasons. It is an ef-
fective force whose parameters were tuned so as to describe the
deuteron in a single h.o. model. The Volkov and Brink-Boeker forces
are effective forces devised for broader ranges of application.
Considering that their parameters were extracted by fitting to the
properties of larger nuclei and nuclear matter in completely dif-
ferent models, their performances may be said remarkably good.
{The B3 and 84 interactions35), however, are not considered here
because they grossly overbind the nuclei of our interest.]

It should be noted that the degrees of discrepancy in the
energies and radii are correlated, especially for the deuteron.
We tested this correlation by varying the overall strengths of

the interactions. By making E‘ correct in this way, we always

obtained reasonable values for th2 radius a3 as well. This find-
ing pcints to the possibility of constructing interactions more
suited to the cluster distortion models.

We used effective interactions of three types. Firstly, we
constructed interactions by carefully deliberated optimlzation
procedures. Secondly, to test the interactions of the first type
against something more accepted, we compared them to modified
versions of some of those given in table 1. And thirdly, to test
to what extent our prescriptions hinge on the cluster distortion
picture and to provide a basis of objective comparison with sim-
pler cluster models, we constructed interactions appropriate for
cluster models without distortion. These three types of inter-

actions will be presented in subsections 2,3 and 4, respectively.

3.2. OPTIMIZED INTERACTIONS

We have seen that the interactions of common use do not re-
produce all cluster energies and radii in the breathing model,
but there is hope that more appropriate interactions can be con-

structed. Attempting this, we chose the potential form

. & d
V(’L,}’)=<W’M‘P¢}*BR,‘HE;)#(";}), (3.1)
with
Z
IV sy
)= 2o Vo explorVal) (3.2)
where E;: Ej and ‘ﬁ; arc the coordinate-, spin- and isospin-ex-

change operators, respectively.



It is easy to see that the potential kernels <¢KIZ”)VYQJJI¢N>
of the free 0Os clusters only depend on two combinations of the

exchange mixtures,
£-w+M and {=B+H. (3.3)

In particular, the kernels of the singlet and triplet nucleon
pairs are proportional to é-é and €+€ , respectively, while those
of t, T and o are proportional just to é. The form of (3.1) gives
us freedom to fix £+(=1.

The nuclear potential kernel of a system of an o particle and
another Os cluster depends on what the kernels of the constituents

depend on and, in addition, on the combination
7=4W-M+ZB—2H. (3.4)
For a+t (1) this was noted by Brown and Tanng), but, to our

knowledge, it has not been observed in its full generality. We

therefore prove this statement. The proof, relegated to the ap-~

pendix, :s constructive in that it sets up a most economical frame-

work for calculating the potential kernels.

Thnis behariour of the kerrels allows one to determine the po-
tential parameters step by step. We determined g, V,, V. a--and
azby fitting them to the measured energies and rms charge radii
of the independent s-wave clusters simultaneously. In the course
of this parameter fitting we also constructed the optimal cluster
bases. In fact, because of the dependence of the optimum bases
on the interaction, a basis optimization had to be carried through
for each nucleus in each step of the variation of the force par-

ameters. We then fixed 7 so as to have E(GLL) or, for test pur-

- 14 -

poses, E(7Li) exact DQ=7(6Li) or'q=7(7Li)]. [We included the
Coulomb potential in the two-cluster calculations with the method
described in ref.43L) One combination of the exchange mixtures
remains undefined. This free parameter facilitates future appli-
cations for, depending on the problem, it can be adjusted e.g. to
odd-l. nucleon-nucleon phase shifts or to the energy of a more
complicated nucleus.

The parameters of four versions of the force, each with the two
different 7, are given in table 2. We label them with symbol D to
express that they are tailored for a distortion model. The forces
Dl' D2 and 03 were constructed by fitting to the properties of d,t
and «, of d,t,T and ¢ and of d,t and a, respectively. The varsion

'
2 is similar to D2 but contains only Wigner and Majorana terms,

D
just like the Volkov forces. It is interesting that the results
are rather insensitive to whether g is smaller or larger than

unity; even the constraint g =1 applied in Dé yields reasonable
results. Obviously, in applications in which the singlet np pair

plays a pr.ainent role, a version, like D in which §<l, could

3’
only be expected to give reasonable results.
The energy and radius values produced by the b forces are con-
tained in table 3. In the parameter search we found that it is
easy to achieve arbitrary accuracy in the energies, but an exact
reproduction of the radii would require more flexibility. The
agreement is still reasonable for the radii as well except that
the large difference between the measured + and =, 0.18 or
0.28 £fm, cannot be reproduced. In our model there is no way to
shift 7 -+ from A0.02 fm.

The 6Li radius values obtained by the D forces are more



accurate than those obtained with the forces of common use44).
The D forces also reasonably reproduce the g.s. energies of SHe,

7Li, 7Be and 8Be and the enerqgy of the first excited L =2 triplet

as well as the electromagnetic properties of 6Li 45).

3.3. STANDARD FORCES MODIFIED

Given the breathing <luster basis, the D forces appear superior
to the standard forces discussed in sect. 3.1. Nevertheless, be-
cause of the ad hoc manner they were constructed, it seems desir-
able to test them against the standard forces. The standard forces

considered have the form

. . <, 4 a .
V(o) LW, - B +BT, - HR WV, exp(-+¥a)). (3.5)

The tests should concern the fraqmentation properties them-
selves. Since these are closely related to the energy values prod-
uced and the D forces produce the exact values by construction,
the comparison will only be fair if the standard forces are also
readjusted to some extent. The dependence of the potential matrix
elements oun the exchange mixtures allows one to set the deuteron,
a-particle and 6Lx energies by readjusting §v'§. {or rather Vi),
g, and y consecutively.

The parameters of the modified forces (prefixed M) constructed
in this way are given in table 4. In the cases of the V1, V2 and
77 potentials, whose terms v have common mixture parameters, we
simply renormalized V,, §q and . independent of v. For the Bl' 82
and MHN potentials all V, and g, were renormalized, but the 514

energy was set by changing 71 only. The treatment of the TLT force

was somewhat different. This force yields nearly exact Ed' and
thus no provision was needed for Ed' Complying with the conven-

ient form of the TLT force,
VG <[ )+ s BV ) +JO-R L (M] aR- )BT | (3l

we set Eu and E(GLi) by readjusting \g and w, respectively.

The energies and radii calculated with the M forces are also
displayed in table 3. We see that the predicted values, viz. the
three-nucleon energies and all radii, are mcstly reasonable though
they are, of course, less good in most cases than the values ob-

tained with the D forces.

3.4. INTERACTIONS FOR THE RESTRICTED MODELS

The simplifications involved in the restricted models change
the energies and hence spoil the fragmentation properties. This
may only be offset by changing the interaction at the same time.
We attempted to construct interactions, of the form of the D
forces, that are suitable for the "RGM-type" model. We found,
however, that there is not enough freedom in this interaction to
describe the deuteron and the other single-cluster nuclei simul-
taneously in "this model. We therefore included one more free
parameter by allowing gl to be different frcm gi. The parameters
of the resulting force R are given in table 5; its predictions
for the energies and radii can be found in table 3.

We also tried to tailor one of the standard forces, V2, for
the "RGM-type” model. The force patterned upon the MV2 force

yields, however, an unrealistic deuteron radius (1.66 fm), and



therefore we dismissed this idea. In this model the sizes of the
separate clusters are obtained to be more realistic even with the
use of the original V2 force. This gave us the idea of replacing
the requirement of the correct binding energies with that of the
correct separation energy Eu4- This can be easily ful-
filled by a simple adjustment of n or, equivalently, of the
Majorana parameter M. It is this prescription that we adopted
for calculations in the GCM-type model as well. The values of the
M parameter of the V2 force that yield the correct separation
energy in the "RGM~" and "GCM-type" models are 0.46091 and 0.57573,
respectively. The calculated properties of the free clusters are

again inclucded in table 3.

4, Fragmentation properties
4.1. DEFINITIONS

In this paper we only consider the fragmentation of the g.s.
of 6Li into the g.s.'s of the a+d and t+T fragments. We now
present fracmentation amplitudes, fragmentation strenqgths, po-
tential overlaps, spectroscopic factors and asymptotic normali-
zation constants. We had presented calculations for the amounts
of clustering and for fragmentation franand into excited states

elsewhereg'lo

).
The a+b (=a+d or t+1) fragmentation amplitude is defined in

configuration space as

o)1 #'g M Vou(2) = (i, (), (b) S (-2} D (4.1)

This function appears in Born and impulse-type approximations to

the transition amplitudes of cluster fragmentation processess’43

In a plane-wave impulse approximation the 6Li(c,ca)b—type knock=-

-out transition amplitude is just proportional to the Fourier

transform

ab

Thus the function

(0= 5,

G (&)= 5 (0N(h) = [dr @)V e 51 G ()

(4.2)

(4.3)

which we call the fragmentation strengthg), may be extracted

directly from the cross section in this approximation. The po-

tential overlap, defined as

enters invo the

Wy,(2)

= (1) L (B) = CATp (@3 ) T BV,

description of (6Li,a) and (6Li,b) re-

43

actions in the post form of the distorted-wave Bor acproximation™ ).

We also calculate the spectroscopic factor

Sar™ [ Gt = fai| G (0

and the asymptotic normalization constant4
~ 1 +
Ca.b = }im (z )7z 3“’( )
- 0o x +
W"Z»L’i ()

&

(L=D);

(4.5)

(4.6)

where « is the asymptotic wave number of the ab relative motion,

n is the Sommerfeld parameter of the ab Coulomb interaction and

Wis the Whittaker function. The constant C,, can be determined

e.

g.

from a+b elastic scattering data.

).



We calculated the amplitudes gmbuﬂ analytically using the
direct evaluation method based on Jacobi coordinates as is given
in ref.47). The Fourier transformation was also performed ana-
lytically. The potential overlap was calculated analytically with
the equation - of - motion method47).

All these fragmentation properties are interrelated and show
parallel variations between the different models and forces. It
is thus not necessary to present all of them for all these cases.
Since the amplitude 93$(*) seems to be the most fundamental of
these guantities and, through its close similarity to an inter-
cluster "relative wave function" 10), its meaning seems the most
transparent, we shall carry through all comparisons in terms of
such amplitudes. Furthermore, since both the model and its sub-
models are tailored primarily for the investigation of the a+d
structure, their comparison for the t+t fragmentation is less rich
in implications. Therefore, we sitall illustrate the t+71 properties
more sparingly.

In subsect. 4.2 we compare the ad fragmentation amplitudes as
predicted by the breathing cluster model and its submodels. In
subsect. 4.3 we present calculations for all of the ad and tt
fragmentation properties in order to compare the results with
phenomenology. tor the fragmentation amplitudes and potential
overiaps phenomenology will be represented by local-potential
mod=.s used to analyse cluster transfer reactions. The fragmen-
te..on strengths will be directly compared with knock-out cata as
interpreted in the plane-wave impulse approximation. The sub-
section will be concluded with a comparison of the calculated
spectroscopic factors and asymptotic normalization constant with

various phenomenological estimates.

4.2. DEPENDENCE ON PHYSICAL INGREDIENTS

In this subsection we shall illustrate the force and model de-
pendence of the f.agmentation properties throuyh examples for the
ad fragmentation amplitudes.

In fig. 1 we show Eki(4? as given by the breathing cluster
model combined with the Dl' D2, Dé and D3 forces. In fact, the
resolution of the figure does not allow to distinguish the curves
produced by D, and Dé. Fig. 2 shows gmxk) calculated with rep-
resentatives of the M forces, and, for the sake of comparison,
with D2. The results with the M forces that are not shown here
are simple to summarize. The 9@100 functions produced by the MVl
and MV7 forces compare with the MV2 curve much the same as the Dl
and D, curves do with D3. The MB, curve also runs pretty close to
its kin, ME,, while the MMHN curve is virtually indistinguishable
from the MTILT one.

It is due to note here that the relationship between the tT
fragmentation amplitudes is very similar to that between the ad ones. We can
thus assert that the dependence of the fragmentation am?litudes in
the breathing cluster model on the choice of tie force is not
significant provided the forces produce realistic energies and
.adii. The slight differences appear mostly in the "extension" of
the function as may be characterized e.g. by the position of the
node. Conferring with table 3, one can observe a strict parallel-
ism between the change of the 6Li radius and the shift of the node
of g_‘(*). Since the experimental radius is reproduced most ac-
curately by the D forces, it seems justifiahle to regard the D
forces as the most realistic ones for the fragmentation properties

as well.



The model dependence of G is illustrated in fig. 3. Here we
chose the breathing model with the MV2 force as the reference case,
and we test the restricted models with the interactions intro-
duced in sect. 3.4. We see that there is a definite model depend-
ence. The "GCM-type" model with the V2 force (adjusted in 7 to
give the correct a+d separation energy) cives a result substan-
tially different from the "RGM-type” model with the same force
(although it is readjusted). The discrepancy between the "RGM-
-type"” model and the full model is much less. Moreover, the force
R, tailored for the "RGM-type"” model, gives almost the same 3udvﬂ
as the V2 force in the same model. We can thus interpret the dif-
ference of these two from the MV2 results as a genuine difference
between the "RGM-type" and the breathing model. We can see that
this difference is less significant than that caused by the in-
correct size of the deuteron in the "GCM-type" model. We should
add that the model dependence of ?“1*) is also very similar to
that of g (+).

Having seen the model dependence of 5Ld with energetically
adjusted forces, it will be easier to appreciate the role of this
adjustment. In fig. 4 the MV2 result is contrasted with four
curves calculated with the original v2 force (M=0.6): one in the
breathing model, one in the "RGM-type" model and two in the "GCM-
-type" model, one of which calculated without the Coulomb force.
We see that the differences are substantially larger than between
similar but energetically consistent 3“ results. Moreover, the
smallest deviation from the MV2 curve is produced just by the
roughest model, the "GCM-type"” model without Coulomb force. This

is so because the discrepancy in ?udﬁ+) is closely associated with

the extent of disagreement in Eud (see the caption of fig. 4).
Being a difference of binding energies, the value of Emi is not
informative of the quality of the approximation. It is to elimi=-
nate this accidental element that the forces have been readjusted
in all other cases.

Other test calculations reveal that the cluster internal
energies have their effect primarily through the cluster size. But,
as we have seen in sect. 3.1, the cluster size is closelv corre-
lated with the energy, unless unphysical constraiats are imposed
upon the bases [¢k(u)),(45(d)}, which would lead to spuriously
large distortion effects3l). Another interesting observation is
that the 3er amplitude is more sensitive to E;d than to Etr itself.
All these facts indicate that no reliable estimates can be made
for the fragmentation properties without the description of the

nucleus and each pair of fragments being correct simultaneously.

4.3, COMPARISON WITH PHENOMENOLOGY

Due mainly to the accessibility of the a+d structure to experi-
ment, the phenomenological estimates and models for the ad relative
motion are numerous. We have recently reviewed both the transfer-
-reaction48) and knockout-reactiong) works, and so now there is
no need to repeat this. Instead, we shall compare our results with
representative works, just as in the case of the tt motion, for
which the phenomenclogical models are scarce., To represent the
breathing model and its "RGM-type" approximant, we chose the
results with the 02 and R force, respectively. We include no

"GCM-type" re. 1lts in these comparisons because, as was mentioned



in sect. 3.4, there is no force to describe all subsystems simul-

taneously in this model.

s 4
Our present results improve on those reported earlier 8.3

several respects. In ref.qa) we showed a breathing-model calcula-

) in

tion for 3u‘ and t;4, in which the od separation energy was set
correct but the cluster internal states were not realistic (and
the Coulomb force was neglected). In ref.g) we presented Fod and
4.4 in a "GCM-type" model (with no Coulomb force} but with the
5He+p clusterizaticn included. The results were reasonable be-
cause E_, happened to be almost zorrect (cf. rhe caption of fig.4).
The effect of the 5He+p clustierization was found to be small, ard
had the separation energy been readjusted, it would have been
even smaller.

Figs. 5 and 6 show amplitudes and potential overlaps for the
a+d and the t+1 fragmentation, respectively. The phenomenological
functions have been produced by local-potential cluster models as

specified by the radial Schrddinger egquation
(Tan * Vap) ’U'n_b(*) =B uanlm . 4.1

Strictly speaking49), the phenomenological counterparts of Qo
and 4w, are A\;:Zu-&b and (Eab— T;b)A\:fu“b , respe t:ively, where
Aubis the RGM overlap operator belonging to the cluster internal
states ¥ (a}, yq(b). Since, however, in actual reaction analyses
A
= Vuhuab as the phenomenological approximants of gqh and g .

In fig. 5 we see that the model dependence is more pronounced
in w

.a ¢+ €specially in the important asymptotic region, than in

Q..+ It is, however, remarkable that the phenomenological model

a» 185 invariably neglected, we have to regard «,, and (Eqb‘cb)alb
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of Kubo and Hirata (KH)SO) proposed for the analysis of (6Li,d)
reactions are closer to the prediction of the full model than to
the simplified one. Based on previous calculations48’51), we ex-—
pect that the KH and D2 potential overlaps result in a-transfer
cross sections differing at most by a factor of 2. Applications
of our potential overlaps to (ELi,d) reactions are in progresssz).
In fig. 6 we see that, in keeping with the difference between
the separation energies (E_,=-1.474, E,_=-15.794 MeV), the tr
amplitudes are more localized than the od amplitudes. It is thus
expected that the tr1 amplitudes gain contributions mostly from
regions of the configuration space that are richly covered by
basis states. Thus, although their proper asymptotic fall-off
cannot be maintained by an a+d basis, on the whole they are ex-
pected to be realistic. The phenomenological curves, due to
Hamill and Kunz (HK) 53» were used to analyse (6Li,t) reactions.
These curves imply a t+Tt mction that is smeared out to a sub-
stantially broader region than that implied by the microscopic
calculations. The node positions of both ﬁtt(dﬂ and uqr(4) as
well as the main surface slope of the potential overlap are at
larger A values than the respective parts of the ad functions.
This is entirely unrcalistic and must cause the three-nucleon
transfer cross section to be grossly overestimated. This expecta-
tion seems to rte confirmed by the result that the (GLi,t) Ccross
sections calculated with this phenomenological potential overlap
are 8C : 320 times larger than the corresponding zero-range esti-
mates, while for (a,p) transitions Letween “he same states this

ratio is close to unitySJ).

Experimentally deduced fragmentation strength functions are



available both for the a+d and t+t fragmentations. Fig. 7 shows

the predictions, for #Ld , of the D2 and R forces compared with

16,18) and (a,ad)17)

those extracted from quasielastic 6Li(p,pd)
knock-out reactions, and fig. 8 shows {tr compared with (p,pT}
resultszz). Table 6 contains ad and tt spectroscopic factors and
ad asymptotic normalization constants. (The tails of the tt ampli-
tudes are not accurate enough to allow an extraction of CerJ

We see that the predictions of the breathing model for S and
C;d hardly depend on the force. As for the model dependence of S,
we see that the cluster size has more significant effect than the
distortion, while for Cud this statement should be reversed. For
the spectroscopic factors the experimental estimates are somewhat
inconsistent with each other, and the breathing model may be said
to be consistent with their average, but the discrepancy in é,‘
is significant.

The disagreement in {t, is well understood. Roos et a1.22) have
shown that at this low energy ( E =100 MeV) the "distortions"” of
the projectile and ejectile waves are significant. (The quotation
marks are to distinguish this effect from the distortions of the
cluster internal states in 6Li.) The data of fig. 8 are thus to
pe compared with what is called the "distorted" momentum distrib-
utionzz) rather than with 41r<k>' The "distorted"” momentum dis-
tribution is 4 to 6 times smaller than £:r(k) around k=0 and has
no diffraction minima. It seems thus likely that a "distorted"
momentum distribution based on our structure calculations would
be consistent with experiment.

The agreement in {«1 is much better, and a minor "distortion"”

effect of the same kind would improve this agreement as well. A

shift of the weight of ¥“d(k) towards higher | k| values, which
seems to be required, could, however, be achieved by an improve-
ment of the structure model as well, viz. by explicit inclusion
of short-range nucleon-nucleon correlation in the wave ﬂxmtionq%‘
This would, at the same time, enhance the extrema of ?“4(49 at
the expense of its tail, and thus would improve the agreement in
Cld as well.

However, the recent {(e,ed) knock-out data of Ent EE_EE'ZS)
published after our preliminary reportsqs) shed some new light
on our results (fig. 9). This reaction is more suited to extract-
ing {,d(k) because the "distortion" effects are smaller heress).
Our results agree with these data better than with any of the
knock~out data obtained with nuclear probes. Moreover, it seems
very likely that allowance for the slight "distortion” effects
would further improve the accord. Indeed, Ent et al. have shown
that the "distortions" scale down the theoretical curves in the
region -0.2 fm_1<k<0.5 L by about a factor of 2/3 and fill up
the dip. Such a change on our theoretical curve would certainly
bring it even closer to experiment.

The consistency of our £_d<k) with the data of Ent et al.
indicates that these data imply an asymptotic normalization con-
stant Cld close to our value, 3.3. This apparently contradicts
the fact that Ent et al. fit their data with the semi-microscopic

fragmentation amplitude of Parke and Lehman13

), which implies
C_4= 2.12. Comparing this amplitude with ours, one can find that
in the tail region they are much closer to each other than the

ratio of the two constants C_J. This makes conceivable why the

two fragmentation strengths are not more different. The expla-



nation of the finding that the ratio of the tails differs from
that of the normalization constants is that Lehman 35_3;.12'1?
ignore the Coulomb force, and so they have to calculate 5,4 by
comparing the tail of 9_4(*) with an exponential rather than with
a Whittaker function.

Having come across such a prominent Coulomb effect, we made a
few exploratory calculations with the Coulomb force neglected and
E,i restored by readjustment of the nuclear force. We found that
this prescription reduces iLd by about a factor of 2/3, just
enough to bring our prediction for C“ in full agreement with ex-
periment. Lehman et al., however, use force parameters that could
be expected to yield the correct E‘d only if the Coulomb force
were included. Imitating such calculations, we get a reduction
by 5/6, which, again, would bring our predictions closer to the
experimental data. Based on these tests, it is fair to assume that
the apparently perfect reproduction of the experimental émd value
by Lehman 55_33.12'13) is also an accidental side effect of the

neglect of the Coulomb force.

5. Summary, discussion and conclusions

We have described the cluster structure of 6Li in the breathing
cluster model in terms of quantities related to cluster fragmen-
tation experiments. We anticipated and subsequently demonstrated
tn- importance of reproducing the correct energies and cluster
sizes. It is a major success of the breathing cluster model that

it is able to reproduce all these properties with the same simple

effective interactions Dy Dy, Dé, D;). A single-clusterization

RGM-type model yields less good c¢luster ecnergies and sizes and
requires more complicated and unconventional interactions (like R).
The breathing model with the D forces also reproduces the charge
radii {as well as the other electromagnetic propertiesqs)] of 6Li
substantially better than the single-clusterization models. Draw-
ing on these results, we believe that for the fragmentation prop~
erties the most reliable force is D2 [or, alternatively, the
"optimized force" ~f ref.lo) which is very similar to 02]' It is
nevertheless reassuring that some of the widely used forces give
fairly similar results provided that they are modified so as to
reproduce Eu, E, and E(GLi).

However pre-eminent the breathing model is, the fragmentation
properties have changed moderately in comparison with the single-
-clusterization models. This can be understood by noting that we
have always described 6Li and its fragments consistently. Test
calculations show that the fragmentation amplitude of an improved
6Li state into a pair of more primitively described clusters dif-
fers a great deal from the amplitude of the fragmentation of the
equally primitive 6Li state, but the difference is much reduced
by introducing the same deqree of sophistication into the de-
scription of the fragments. Owing to this effect, the od spectro-
scopic factor and asymptotic normalization constant in the breath-
ing cluster model remain as high as &“=O.93 and CLA=3.3. [The

48:8) figure S,4=0.85 was obtained with the V2 force,

earlier
which is highly irrealistic for the free deuteron.] The tt spec-
troscopic factor is obtained to be 5,.70.58.

The value id=0.93 a~cords with the recent high-energy knock-out

data (tabl~ 6). Discordant with thes= results are, first of all,



the three-body calculations (see table 7). Noble's estimateSG),

S~d=0.54, which is based on dispersion relations combined with
the a+p+n picture, suggests that these three-body models are
bound to predict such low values of de largely independent of
the details of the models. The value Sd=0.73:o.09, derived from

(e,ed) datazs) might also be influenced by the use of the three-~

~-body modellB) in the analysis. The other point of major disa~
greement is in the asymptotic normalization, whose accepted
valueS4) is SL4=2.15tO.06.

In an attempt to explain the discrepancies, we now give a

critical comparison of the brcathing and three-body models. The

exact wave function may be written in the form [cf. (2.1)]
Y=);ﬂ{yk(°‘)”2k(frn,f,d)‘; , (5.1;

where the spin-isospin coordinates of p and n are suppressed for
simplicity.

The three-body model omits the summation over the a internal
states and assumes or derivesll) a three-body Schrédinger equation
for a function ﬁ}(i}“,i;d). The Pauli principle is allcwed for
merely througt inclusion of a potential term, which is cithor re-
puls:ive Or ¢on.uains a prejection cparator to exclude snme siatos.
This model is simple enough to accommodate a realistic force
between p and n and to keep as many angular momentum values in
the two-particle relative motions as are necessary.

The breathing model, on the other hend, keeps the form (5.1,
but replaces vk(i,x,fg,) by & truncated cxpansion A:(«h(d))?({f,ﬂ
The truncacion is consistenl with a mocre schermatic nucleon-ncecleon

force, and confines both Y?(d) and xkt(i‘d) to have orbitil momen-

tum zero, but within this approximation both may be considered
exact. In fact, the breathing wmodel produces 1.% MeV deeper
(i.e. more accurate) binding energy than the microscopic u+p+n
model of Krivec and MihailoviéS7) if the same force is usedzs).
Leooking for defects in the breathing model, we guore two
estimates for the non-zerc angqular-momentum components. In our
previous workg) we obtained that a component with orbitat momenta
L =1 both between « and n and between an and P, couplod to O, pumps
away only 3 % of the wave function from the (1+d)LﬁO subspace.
This is probably an overestimated value because in this medel the
(u+d)L=O subspace was fairly restricted. {(Note that the twwo sub-
spaces overlap substantially because of the antisymmetrization.,

58)’

The other =2stimate, due tc Kukulin et al. shows that the

weights of all non-zero angular momentum components in the three-
-body wave functions add up to 4.5 %, out of which 3.4 % Leing

due to the L=2 component of the pn motion coupled with ad relative
angular mc.entum zero. Corresponding to this L=2 component, how-
ever, the:: is wm L=2 term in the wave function of the free

deuteron & . wel! s» that their simultaneous inclusicn .n both

nuciel oce "ot irnfluence S“d appreciablyls). Thus it seems that
th: i lane or the discrepancy between the two models cannot be
put +»a the breathing model.

As to ihe three-body model, the neglect of the « exclt.itlons

is weli-kn wn te be an acceptable approximaticn. The energics and
. . 6. . . . . . S

the ¢ lectromajnetic properties of "Li bring reproduced fairly

well, the itreatment of the Pauli exclusicn alsn appears to be

. 6 . ,
acceptable in “he rodel subspace of "Li. $ince, howevuer, Lhe

fragmentat ;- n amplitude is an overlap connecting che state Spaces



- 31 -

of 6Li and of its fragments, the straightforward prescription

adopted in the three-body model,

G, (2)= galfpﬂ,\{/'*(d)ﬁ‘ Fper ) (5.2a)

AR ACOEICEE AN IVACY: ﬁ, (£ynrtaa), (5.2b)

does not necessarily work. Indeed, the state vectors in (5.2b) do
not show the permutation invariance observable in (4.1). We will
now show that this simplification is bound to lead to a serious
error.

Let us expand 4"2'1 as
"74(”:):*\») 'f.d) = ;’){"(d)iw('f.d) , (5.3)

where (')lzl(a()l i a complete orthonormal set of states including
the g.s. of the deuteron, 471/1(0() Because of this orthogonality,

the only contribution to G~i comes from 171/1(&):
Gual2)= X (), '5.4)

and hence S, ,=<X,|%,). The terms of (5.3) with £# 1 represent
the distortion of the deuteron in 6Li. The breathing model calcu-
lations show that the weight of the distortion terms is large,

and if the three-bcdy model is a good approximation in this re-
spect, which we have no reason to doubt, this weight ought to bea
large ipn that model, too. It is therefore not surprising to find
rhac in the three-body model S_ <« 1. The case of an antisymmetrized
model is, however, quite different. The terms A, () (d)y, (44)]
with {>1 are not orthogonal to J{?,(“)‘V’,(d);(i’-f_ﬂ}, and G 4l¢)

does gain substantial contributions from them. Indeed, even the
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weight of .94{'\[»'1(“)’\{{(0()7(17(’&)} is sizeable, and yet S_, is hardly
reduced.
This argument can be illustrated by the example given in table

lo). {Sec also fig. 2 of ref.lo),] This contains the

V of ref.
weight of each ciusterization subspace in the g.s. of 6Li described
in the breathing model with a force very similar to Dy The weights
of subspaces (k,{) = (1,2) and (1,3} are, 0.131 and 0.389, respec-
tively, and yet the spectroscopic factor of the fragmentation into
the g.s. is 0.929. Assuming that the three-body model assigns simi-
lar weights to the distortion terms, we would indeed expect
(f,,lf,,) to be around 0.5 : 0.6.

To make the three-body model capable of reproducing S, one

should find the correct relationship between its wave function
ﬁq(t?“,f_d) and a microscopic wave function
(5.5)
= J -
YA 2] g b Yy (50),

where
Yr = AT S (3108t 20) (5.6)

In this matter we are guided59

normalizations ('MY,\:(&?:}@)(:‘A) . This may be rewritten as

} by the correspondence of their

<°g,!/«x,w(~2,>=<ﬁ,iﬁ,> , (5.7
where /’3\-“?% is the integral operator defined as
Ao F 1) (g (de Avpnlg 256020 Flghz) (5.8)
with

A (c;"f,'g’,;{";:: N ,-"Jl‘,‘:» . (5.9}



Eqg. (5.7) suggests that

- - 1/2
N~ A M- (5.10)
at/2
In fact,AuP“7‘ is distinguished from the other possible inter-
cluster "wave functions" by being an eigenfunction of the inter-
cluster eigenvalue problem, derivable from the six-nucleon
Schradinger equation HY¥=E%, that belongs to an hermitean

A-tfz N Rt A
hamiltonian,A,?n Aupn, where H is the integral operator with

kernel <ﬂfgf|HlY95T>. All three-body models use hermitean hamil-
tonians, sO they must correspond, in some approximation, to this
eigenvalue problem. All the more so because it is only in this
framework that the invariably neglected three-body forces are

smallGo).

allz
The function Au?n’P is contained in the subspace of the eigen-

a
functions, of A“P“" that belong to non-zero eigenvalues. On this
~ Atz .
subspace n1=A‘?“74 can be inverted, to result in
A2 A

7)4=Aupﬂz7’ ) (5.11)
(The function %, may as well be defined to contain a component
outside this subspace. However, owing to Jé the contribution of
this component to ¥ vanishes in any case.) By substituting (5.5)

and then (5.11) into eq.(4.1), we get

Cualt) =K A () () 5~ o) HA {00 (Een, Tu) D>
© ~ * PO (5.12)
. §Agy, (d,:’,,.ﬁs)A.?n*vZ,(g){) = Sdg_«h(fi,i}ﬁ S>AG/P,(7,<§,’E) .
This is to be contrasted with eq.(5.2a). It would be reassuring

to confirm that with this definition the discrepancy disappears

indeed.

In spite of the inexactness of eqg.(5.2), it yields amplitudes
which are fairly similar to our microscopic ones, apart from
their normalization, especially when local potentials and the
Coulomb potential are used in the three-body model. As a con-
sequence, the asymptotic normalization of the normalized fragmen-
tation amplitude, C,d/S:f is more or less the same in each
calculation (see table 7). It is thus obvious that the disagree-
ment between the two models in C,d is also rooted just in the
improper prescription (5.2). It looks then likely that, with the
use of the proper formula (5.12), all calculations would uniformly
overshoot the experimental value Qd=2.15.

As for the resolution of this problem, it may give a hint that
all other experimental estimates, though scatter considerably and

are believed less reliable, give substantially larger value561

)
for CLd (except those which neglect the Coulomb potential)}. On
the other hand, it is clear that any additional admixture to the
wave function of 6Li is likely to reduce Sm' and hence C;d. How-~
ever, the near completeness of tne microscopic models for cluster
dirtortions of angular momentum zero and the near completeness of
the three-body models for higher angular momentum admixtures do
not leave much scope for further reductions. Indeed, short-range
correlations, by reducing cluster distortion, might even increase
S,A slightly. We therefore believe that the true values of 5,‘

and C;d can be but a few per cent lower than the values obtained

in this work.
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Appendix

Exchange mixture in the nuclear potential kernels

From (2.9) it is seen that the potential kernels, i.e. the
matrix elements of V= ZM'“V(M:'\) between é,')k and %4+ can be

expressed in terms of the corresponding unprojected kernels as
<& V1, >=(d1 (i Y B s (used . viE 3
BUTEIRECEREERNCE (PO INIVE- S A G BRRTEY

For simplicity, we assume the form (3.1) for V(wwvﬁ. The func~

tions € are Slater determinants. (For brevity, we shall write ¢
~ o -

for qu , and ¢ for §¢3’U . ) For the a+N system, where N is a

Os cluster containing ¥ nucleons, we can write them in the form

F-(veay " AIRX], g (N A K],

A
where # is the total antisymmetrizer defined as Z,(ﬁv? and
@ (2") and X are space and spin-isospin functions, respectively.

For N=u the functions 2 and X may be defined as
2 = QO PUa) Ly Plxe) Y (x ) H{x ) () (xe) (a2)

X2 XD X o) XD X ) X a5 Xl )X F)x () (A3)

where

#(a) = (§/m) exo EREXE50, oo (B exp b 202,

and the X are :the s.p. spin-isospin eigenvectors with an obvious
notation for the #-~projections. (The function 52’ is defined with
primed quantities analogously.) Omitting the last one, two or
three factors of (A 2) and (A 3), we obtain functions correspond-
ing to N=t, 4 and n, respectively. As the kernels are independent
of the projection of the total isospin, the formulae to be derived
are also valid for N=t and p. The formulae for N=n+n and p+p
(singlet) can be obtained from those for N=d by exchanging the
mixing parameters B and -H in the final result. So the only Os
cluster N excluded is the singlet p+n pair.

It is now useful to decompose the unprojected kernel as follows:

CEIVIED K AHRXIIVIRK D= 12+ 75+, (A4)
with
1o ALRYI & VIO,
7oALY S VX,

51'.‘?-£N‘

7o CARXI[E  Vop| /%),

These are now to be evaluated by letting each V(<,#) act on the
right. Uwing to the antisymmetry of the bra and to the validity

of
<wzi9?xﬂ.‘.'ﬁ;x“(‘-')xt,,,(;;)“) 20 (trt) ars),
CARRKIL Py e &y (3) ) =0 (t4t), ats),

each of the operators ﬁ; and'ﬂg can be substituted either by a

4+
unit operator or by Tij .

For ¥, such a reduction results in

7:=<EI(W*M)HE”{(%)*(3*H)H(w",)“{(ﬁ;)*{(ﬂ.)-#(*n)]iﬁ'z (AS)



where

2 Flxgetes) = <X AfR XD,

By reducing the determinant A{RX}, it is easy to show that

L)

=81, 5) g elx) p(x) for N=1,

1]

= B(1,5)B(2,6) @(x:)p(x4) for N=2,

Z-D(1,5)2(2,0)R(3,7)p(x) for N=3,
(A6)
o= 2(1,5)2(2,609(3,7)3@,8) for N-4,

where

B+ 3= wlxdp () -4 xolx,).
It is apparent from the structure of & that in the square brack-
ets in (A 5) the pcsitive and negative terms cancel out pairwise
except for N=2, when the only simplification is that the contri-

butions of {( and Z(4,) are equal. We can thus write
3 T

{4%”)“-%“( SIS « 5 (M) H )+ L(50)-24(4012'D a7y

Eliminating ‘P": and 'F‘:, for 7,, we obtain

~

= <Elr) T ) B[4 () 2011 2

5<u ENES

where the terms that contain subscripts larger than N+4 are to
be understood to be zero. The terms in the square brackets cancel
out again, except for N=2, when there is just one non-vanishing

term. We may thus write

¥, =(w+M) NP MRD + 5, (BeH)CEH (152>, {AB)

5¢ -\.‘, $N+g

The evaluation of ¥, is simplified by the relationship

" 4
= N<AHRXT ZV(E,DIK> (A9)

For N=1 this is trivial. For N=2 and 4 the contribution of

Z, V(«L,J') is independent of {; this is plausible because such a
contribution depends solely on the signs of the spin and isospin
projections of nucleon 3. relative to the other nucleons in the
ket, and in these cases the ket is symmetrical in this respect.
For N=3, however, each nucleon j(=5,6,7) is in a unique position
with respect to the others, and a detailed calculation shows that
each term Z,_- V(‘-}j—) gives a contribution different from the others.
It appears accidental that <IZ,V(¢,5)1>=< 13 L [V(,6)+V(<,7)]I > so
that (A9) still holds.

An elimination of 'E; and E; now yields

o =N<E wzﬁ( 1s) M [ £~ L) By - L (455 B - 2R
B[ 4(40)+ £(5)-401s) RE T-HIA (i) - L () Ts + fms) ][ 52>

(Al0)

To proceed, one can easily verify that each & of (A 6) has the

symmetry properties
) IE =1Z7 (v'2>3)4)'

Multiplying the bra conjugate of this equation by {( rs) 152>

from the right, one can derive
._.l{(fﬁ;) L IRI>= <uf{( is) {l(’ﬁs)[ﬁl’) (v=2,2,4).
Applying this equation to (A 10}, one obtains
A, = N[Caw=-M+ 2B -2H) B (4,152 > sme MK () B S B P 1R
H(BHHEN (- P(BI2]. (A11)
A view on (A6) shows that, depending on N, some of the inter-

action terms in (Al1l) yield equal contributions. In particular,

’_" 4t - {("‘”3;)'51}-0 for all cases but N=2.
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Thus, conferring with (A7) and (A8), we conclude that the
nuclear potential kernels of a+N systems only contain the ex-
change mixtures in the combinations §=W+M and 7=4¢U-M+ZE‘2H,
except that, when N=d, the combination{=B*H also appears. As an
exchange of B with -H is equivalent to replacing g, g, i by
g -é, 7, the kernels for o+2p and a+2n also depend just on g,é)
and ?. As to N being a singlet p+n pair, an analogous derivation
reveals that, again, the potential kernel depends solely on g, g

and 7.

The evaluation of the kernels is then continued for each system

individually by substitution of eq.(R6) into (A7), into (A8) and

into (All) and the latter three equations into (A4). This is still

easy to carry through. What remains to be done afterwards is to

supstitute the formulae of the overlaps (qu'),... and of the two-

-body matrix elements <$$I£!¢Hﬂ>,... and to perform the integra-

tions in (Al), which are straightforward though tiresome mechanical

jobs.
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Table 1
A402 (1983) 141 )

Energies and rms charge radii®’ of the A<s nuclei with forces

of common use

48) R.G. Lovas, in Clustering aspects of nuclear structure,
ed. J.S. Lilley and M.A. Nagarajan (Reidel, Dordrecht,
1985) p.231

Force Ed 1 Et L Er e Eo ta
49) R.G. Lovas and K.F. Pal, Nucl. Phys. A424 (1984) 143 (MeV) (fm) (MeV) (fm) (Mev) (fm) (MeV) (fm)
.-I. K M. Hirata, Nucl. . Al87 72
30) K ubo and irata, Nucl. Phys. Al87 (1972) 186 i -0.545  3.655  ~7.706  1.893  -6.991  1.912 -27.740  1.694
51) R. Shyam, R.G. Lovas, K.F. Pal, V.K. Sharma and M.A. V2 -0.608 3.541 -8.138 1.909 -7.427 1.928 -28.563 1.702
Nagarajan, J. Phys. G1l1 (1985) 1199 v3 -0.350 4,295 -7.275 1.851 -6.527 1.872 -28.359 1.619
52) B. Apagyi and T. Vertse, to be published v4 -0.451 3.812 -7.199 1.824 ~6.440 1.844 -28.245 1.606
8 v5 -0.468 3.855 ~7.436 1.915 -6.725 1.935 -=27.241 1.693
53) J.J. Hamill and P.D. Kunz, Phys. Lett. 1298 (1983) 5 ve 0.53  3.673  -7.786  1.907  -7.074  1.927 -27.908  1.697
54) M.P. Bornand, G.R. Plattner, R.D. Viollier and K. Alder, v7 -0.497 3.798 -7.486 1.922 -6.779 1.942 -27.188 1.700
Nucl. Phys. A294 (1978) 492 v8 ~0.543 3.662 -7.697 1.914 -6.988 1.933 -27.613 1.701
55) C.T. Christou, C.J. Seftor, W.J. Briscoe, W.C. Parke and By -1.016 2.854 -8.384 1.853 -7.660 1.869 -28.460 1.702
D.R. Lehman, Phys. Rev. C31 (1985) 250 By -2.448 2.071 ~9.151 1.784 -8.398 1.798 -29.311 1.676
Mae) -7.456 1,505 -9.266  1.735 -8.473  1.749 -30.714  1.606
5 V. b .
6) J.V. Noble, Phys. Lett 55B (1975) 433 7Tl -2.226 2.084 -9.861 1.582 -8.920 1.599 -42.233 1.354
57) R. Krivec and M.V. Mihailovié, J. Phys. GB8 (1982) 821 TT2 -2.213 2,108 ~7.943 1.725 -7.103 1.747 -33.717 1.461
58) V.I. Kukulin, V.M. Krasnopol'sky, V.T. Voronchev and P.B. TLT -2.201 2.105 -6.028 1.874 ~5.287 1.898  -25.592 1.618
Sazonov, Nucl. Phys. A453 (1986) 365 o 5 1.88(5)C) 1.674(12)C)
i Experiment -2.225 2.095(6) ~8.482 1.70(5) -7.718 -28.296
59) T. Fliessbach, 2. Phys. A272 (1975) 39 1.976(15)d) 1.671(14)d)
60) 5. Nakaichi-Maeda and E.W. Schmid, 2. Phys. A318 (1984) 171
61) L.D. Blokhintsev, I. Borbély and E.I. Dolinsky,_i“iz. Elem. )
a . ; . : .
Chastit t., Y 19 189, . ; . The proton charge distribution is represented by a gaussian of
astits A adra 8 (1977) 1189; Sov. J. Part. Nucl s 1 width 0.43 fne.
8 (1977) 485
b)'lhe weak attractive tensor foroce not included.
et 19)
d) 41
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Table 4
Parameters of the modified versions of the standard forces
Symbol n M4 a, Vv §v 'VZ v
(£m) (MeV)
Mvl 2 1 0.82 180.88 0.80665 1.06110
2 1.6 -104.06 0.80665 1.06110
MV2 2 1 1.01 76.319 0.79833 1.01404
1.8 - 75.708 0.79833 1.01404
MV7 2 1 0.81 94.832 0.79692 1.02835
2 1.8 - 69.128 0.79692 1.02835
MB, 2 1 0.7 443.05 0.87725 5.82931
2 1.4 -159.93 0.87725 1.73809
MB, 2 1 0.6 881.05 1.00391 5.56671
2 1.2 -243.60 1.00391 1.85851
mmn?) 311 3.47% 1301.6 1.04549 1.78803
2 1.1277% -429.42 1.02559  1.57439
3 2.5 ~47189  1.13313 0.44964
mrLr®’ 3 1 1.4877% 200 1.35230
2 0.6397% -178 } 0.61707
3 0.465"% - 95.461 0. . 0.73523
a)

Centrai part only.

N
“lu=0.94092; £.+Cy=0, cf. eq.(3.6).

Table 5

Parameters of a force constructed for a conventional
"RGM-type” model

Symbol n v . @y v, £ v
(fm) (MeV)
R 2 1 0.45 3036.6 0.10249 0.19022
2 1.89 -125.43 0.39161 0.72682




Table 6
? Table 7
Fragmentation constants of 6Li

Thecoretical ad fragmentation constants

C E . ~
Model Force Ead S o te See Model Sud Ci Cowlamb cor- & /g
v © )
{Mev) (MeV) c ia) ¢,
full D, -1.474 0.926 3.14 -15.803 0.574 - -
full D, -1.474 0.930 3,30 -15.774  0.580 Three-body 0.52 2.6 2.6 3.61
full o -1.474 0.930 3.3 -15.837  0.579 Three-body®) 0.654 2.182 2.62 3.24
full o, -1.474 0.929 3.35 -15.829  0.581 Three-bodyd 0.613 2034 - 3 1s
e)
full w1 -1.474 0.921 3.42 -16.850 ©0.579 Three-body 0.66
full M2 ~1.474 0.921 3.56 -16.641 0.571 Three-body®’ 0.753 2.71 2.71 3.12
full M7 -1.474 0.920 3.51 -16.855 0.571 Breathing? 0.93 33 3.3 3.2
full 8, -1.471 0.927 3.51 -16.086  0.557
full MB, -1.474 0.929 3.36 -15.357  0.558
full AN -1.474 0.519 3.08 -16.379  0.577 a)MuJ.tiplied by 1.2 when no Coulamb force was used. See sect.4.3.
full MILT -1.475 0.912 3.10 -18.683  0.564 b) 1
Bang and Gignoux™ ).
"Re#-type” R -1.474 6.973 3.84 ~17.504  0.462 ) Lehman and Rajan’?).
"RGH-type” V2 -1.474 0.974 3.72 -15.794  0.476 D pare and 13,
"GM-type" V2 -1.474 1.07% 3.71 -15.794  ©0.722 ) "
® voronchev et _al.™")
£ . 15
Experiment -1.474 0.78:0.1% 2.1540.06®) -15.794 (0.73:1.39S " Kokulin et al. 7).
l.Oea'b) g)Present work.
1.os:o.12b)
1.08:0.1%
1.3120.18%
0.73:0.099
) Kitching et a1,1)
B ) inept et a1.l”)
c) 18
Albrecht et _al.™ ")
a Ent et a1.25)
e Bornand et a1.54)
f) 2



Figure captions

Fig. 1. The ad fragmentation amplitude in the breathing model
with the D forces.

Fig. 2. The ad fragmentation amplitude in the breathing model
with some of the M forces. For reference, the D2 curve
is alsc shown.

Fig. 3. Model dependence of the ad fragmentation amplitudes.

For the restricted models see sect. 3.4.

Fig. 4. Energetically adjusted versus non-adjusted ad fragmen-
tation amplitudes. The £, values in MeV: -1.474 (MV2,
correct value), 0.165 (V2}, 0.608 (v2, "RGM-type"),
-0.919 (v2, "GCM-type"), -1.675 (V2, "GCM=-type", no
Coulomb} .

Fig. 5. Microscopic versus phenomenological (KH) ad fragmertation
amplitudes {(a) and potential overlaps (b). KH stands for

Kubo and Hirataso).

Fig. 6. Microscopic versus phencmenological (HK) tT fragmentation
amplitudes (a) and potential overlaps (b). HK stands for

Hamill and Kunzss).

Fig. 7. Calculated ad fragmentation strengths compared with those
extracted from knock-out experiments induced by nuclear
probes [Albrecht et al.lB), Kitching et al.ls),

Dollhopt et al.l’)].
Fig. 8. Calculated and extractedzz) t1 fragmentation strengths.

rig. 9. Calculated od fragmentation strengths compared with that

extracted from an (e,ed) experimentzs).
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Fig.

(p.pd), 670 MeV
. (p.pd), 590 MeV
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