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données expérimentales de n'importe quel ensemble de paramètres.
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Abstract

A new numerical method is applied to solving the equations

of motion of the Friedberg-Lee Soliton model for both ground and spheri-

cally symmetric excited states. General results have been obtained over a

wide range of parameters. Critical coupling constants and critical parti-

cle numbers have been determined below which soli ton solutions cease to

exist. The static properties of the proton are considered to show that as
presently formulated the model fails to fit all experimental data for any

set of parameters.

t Natural Sciences & Engineering Research Council of Canada
Post-Doctoral Fellow

Theoretical Physics Branch
Chalk River Nuclear Laboratories,

Chalk River, Ontario, Canada KOJ 1J0
1984 June

AECL-8440



I. Introduction

Soliton models have been proposed as the effective manifes-

tation of confinement in QCD • In these models the confinement of

quarks Is realized through their interaction with a scalar soliton field

(a-field). In the particular model of Friedberg & Leeö L , the soliton

solution of a mean scalar ö-field is made possible through introduction of

a non-linear self energy potential U(o). The states ((Wr)) of the quarks

and a-fields then satisfy, in the mean-field approximation, the coupled set

of equations

[-ia$+ ßm + 6ga(r)] ̂ (r) = \\(r) (1.1a)

- V2a(?) + JËLSlo -g I 7^(r) <^(r) (1.1b)
occ.

with

/ £ )d3r = 1 (1.1c)

where a. and ß are the conventional Dirac matrices. Here the quarks are

coupled to the a-field by a coupling constant g.

An analysis of the solutions resulting from the set of Eqs.

(1.1a to c) has been given by Friedberg & Lee . They show that solutions

can take on the characteristics of either the MIT15 or the SLAC1^ bag

model, depending on the choice of parameters in U(a). They also show num-

erical solutions for a particular choice of parameters whereby the coupled

Eqs. (1.1a and b) reduce to two coupled, first-order differential equations

which are parameter free: the parameters in this case having been absorbed

in the scaling. Numerical solutions of the set of Eqs. (1.1a to c) have

been given for selected choice of parameters by Goldflam & Wilets and

later by Saly & Sundaresan . The approach adopted by these authors in

solving the coupled set of Eqs. (1.1) is an iterative one whereby first a

guess is made for the a-field and the solution of the Dirac eigenvalue-pro-

blem in Eq. (1.1a) found numerically. With this choice of the Dirac-

functions in the source term, Eq. (1.1b) is solved numerically for a new



- 2 -

estimate of the a mean field- This process is iterated to convergence -

if possible.

The main purpose of this paper is to show how the set of

coupled differential Eqs. (1.1a to c) can be solved simultaneously. The

method we adopt immediately illustrates many of the general features

deduced by Friedberg and Lee as well as uncovering other interesting scal-

ing properties of the solutions. It is immediately obvious from our

results when soliton solutions should exist, i.e. why the iterative proce-

dure failed at times. Results of the model have been obtained with para-

meters varying over many decades. General results have also been found

for quarks excited to higher quantum states.

The structure of the paper is as follows. In Section II we

review features of the soliton model and then, in Section III, discuss the

application of the model to a spherically symmetric ground state. Here we

show a useful scaling which allows the equations of motion to be treated

as a boundary value problem of a set of coupled differential equations.
17 — 19Section IV outlines the collocation method which has been applied

for the numerical solution of this boundary value problem. Section V

shows the results of the calculations of the ground state for various

parameter choices- We also consider here how close the model comes to

reproducing static properties of the proton, although we believe the model

must be extended before a detailed fit to hadrons is worthwhile. In

Section VI we show results of application of the method to excited quark

configurations. Section VII contains a summary and conclusion. A summary

of the results of this report has been submitted for publication in a

journal.

II. The Solitoa Bag Model

The soliton bag model, as it was proposed by Friedberg &

Is gi

density

Q _ "I 1

Lee , Is given in its lowest approximation by an effective Lagrangian

gt|>ac|> + y o aô^a - U( a) . (2.1)
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This system consists only of the quark field c|; and the scalar gluon field

a. In this work we restrict ourself to the above Lagrangian. We are not

taking into account any counterterms, which would be used for renormalisa-

tion, and we neglect residual vector-gluon fields and Higgs fields (which

would have to appear in a complete Lagrangian) and pion fields as in a

chirally invariant extension of the model. The self-energy U( a) of the

scalar field a is parametrized in a phenomenological form (Fig. 1)

U(a) = (0-0 ) 2 {sa2 + 2ta a+ ta 2i . (2.2)
N ' v v L v v

This is of quartic order in a and has the most general form such that the

minima of U( a) are at o=0 and 0=0^ with U( Oy) = 0. It is assumed that

a differs from av only in the presence of quark fields. Furthermore,

the scalar gluon field a is treated as a classical, time-independent

c-number mean-field a(r), having a radial form as shown in Fig. 2. The

quark field <\> can be expanded in terms of annihilation and creation opera-

tors in a complete set of quark spinor wavefunctions {ik } which satisfy

the Dirac Eq. (1.1a). The scalar gluon field 0(r) then has to satisfy the

Euler-Lagrange equation of motion in Eq. (1.1b). Eqs. (1.1a) and (1.1b)

represent a system of coupled differential equations, which have to be

solved simultaneously with the normalization condition Eq. (1.1c). At

large radius r the right-hand-side of Eq. (1.1b), the source term for the

scalar a field, drops to zero and the a field assumes its vacuum value

ov« At small radius r, where the quark wavefunctions 4^ are nonvan-

ishing, the a field has a value close to the second minimum near zero.

These boundary conditions are the origin of the confinement of the quarks

within the radius of the soliton bag. The total energy of this system of

quarks and the soliton field is given by

Ef -- ̂  e + / [~ (Va(r))2 + U(a(r))] d3r (2.3)
tot k k. I

occ

E + E
q a
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III. The Ground State

The ground state of the soliton bag is the state where N

quarks are in the same lowest Dirac state <\>Q. The number of quarks would

be N=3 for baryons and N=2 for mesons. The ground state s-wave Dirac

spinor wavefunction (JJQ is written as

(3.1)

where

1 0
s = (Q ) or s = ( ) .

The system is spherical symmetric and the Eqs. (1.1a, b and c) transform

in radial coordinates to

du

dT~ - K + m + g a o ) v o ( 3 ' 2 a )

dv „
-r-2- = - - v + ( e - m - g a ) u (3.2b)
d r r o v o 6 o / o v

c 2 2 24n / r (u + v )dr = 1 (3 .3)

2
da o da dU( a ) o oo _ _ £ o o . N / 2 _ 2. , . , .

dr dr da
o

The solution of Eqs. (3.2) to (3.4) has to satisfy the boundary conditions

vQ(r=0) = 0, uo(r=») = 0, o(r=») = ay, |p(r-0) = 0 (3.5)

The bare quark mass will be taken as m=0. A non zero quark mass ra can
formally be included by shifting the soliton field a to a1 = a + — .3 J 6 o o o g

The soliton self-energy U( a) (eq. 2.2) and the boundary conditions (3.5)

have to be corrected equivalently.
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In the following it will be shown how the Eqs. (3.2) to

(3.4), with the boundary conditions Eq. (3.5), can be transformed into a

boundary value problem of a system of ordinary differential equations.

In the first step, all the quantities in Eqs. (3.2) to (3.4) are scaled

according to

r = , a = a a , e = g o e
&% v v

(3 .6)

N o o

and the soliton self-energy U( a) is rewritten as

with

and

U(a) = g V U'(a')
( 3 . 7 )

U ' ( a ' ) = ( a ' - l ) 2 f s ' a ' 2 + 2 t ' a 1 + t 1

s = g 2 s ' , t = g 2 f

The scaled, primed quantities are all dimensionless.

Equations (3.2) to (3.4) are rewritten in these quantities

as

du1° ö')v' (3.8a)
o odr' v o o' o

dv1 j
3-f = - i - v ' + (e1 - a')u' (3.8b)
dr r o o o o

4n / r|2(u^2 + v^2)dr' = -p1 (3.9a)

wi th

4K / r2(u2 + v2)dr = ̂ — = 1 (3.9b)

and
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d a ' 2 a' dü'(a') ,
° = - _ ^ + 2_ + (u-

2 - v.2) (3.10)
dr'2 r' da'

o

The boundary conditions ara

da'
W(r'=0) = 0, u^(r'=°>) = 0, c£(r' = «) = 1, jp- (r'=0) = 0 (3.11)

It is remarkable that in the set of coupled equations in

Eqs. 3.8a, 3.8b and 3.10 there is no explicit dependence on the asymptotic

soliton field o\,> the coupling constant g or the particle number N.

Furthermore, the main advantage achieved by the scaling of the equations

is the following. The Eqs. (3.8a), (3.8b) and (3.10), together with the

boundary conditions in Eq. (3.11) form a well defined boundary value pro-

blem of a system of coupled ordinary differential equations. The free

parameters of this system are now the two scaled parameters of the soliton

self-energy s' and t' and the scaled quark energy e'. Once this system

has been solved, the product Ng is determined from Eq. (3.9) by computing

the normalization r\' of the quark wavefunction in the scaled system.

Clearly this determines the coupling constant g for a given number of

particles N (or the number of quarks N for a given coupling constant g).

The asymptotic vacuum value of the soliton field öy has

to be determined by an additional condition, e.g. by specifying the rms

radius

2 . t 4. 2 ̂  2.,
r = 4ix I r (u + v )dr =
rms o o

= -^-s- / r'4(uo + v'̂ '/r,' • ë 2

(go"v)

or by specifying the total energy E (Eq. (2.3))

, da 2 „
Etot = N£O

 + ̂  / h (ÏT) + u ( V ^ r dr

E ( 3- I 3 a )
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where

Etot = T1' £o + 4* / [| (-T] + ü ' ( ö o ^ r'2dr' (3

Only after g has been determined can the parameters s and t

of the soliton self energy function U( a) be found through Eq. (3.7) with

the assumed values for s1 and t'. It may seem strange to the reader that

the parameters can only be determined after the solution of the problem.

This inconvenience is offset by the simplicity in the solution of the

scaled set of Eqs- (3.8) to (3.11), which has avoided the complication of

solving an eigenvalue problem for the Dirac energies e. [Our approach is

similar to solving the quantum mechanical eigenvalue problem for a square

well by declaring the eigenvalue a priori and then determining the parame-

ters of the well that will support this eigenvalue.] The approach is par-

ticularly suitable for finding the general features of solutions for vary-

ing parameters as will be shown in the next sections.

IV. The numerical Solution

We have solved the boundary value problem of the system of

the Dirac Eqs. (3.8a and b) and the soliton Eq. (3.10) by applying the

general purpose computer code COLSYS (COLlocation for SYStems) written by

U. Ascher, J. Christiansen and R.D. Rusell 1 7" 1 9. The code is able to

handle up to 20 coupled ordinary differential equations o f mixed order,

with the highest order up to m = 4. The method of solution is a finite

element method. The interval [a,b], in which the differential equations

have to be solved, is divided into a partition (mesh) 7i:a = x i < x 2 < **

< x^ < X N + I = b. The solution is approximated by piecewise polynom-

ials v C Pfc+ni n H c(m~l)[a,b], i.e. v is a polynomial of order k+m in

each subinterval 1^ = (xj, x i + 1) of n and it is continuous to the

order m-1 in the whole interval [a,b]. The piecewise polynomials are

expressed in a basis of B-spline-functions. The collocation of the

differential equations at k Gaussian points in each subinterval 1^

together with the boundary conditions and the continuity condition leads



to a complete system of equations for the expansion parameters of the

piecewise polynomials. In the case of nonlinear differential equations

this is a nonlinear system of equations, which then is solved by a Newton

method. The code COLSYS also includes a mesh selection algorithm, which

aims to meet the required tolerances of the solution with the least number

of meshpoints. It also produces reliable error estimates.

To solve our boundary value problem of Eqs. (3.8), (31.10)

and (3.11), we have to introduce a cut-off radius R, which has to be

chosen large enough, and we have to define the boundary conditions at this

radius. Therefore the asymptotic behaviour of the Dirac components u1 and

v' and of the soliton field a1 have to be examined for r'+». By putting

a1 = 1 for r1-*» in Eqs. (3.8a and b) we get

2 2
where ß - 1 - e1 , K. is the modified spherical Bessel function of the

20 ° -'
third kind, and

ßr'+l

(ut2-v'2) (r'->•«•) = 0. Then
o o

The solution of Eq. (3.10) for r'-w can be found by putting

« exp(-ar') ,. o.

- A —Z±p '- (4.3)

where a2 = 2(s' + 3t').

Eqs. (3.8a and b) and (3.10) are then solved in the

interval r' C [0,R] with the boundary conditions

do'
v»(r.=0) = 0, ^ ( r .=0) = 0

u'(R) (l+e')R dff'(R)
-2 = 2 _ t o . ( R ) + _ 5 2 =1
v'(R) ßR+1 ° cdR+1 dr1

o

(4.4)
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V. Results for the Ground State

Since the main purpose of the present paper is to introduce

the new numerical method for the solution of the mean-field equations of

the Soliton Model and to show the advantages of this method, we will

restrict the exploration in this section to the ground state solutions of

the scaled equations (3.8) to (3.11). Furthermore the soliton self-energy
2 2

U(cr) (eq. 2.2) is restricted to U( a) = s a ( a- <%) > t=0> a n d t h e b a r e

quark mass m is taken to be zero, as discussed above. This follows
1 2approximations made by Goldflam and Wilets and by Saly and

Sundaresan . The ground-state solution of the equations is defined by

the condition that the Dlrac components u and v are nodeless. This also

corresponds to the solution with the lowest total energy for a given set

of parameters {N,g,s} or {*. ,s'}.

The only parameters of the scaled soliton equations (3.8)

and (3.10) are the quark energy e1 and the parameter s1 of the soliton

self energy U'(a'). The equations have been solved for a wide range in

these parameters. Note that the scaled quark energy e1 must be in the

range c' C (0,1) for bound solutions of the quark equations. The parame-

ter s1 of the soliton self energy has been varied in the range of

s' = s/g2 t_ [0.01, 500].

2
Figure 3 shows the normalisation ri1 = Ng (Eq. 3.9)) of the

ground state solution as a function of e1 for different values of the par-

ameter s1. A striking feature of the results is the nearly power-law

behaviour of V with respect to e' for small e'. Although Fig. 3 only

shows the results for e1 > 0.1, the equations have in fact been solved for

e1 > 0.01. These results indicate a very accurate power-law of the form

n1 « e' , with an exponent of a = -2.79, which is nearly independent of
° 8 11

s'. On the other hand, as e1 increases to e' -*• 1_, Friedberg & Lee '

showed that (for this three-space-dimensional case) the normalization r)1 -*-°°

and the total energy E' approaches r\f from above. All the curves in

Fig. 3 show this rise in r\' as e1 •>• 1_ - even that for s1 = 0.01 (c.f.

Table 1).
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The total energy of the system E' = E g/a is shown In

Fig. 4 versus the normalization rj' = Ng . On each curve, given for con-

stant parameters s1 = s/g^, there is defined a point S and a cusp (or

spike8»11) critical point C. The point S is defined by the condition

that E' t = T)' = ni , I.e. the total energy is equal to the lowest energy

for free quarks, ElT, > r\' . For n' > r\' the lower-energy soliton solution

is stable. The critical cusp points C correspond to the minima

V = min r\' (fixed s') of the curves in Fig. 3. For n1 < r\' there exists

no s<" .iton solution of the equations. As has been deduced by Friedberg

and Lee , this feature is unique for the three-space-dimensional case

and does not occur in lower dimensions. This is the first time, we

believe, that these curves actually have been calculated for such a wide

range of parameters. The values of the scaled quark energies e1 , the

normalization T}' and the total energy E' at the critical point C and at

the point S are given in Table I for the parameters of s' that have been

considered.

Note that Fig. 4 can be interpreted as a variation of the

total energy with particle number N for a fixed coupling constant g. This

is the way in which the solutions have been discussed by Friedberg and

Lee » for example. Then, because of the cusps, we find a critical par-

ticle number Nc below which the formalism does not support soliton solu-

tions. Equally well we can interpret Fig. 4 as the variation of the total

energy with coupling constant g for a fixed N. Then, again because of the

cusps, we find a critical coupling constant gc below which the formalism

does not support soliton solutions for a given number of particles.

The computed soliton field o' and the two Dirac components

u1 and v' are plotted in Figs. 5 to 9 as functions of the scaled, dimen-

sional radius r'. The figures show the variations of the solutions with

the parameters e' and s' and also give the rms radii r' „ for the quarks

as computed from eq. (3.12). W<? make the following observations:

a) The scaled radius of the sol1ton well decreases rapidly with increas-

ing e', while it depends little on the parameter s1. However, the diffuse-

ness of the soliton well seems to depend only on s1: the well has a sharp
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edge for large s1 and is more diffuse for small s' . As e1 is increased to

1 (e1 •> I_), the soliton well flattens out for small s', as can be seen

from Fig. 8 for ej = 0.9 and s' = 0.1 and 0.01 ( a' -+1 for all r').

b) The ratio of the lower Dirac component v' to the upper component u'

decreases as e' increases, leading to a non-relativistic limit as e1 •+ 1_-

For sufficient decrease of either of the parameters e1 and s1 the maxima

of the upper Dirac component u1 change from the origin, r'=0, to finite

radii r?>0.

c) Fig. 9 shows the results for the soliton field o'(r') and the Dirac

components for an extreme example of small e' = 0.01. In this figure the

Dirac components u' and v1 have been divided by /n1 . It shows that for

small values of s1 the quark density is peaked at the surface of the soli-

ton bag approaching the solution of the SLAC bag while for large values of

sT the quarks are distributed in the whole volume of the bag as in the MIT

bag. The derived quantities for e1 = 0.01 and for the different parame-

ters of s' are summarized in Table II.

d) The rms radii r1 lie well inside the soliton well for small e1

rms o

(Fig. 5), lie about at the edge of the soliton well for e' ~0.5 (Fig. 7)

and lie outside the radius of the soliton well for e' -> 1_ (Fig. 8). The
variation of r1 with e' is also shown in Fig. 10. For small e1 the

rms o ° o
radius r1 gets very large as also does the radius of the soliton well,

inns
On the other hand, as e' increases to ef •*• 1_ the radius r' also' o o rms

increases while the radius of the soliton well decreases. For e' •> 1, the

soliton field a1 flattens out, approaching the unity it would reach in

the limit of free quarks, where E' = TI1 (see Fig. 4).

e) Fig. 11 shows the variation in the contribution of the quark energy to

the total energy E (N e /Efc t = T)'e'/E' ). For small values of e^

the ratio of the quark energy to the total energy N £O/
E
tot approaches

the value in the MIT model (0.75) for large sf and that in the SLAC model

(2/3) for small sr while for large e1 ->• 1_, the soliton energy vanishes

and E -> Ne .
tot o

One might like to compare the result obtained above for the

soliton bag model with the experimental values of a three quark system,



- 12 -

e.g. the proton. Beside the total energy (Eq. (3.13) and the rms radius

(Eq. (3.12)) we also calculate the magnetic moment u-, where

H1 = 3^ / r'Vv'dr'/Ti1 = gavu (5.1)
o

and the ratio of the axial-vector to the vector coupling-constant

/ 2OTC r" 2, 2 1 2., 20u f™ ,2, ,2 1 ,2 N J , , < sa o\
gA/gv = -3- J r (u - j v )dr = -y- J r' (u1 " j v )dr'/V . (5.2)

o o

To compare theory with experiment, we form the dimensionless quantities

E * r Et * r . r rt

tot rms tot rms rms _ rms , /
N r? ' \x j7~ 8 A / g V

which are shown in Figs. (12a,b and c) as functions of e', for different

parameters of s1. For the adopted experimental values for the proton

E = 938.28 MeV = 4.755 fm~1

rrms = 0.83 fin

u = 2.7928 ̂ — = .29368 efm ,
2m c
P

the corresponding ratios are

E*r r
_ _ £ E i = 1.3156, -2Si= 2.8262

and

gA/gv
 = 1'25 •

The values are given in Figs. 12a, b and c as dashed lines.

The theoretical values of the ratios E^ *r /N and r /u
tot rms rms

are above the experimental values for the proton for the values of e1 that

are shown. To match the experimental values, one would have to consider

very small scaled quark energy e' << 0.1. But for small e1 the ratios of

E *r /N and r /|i are nearly independent of the parameter s' of the

soliton self energy. For very small E1 and small s1 one would reach
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the limit of the SLAC-bag , where the quark charge density lies near

the surface of the bag. For small e' and large s' the limit is the MIT

bag -* with sharp bag edges and the quark charge density distributed in

the whole volume. The ratio of axial vector to vector coupling-constant

g /g varies smoothly between g./g«, = 0.6 (for e' « 0.1) to the non-rela-

tivistic quark value of g./gv = 5/3 (for e' •> 1_). Clearly a fit to the

experimental value of g J'gv = 1.25 would require a large e
1 ( ~ 0.6) in

disagreement with the other data.

At this stage we do not want to go into further details in

the comparison of the theoretical results of the Soliton Bag Model with

experiment. Before such detailed comparison one would have to explore the

influence of a non-zero bare quark mass in the Lagrangian and of the para-

meter t in the soliton self energy. Furthermore one has to analyze the

higher order corrections to the mean-field approximation.

In our opinion the most important modification to that

given above is to extend the Lagrangian to make it chirally symmetric, as

was proposed originally by Gell-Mann and Levy and applied extensively

in Refs. 2-5, 14, 21-31. In the chiral invariant extension to tue model

the quarks interact with the soliton field a and the isovector, pseudo-

scalar 7t meson field. The advantage of this version of the soliton

model is that most of the parameters of the model can be given a

priori in terras of either known constants (e.g. pion mass, pion decay con-

stant) or constants for which we might have some idea as to their relevant

size (e.g. sigma mass). The coupled differential equations for the mean

fields now have to be extended by the equations for the pion-fields.

Birse and Banerjee have solved these equations for a hedgehog baryon

following the method of solution of Goldflam and Wilets . The same

method outlined in Section 4 can be applied to this extended problem how-

ever. The results obtained for this chiral soliton model are being anal-

ysed by us in a systematic way and will be presented in a later paper.



- 14 -

VI. Excited States of the Soliton Hodel

Besides the ground state, which has been discussed in the

previous section, the mean-field Eqs. (1.1) of the Soliton Model also have

solutions for excited states of the Dirac Eq. (1.1a). We want to present

here the results for some of these excited state?., to demonstrate the

great power of the numerical method of solving ehe equations.

a) Consider all quarks in the same si/2~ s t a t e (£=0> J=l/2)«

We first show results for the excited states of the system

of Eqs. (1.1) or the scaled Eqs. (3.8) to (3.10). The solutions are

labelled by ns, where n is the number of nodes of the large Dirac compon-

ent u and s stands for 1=0. The scaled quark energy E1 has been chosen in
2

these calculations to give a constant normalization of TI' = Ng = 3000,

and the parameter s' of the soliton self energy has been taken as s'=0.5.

Fig. 13 shows the solutions for these parameters for the 0s, Is and 2s

states. The scaled size of the soliton well increases with the node number

n and the surface diffuseness stays constant, although it gets a pro-

nounced internal structure. The lower part of Fig. 13 gives the large and

small Dirac components u1 and v' as well as the rms radii r'
r rms

b) All quarks in the same pi/2 state Q=l, j=l/2).

Instead of using the ground state Dirac wavefunction <\>Q

(3.1), one can assume that all the quarks are in an excited odd parity p

state with angular momenta 1=1, j=l/2

The scaled mean-field equations in radial coordinates read then

dv1

gp- = + (e{ - opu{ (6.2b)

and
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2 dOi d U ( P P , , ,2
2 +

dr1 r1 dr' da|

(6.3)

and the n o r m a l i z a t i o n i s as in eq . ( 3 . 9 )

4-rt / r ' 2 ( u j 2 + v ^ 2 ) d r ' = rj1 = Ng2 ( 6 . 4 )

The boundary conditions for uj , vj and crJ are

u'(rf=0) = 0, v!(r' = °°) = 0, a'(r' = «) = 1, —^(r'=0) = 0 . (6.5)
dr'

The three lowest solution with all quarks occupying the states Op, lp or

2p, of Eqs. (6.2) to (6.5) are shown in Fig. 14. The scaled quark ener-

gies z\ have again been adjusted for a constant normalization of
2

T)1 = Ng = 3000 and s1 is again taken as s' = 0.5. Table III lists the

quark energies e', the total energies E' and the rms radii r1 for the
LO L rnis

above excited s- and p-states. It gives the scaled quantities as well as

the energies in units of the vacuum soliton field o^ for the case of

three quarks, i.e. N = 3, g^ = 1000. Note the nearly linear increase of

the single particle energies with varying nodes for both the s-orbit and

the p-orbit occupancy reminiscent of the solutions for a non-relativistic

oscillator.
c) Quarks in different states.

Finally we want to show the solution of the mean-field

equations for the case where two different states <|̂  and cĵ. are

occupied by the quarks. Only spherically symmetric solutions are consid-

ered, i.e. ji = j2 = 1/2. In this case one has to solve the boundary

value problem of the following system of differential equations, written

in radial coordinates in the scaled quantities according to Eqs. (3.6),

(3.7)

du! (1+K.)
- <ej + a')v' (6.6a)

i = 1,2

dP~= " r' Vi * (E1 " g>)ul (6-6b)
dv! (1-K )

=
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and

d 2 a '

where

JH-1/2
fo r

1-1/2

-1
{ for
+1 p

1/2

1/2

states

states

The boundary conditions are

and

v'(r'=0) = 0, u'(r'=<*>) = 0 for ŝ /2 states

u'(r'=0) = 0, u'(r'=») = 0 for pi/o statas

4|J- (r=0) = 0, a'(r—) = 1 .

(6.8a)

(6.8b)

The normalizations of the Dirac wavefunctions ^ and 4^ are

h% / r'2(u'2 + v'2)dr' = n| = N.g2 i = 1,2 (6.9)

We take a system of 3 quarks with a coupling constant of
2 2

g = 1000 and a parameter of the soliton self energy of s = s'g = 500,
s1 = 0.5. We further put 2 quarks in the state and 1 quark in the

state cĵ  , i.e. the normalization of the scaled wavefunctions have to be

T|{ = Nj^g2 = 2000 and T^ = N2g
2 = 1000. To fulfill the above side con-

ditions of the normalization, the scaled energies e] and el have to be

iterated. It is found that about five iterations are sufficient to reach

an accuracy in the normalization of 10" . The solutions are shown in

Figs. 15 and 16 for the cases of k^ = 0s, k2 = Op and kj = 0s, k2 = Is

respectively, and the corresponding energies and rms radii are listed in

Table IV. A comparison of Figs. 14 and 15 with Figs. 12 and 13 shows that

the soliton field a in the above case is approximately a two to one super

position of the corresponding soliton fields in the cases of section 6a)

and 6b) respectively. The wavefunctions of the quarks in the ground

state, u| and v|, are pushed towards larger radii, with a large rms
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radius, while the rras radius of the excited quark in the Op or Is state,

respectively, is relatively small.

VII. Summary and Conclusions

We have presented a new numerical approach to the solution

of the soliton bag model of Friedberg and Lee. The method is particularly

suitable for exhibiting the general properties of the model for various

parameter choices. We have shown the general features of the model for

degenerate minimum energy of the soliton self energy (t=0) and for varia-

tion in (effectively) the parameter s, coupling constant g and particle

number N. We have considered examples when all quarks occupy the nsi/2

or np-j/2"-orbits (n=0,l,2) or when two occupy the Os-̂ /2 anc* o n e t n e

ls]/2 o r 0p]/2 orbits. We show how the results of the model, for var-

ious observables, compare with those of the proton by considering dimen-

sionless products. We have refrained from a detailed comparison, however,

since we believe that the model must be extended to a chirally symmetric

model by the addition of pion fields. This latter addition, and the con-

sequent predictions of the model following the methods of this paper, will

form the subject of a subsequent paper. Consideration of recoil correc-

tions must also be given as in ref. 32.

Numerical solutions of the Friedberg-Lee model have been

found by Goldflam and Wilets and Saly and Sundaresan for particu-

lar sets of parameters using a different numerical method. These solu-

tions have been indicated by circles and pluses respectively on Fig. 3.

The results from our method agree with those from refs. 12 and 13 for the

same parameters. It is clear from our own analysis that the previous

method failed to find solutions at times because parameters had been

chosen beyond the critical values which, as explained in the text, deter-

mine when the formalism will or will not support soliton solutions.

We conclude from our study that treating the equations of

motion as a set of coupled differential equations and then using the com-

puter code COLSYS has many advantages over other methods and certainly
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illuminates general features. We are finding that it is a straightforward

extension to include the pion field in a chirally symmetric version of the

model.
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Note added

After finishing this paper we have learned of the work of
33

S. Kahana, G. Ripka and V. Soni . They solve the equations of motion of

the chirally symmetric soliton model for the hedgehog state by diagonaliz-

ing the Hamiltonian in a finite basis. The same numerical method given in

this paper has also been applied to get these hedgehog solutions. The

results will be reported in a forthcoming paper.
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Table I. The scaled values of the quark energy e' , the normalization r\'

and the total energy E' are given at the point S and at the

critical cusp point C for the specified values of the

parameters s1 of the soliton self energy. (Compare with

Figs. 3 and 4).

s '

500.0

100.0

50.0

10.0

5.0

1.0

0 .5

0 . 1

0.05

0.01

e's

.733

.733

.732

.729

.729

.743

.771

.908

.953

.990

's tots

1179.0

525.5

372.1

171.4

125.4

65.82

51.25

27.37

19.94

9.200

e1

.938

.937

.935

.927

.920

.891

.898

.967

.983

.997

653.1

293.5

209.4

101.0

77.47

50.24

43.02

25.2.0

18.56

8.580

fitotc

754.4

338.5

241.2

115.1

87.20

53.43

44.54

25.34

18.61

8.584
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Table II. Results obtained for the extremely small scaled quark energy

of ê  = 0.01 and for the values 10.0, 1.0, 0.1 and 0.01 of the

self energy parameter s'. (Compare with Fig. 9).

e^ = 0.01 s1 =

Normalization r]'

Total Energy E^o(_

ras

"i
2. le.

10.0

33.6242 xlO6

523095.

107.3

35.01

.6677

1.0

8.84923*106

137017.

103.7

34.21

.6141

0.1

2.50884*106

38888.9

101.8

33.76

.5846

0.01

0.808548*106

12773.6

101.0

33.57

.5713

rescaled for N = 3, E = M = 1 GeV

e [MeV]

r [fm]
rms L J

(2M/e)

214.26

.9885

3.268

215.28

.9509

3.178

215.04

.9345

3.141

210.99

.9447

3.182
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Table III. The scaled values of the quark energy e' , the total energy

E' and the root mean square radii r' for the excited state
tot H rms

where all quark occupy the same ns. .„-state or np.. .„-state

for TI1 = Ng = 3000 and s' =0.5. The energies are also given

in units of the vacuum value ô , of the soliton field for N =

3, g2 = 1000 and s = 500. (Compare with Figs. 12 and 13).

r\l = Ng = 3000, s' = 0.5 N=3, g = 1000., s = 500

täte

Os

Op

Is

IP

2s

2p

3»

e1

.154016

.235246

.306613

.373496

.437215

.496751

.554550

"tot

734.709

1126.52

1462.13

1750.37

2029.75

2275.33

2518.43

r'
rms

7.81310

7.42429

8.36742

9.47218

10.3117

11.1878

11.8826

4.87040

7.43914

9.69594

11.8110

13.8260

15.7087

17.5364

tot v

23.2336

35.8239

46.2365

55.3517

64.1865

71.9523

79.6397
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Table IV. The scaled values of the quark energies &[ and zL> the total

energy E' . and the root mean square radii r'
tot rms

and r' for
rms2

the case where 2 quarks are assumed to occupy the ground state

O s l / 2 ~ s t a t e *> e;P
(e~) for g = 1000 and s1 = 0.5. The energies are also given

in units of a

t n e Op, ,„~stat:e o r t n e Is, /«-state

.5. The energies a

(Compare with Figs. 14 and 15).

state

kl k2

ni 2 0 0 ° "
1000.

E1

tot

= 0.5

rms rms 2

0s Op .151819 .285733 933.144 9.00953 6.20387

0s Is .140763 .412669 1063.39 9.30778 7.68587

Nj_=2 g =1000. s=500.

N2=l

1 v
E la
tot v

4.80094 9.03568 29.5086

4.45132 13.0498 33.6275
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Fig. 1. General structure of the soliton self energy function U( a) =
2 2 2 1 2 1

(cr-av) (sa + 2ta^a + tay ) for t = 0, -^ s, ^ s and j s. The

minimum A is U(ö = 0) = ta and the barrier height B at

ĉ  = av(s-3t)/2s is 0(0=0^) = a^(3t+s)2(s
2 + 2 ts -3 t 2 ) / l6s 3 .

Figure 1
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Fig. 2. General structure of the soliton mean field o"(r)

<7V I

0

(7(r)

Figure 2
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Fig. 3. General structure of the normalization r\' = Ng (Eq. 3.10) as a

function of e1 = e /gö (Eq. 3.6) for the values of s' = s/g =
O O V

500., 100., 50., 10., 5., 1., 0.5, 0.1, 0.05 and 0.01 and t'=0.
Note the logarithmic scales« Solutions found by Goldflam &

Wilets (o) and by Saly & Sundaresan (+) for specific parame-

ters are indicated.

77' = Ng:

10 -_

Figure 3
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Fig. 4. General structure of the scaled total energy
'tot

(Eq. 3.12a) as a function of r)' = Ng for the values of s' con-

sidered in Fig. 3. The critical point C and the point S have

been labelled only for the values s1 = 10 and s' = 100.

10

' = Ng'

Figure
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Fig. 5. At the top is shown the scaled soliton field a'(r') as a func-

tion of the scaled radius r1 for the values of s1 = 10.00 (1),

1.00 (2), 0.10 (3) and 0.01 (4). The bottom curves show the

corresponding solutions of the scaled upper radial function

u^(r') (solid curves) and the lower function v'(r') (dashed

curves) as a function of r1. The root mean square radii r'

for the solutions are also shown. All solutions are for the

scaled quark energy e' = 0.1.

Figure 5



F i g . 6. As in F ig . 5 but for e ' = 0 . 2 .

Figure 6
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Fig . 7. As in Fig. 5 but for ef

o
0.5.

Figure 7



- 32 -

F i g . 8. As in F i g . 5 but for e^ = 0 . 9 .

1.0

\ \

00
! i !
1 2 3

V'0(r'

rms |

0.0 10. 20.

Figure 8
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e' =0.01 showing the ten-Fig. 9. As in Fig. 5 but for extremely small

dency towards an MIT bag (large s') and a SLAC bag (small s 1).

The Dirac components u1 and v' have been divided by the corres-

ponding Derived quantities are given in Table II.

5*10

Figure 9
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Fig. 10. The root mean square radii r1 shown as a function of z'
^ rms

s' = 0.01, 0.1, 1.0, 10.0 and 100.0.

for

rms

10.

0.0

1

\
\

V
1

^ 0.01
• — • — —

— • = =

7

-
— —

100.

i
0.0 0.5 1.0

Figure 10



Fig. 11.
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The ratio of the quark energy Ne to the total energy E t o t as a

•s = jjT and hence is computed only in
tot tot

function of Note

in terms of scaled quantities.

1.0

tof

0.5

—

—

I

100.

I

0.01

I I I I
0.0 0.5 1.0

Figure 11
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Fig. 12. The dimensionless, scale invariant ratios E *r /N (a),

r / (.i (b) and gA/g.. (c) given as functions of £
r for s' = 0.01,

0.1, 1.0, 10.0 and 100.0. The experimental values for the

nucléon (N=3) are shown by the dashed lines. The values of

gA/gv for the nonrelativistic limit (NR), the MIT bag and

for the SLAC bag are also indicated in Fig. 12c.

00

Figure 12a

6 0 .-

j

i

4- 0
1

20 r
i

00
00

Figure 12b

15 l-

NR 5/3

0 01
/

-\
—i

10

Figure 12c
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Fig. 13. At the top are shown the scaled soliton fields when all quarks

are in the same ns-j/2~state with n=0, 1 or 2 nodes of the

upper component. At the bottom are shown the corresponding

scaled radial functions of uhe upper u'(r') (solid curves) and

lower v'(r') (dashed curves) components as a function of the

scaled radius r'. The quark energies are adjusted for

TV = Ng2 = 3000 and s' = 0.5 (see Table III).

1.0 I—

0.0 2.0

Figure 13
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Fig. 14. As in Fig. 13 but when all quarks occupy the same np]/2~state

with n=0, 1 or 2 nodes of the upper component.

Figure 14
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Fig. 15. Solutions for a', u^ and ul (solid curves) and v] and vX (dashed

curves) where 2 quarks are assumed to occupy the ground state

Os. ,„ state (u',v') and 1 quark the O-node p . -wave state

(u'v'). g = 1000 and s1 = 0.5. (compare Table IV).

1.0 _

0.0

-1.0

rrms
> 1

— - U ' 2 /

— i —

0.0 10. 20.

Figure 15
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Fig. 16. As in Fig. 15 but where (u'v') is the 1-node s^^-wave state.

-1.0

Figure 16
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