
Jf \& t f~N / 2-^' SLAC-PUB-4391 
' f « ' A V ' l /̂ T > [ J ^ ' August 1987 

QUANTUM BEAMSTRAHLUNG FROM GAUSSIAN BUNCHES' 

PISIN CHEN 

Stanford Linear Accelerator Center, 
Stanford University, Stanford, CA 94305 

SLAC-PDB—4391 

ABSTRACT D E 8 B 000704 

The method of Baler and Katkov is applied to calculate the correction terms to the Sokolov-
Ternov radiation formula due to the variation of the magnetic field strength along the trajectory 
of a> radiating particle. We carry the calculation up to the second order in the power expansion 
of Br/B, where r is the formation time of radiation. The expression is then used to estimate 
the quantum beamstrahlung average energy loss from e +e~ bunches with gausaian distribution an 
bunch currents. We show that the effect of the field variation is to reduce the average energy 
loss from previous calculations based on the Sokolov-Ternov formula or its equivalent. Due to the 
limitation of our method, only an upper bound of the reduction is obtained. 

1. TNTHODUCTION 

For future e +e" linear colliders, radiation induced by beam-beam collision is expected to be 
very strong [1]. This radiation, called beamstrahlung, would causa substantial loss of energy and 
degradation on energy resolution. Due to these concerns, the study of the subject has been intensive 
during recent yean. Rigorously speaking, the problem is very complex in the sense that the e+e~ 
bunches would be continuously deformed during collision. A complete analytic treatment would 
be formidable if not Impossible. Fortunately, it occurs that in a large range of beam parameter! 
the bunches would only be slightly deformed. It is therefore a reasonable approximation to assume 
no bunch deformation in a calculation as a first attempt. 

Himel and Sigrest [2] estimated the average beamstrahlung energy loss in a conceptual 
5 TeV-j-S TeV collider, with number of particles in each bunch J V n U x 10>, and beam slse 
o> = 2.5 A, ff« = 0.4 pm. The calculation assumes uniform particle distribution within a cylinder 
bunch, where the radius is R = 2o, and the length is L = 2y*3 at. By assuming no disruption, each 
particle would execute a linear trajectory at a fixed impact parameter with respect to the oncom­
ing bunch. An approximate radiation power spectrum based on the well-known Sokolov-Temov 
formula for uniform magnetic fields [3] was then used to obtain an average fractional energy loss 
of (e) = 14.5% (4). 

Recently Blankenbeder and Drell |5) studied this problem with a different approaco. They 
sum over individual potential scatterings of a test charge traversing through the oncoming bunch 
in the target's rest frame. This is an Eikonal type aproxjrnation but retaining one more order in 
the expansion of the phase.,The result agrees reasonably well with Himel and Siegrest. Soon after 
Ball and Bell [0] showed that the two approaches are equivalent to the extent that the spin flip 

= contribution to the radiation was omitted in the Blankenbeckler-DreU calculation, which ts minor. 
On the other hand, there have also been efforts to calculate beamstrahlung from ganssian 

bunches. Noble developed a computer simulation code for beamstrahlung with negligible disrup­
tion [7|. During the collision, at each time step the Sokolov-Ternov radiation probability is invoked 
based on the local field strength. The result for the same beam parameters turns out to be very 
close to the calculations on an equivalent cylinder bunch. Yokoya independently developed a com­
puter code which is capable of simulating both beamstrahlung and disruption effects [8]. Again 
the Sokolov-Ternov formula was used in the code. 
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As is well-known, the Sokolov-Ternov formula was derived by assuming a uniform field, whereas 
in the problem of beamstrahlung the field is both spacially finite and inhomogeneous. In the 
calculations invoking uniform cylindrical charge distribution, the radiating particles do experience 
constant field along the trajectories inside the target bunch if disruption is neglected. But to enter 
and to exit the target, the particles would encounter abrupt changes of field strength. In the case 
of gaussian bunches the field strength is continuously changing during the traverse of the radiating 
particle even if disruption is neglected. The smooth variation in the latter case can be considered 
as a smearing of the abrupt discontinuity In the former case. One natural question therefore arises 
as to how important this "slope" effect would be in the context of modifying the average fractional 
energy loss in beamstrahlung. 

In this paper we present a calculation based on a method developed by Baier and Katkov (9,10], 
which enables one to calculate radiation intensity in inhoroogeneoua fields. The homogeneity of a 
field along particle's trajectory can be tested by the condition 

where B characterizes the change of the field within the Tadiation formation time r. While saving 
only the zeroth order of BrjB in the radiation formula, Baier and Katkov reproduce the well-
known expressions in both classical and quantum regimes. Our task is to retain higher terms in 
the expansion of BT/B, and apply to our specific problem. 

In Sec. 2 we review briefly the Baier-Katkov method. We then derive the extra term for the 
radiation formula u p to the order [BT/B)* for head-tail symmetric inhomogeneous fields in See. 3. 
Our result shows a reduction from the leading Sokolov-Ternov contribution in the quantum regime 
and no effect in the clasical regime. A physical argument is given to explain these facts. The 
expression is then applied to the specific numerical example of Himel and Siegrest in Sec. 4. Due 
to the limitation of our perturbative approach to the Baier-Katkov method, however, we are only 
able to estimate the upper bound of the radiation reduction due to the "slope" effect, which gives 
a lower bound of average fractional energy loss {t) i 10.296 for the Htmel-Siegrest parameters. 

2. B A I E R - K A T K O V METHOD 

Our starting point is the Baier-Katkov method of radiation calculation (9,10). A similar method 
had been used earlier by Schwinger [11). The method is based on the realization that when the 
radiating particle is ultrarelativistic, its radiation in a magnetic field is a quasi-classical problem. 
By that we mean the motion of an electron becomes mora and more "classical" as its energy 
increases that it makes sense to describe the particle by its trajectory. The radiation is therefore 
viewed as induced by the.bending of the trajectory. The only role that quantum physics plays 
ia the noncommutativity between the electron field and the photon field, and the conservation of 
initial and final energies in a discrete manner. The general expression of radiation intensity (In the 
Coulomb gauge) Is 

where a = 1/137 is the fine structure constant, (w,£) the four-momentum of the photon, {»'|, {/[ 
the initial and final states of electron, respectively, and M the transition matrix. To the accuracy 
of the order of 1/7, Baier and Katkov show that the phase factor from M'M 

e.MM etfntO = e ^| ,J u , T + _^_(jf . ( f ( t s )_^ f l ) ) _„ r )]J , ( 3 ) 

where r a tj — ti and t = tt + tj, commutes with both the Bamiltonian V and the electron 
momentum p. After summing over the spins of the final election and polarizations of the photon, 
and averaging over the initial electron spins, the radiation intensity can be written as 



(8) 

where £ and f' are the initial and final energies of the electron and 

G(*(ti) ,S{t2)) = \ J ( l + ^ ^ (fflh) <?(*,) -1) 
(5) 

From now on we will simplify the notations by designating o\ and û  for v(ti) ando(ij), respectively. 
Similar notations apply for f(t). It is observed that the dominant contribution of the r integration 
in Eq. (4) comes from the value at or — l/-j. This corresponds to the situation where the electron 
position vector has swept through an angle 1/7, or correspondingly the outcoming photon lies 
within an open cone of angle 1/7. We shall call this period of time the radiation formatter, time r, 
and the corresponding distance of travel by the electron the radiation formation length, IR. Since 
l / l < l w e can Taylor expand 02 and fj in terms of vi and Ft: 

til. Sj = uj. vi + ffir + - Sir1 + - 'vit* +... , 

£• (ri - f i ) = fc - far + 1 fir" + i Sir3 + . . .] . 

In their paper [9] Baier and Katkov truncated the expansion at Sir3, thus the assumption was 

Since B <x v in a. magnetic field, and u2 = constant, we have fi"- o = 0. Taking time derivatives 
successively, we have 

?-v = —o-w , »• « = — 3tT-tT , etc. (8] 

Using these relations the assumption can be translated into Br/B •€ 1, as is in Eq. (l). Now we 
define a dimen signless, Lorentz invariant parameter T: 

where Bc = mPcr/th K 4.4 x 10 1 3 Gauss is the Schwinger critical field strength, and we is the 
critical frequency in classical sychrotron radiation. The radiation intensity for electrons in an 
inhomogenous field satisfying Eq. (1) can then be obtained in terms of T: 

^ | | a m * T * ( l - ^ l T + 48T» + ...) , T<«:1 . 

| ) e * i » ( « f * + . . . , T > 1 . * W(i) 
u the above equation the expression for T <t 1 IB the well-known formula for classical syn­

chrotron radiation, including the quantum correction first derived by Schwinger [ll], and indepen­
dently by Sokolov, Klepikov and Teruov [12], and higher terms in T. The expression for T > 1 
corresponds to the synchrotron radiation in the extreme quantum limit studied by many people, 
but we will from now on simply call it Sokolov-Ternov formula [3|. The fact that Baier and Katkov 
reproduce these formulas in a straightforward manner suggests the power of this method-. 



3. RADIATION FROM INHOMOGENEOUS FIELDS 
Consider a magnetic field that points to the direction transverse to the axis where an electron 

enters, and its strength that varies along the axis. Let t = 0 when the electron passes the geometric 
center of the field. We are interested in the case where the field variation is such that B[t) a an 
even function in t, which is also called head-tail symmetric. Since from Lorentz force v a B{t), 
we see that v oc B[t) is an odd function in t. Therefore, in the study of radiation from a head-tail 
symmetric inhoznogeneous magnetic field, the terms linear in ti would vanish when integrating over 
t. This means the leading correction term is of the order v1. We shonld thus retain the Taylor 
expansion in the integrand G up to the term or if ir* where the recurrence relation 

ff* v = — 3ff-ff— Av-v , (11) 

which is obtained from one more derivative on Eq. (8), links the term with «• ff and ff • tf where 
both are even, functions in time. 

As for the phase, retaining terms up to ff - ff we have 

« m | i [ w + i ; ( ^ . { r , - f i ) - « r ) j | = e i t p { i ( » o + »i)} , (12) 

where 
*o = tte> [1 —fi-ff—-i»-ffr + -ff-ffr* , 

and u a ujt', ft = £/<•>, is the phase angle that gives rise to Eq. (10) in the previous section, and 

is the additional phase that we retain. Notice that in *i and the last term in *o we had made the 
approximation of replacing A by ff. 

We further assume that 4i < 1, which is usually satisfied if only u £»1, or the final energy of 
the electron £' > m. This does not introduce extra assumption since the Baier-Katkov method 
has already assumed relatlviatic electron before and after emitting the photon. Therefore we make 
the following approximation: 

exp {-«(»o + »i)} =- (1 - «'*i) exp {-i*»o} . (13) 
Retaining terms to the same order in the integrand G, and combining with Eq. (13), we find the 
integrand to be 

G = G0 + Gi + G% , (14) 
when 

<?o = -£(i+«)~(i+» + £)*V 
js the part that reproduces the Sokolov-Ternov formula, Gt « BrfB is an odd function in time 
and would give aero contribution for head-tail symmetric fields, and Gj la 

* ~ ( ' + - + T ) ( & • £ ) • * 

«S(>*-T)(4*4)" • 

+ »': 

In the above expression the vector products ff - ff and ff • v have been replaced by BB and BB. 



(17) 

This is because the only components that u and v contribute are proportional to v x B and Sx. B, 
respectively. 

Fallowing the mathematical techniques used by Baler and Katkov [9], we introduce angles 8 
and <fi, where 0 is the angle between the unit vector n of photon propagation and the plane (v, v\, 
and <f> is the angle between the projection of A on {v, v) and v, i.e., 

ft. « = u coop sin 0 , A- S = vsinpcosd (16) 

Taking into account the fact that up to terms of highest order in l /f a the principal contribution 
comes from small 8 and ip, and by shifting the origin of r to r + p/o, the phase can be written as 

» 0 = i . J ( l - f t - i ) r - j S - » V + j«'T ! l ] 

where 

1 
and 

x = —=fp and y = —=6r . 

With the definition of T in Eq. (9>) the coefficients is the phase can be symbolised by 

The radiation intensity associated with head-tail symmetric inhomogeneous field is then 

o o 

Recall that u = w/£' = u/(£ - u), and fc'dfc = u'du, we find that 

fc*-(i+„)< (19) 

The intergratlonn over x and y give Besael functions of fractional order Ki/3(tf) and ifj/j(t»)- For 
the evaluation of the integral over u it is convenient to introduce the representation [I3j 

i _ i /* r(-»)r(wt-«) . . 

( m ^ ' ^ y —ftf)**3 • ( 2 0 ) 

A—wo 
where 1 — m < A < 0. After this transformation the integration over u turns the Bessel functions 
into gamma functions, multiplied by a factor ( T V I ) - ^ * * " ) / ' among other things. We can then 
cany out integration over sin 0 » 0 by the following formula [13]: 

/(-far****!*- / ( » + W » T ° ^ r g l ^ y • (21) 

-CO - 0 8 



AH integrations in Eq. (18) are straightforward, though tedious. The result before carrying out 
the final integration over s is 

A+im 

dt_x'/»2jr.' J l *' T(3a/2 + 3/2)1 T(4) T(2) jr(a + 3) 
A-iao 

•'(^MHMHMH)] '»> 
•(SS*48)^6*«)'6*S)'6*i)'(ita 

•¥ r(^WMMHMH) 

-^•^(HKMWfnXH)]} • 
where —1 < A < 0. The above expression includes only contributions front the t>V* and «V 7 

terms in Eq. (IS) because it can be shown that the contribution from the V*T* term is significantly 
smaller, and thus negligible. 

The integral over a can be evaluated by closing the contour of integration either to the right 
for T < 1, or to the left for T > 1. For T -C 1, we have 

§ = 0 , T < 1 , (23) 

identically. For T >• 1 we have, to the leading order in T, 

^ - - ^ (!) •• (I) S (S$ - SI)«-)-" • *=« • M 
This result is valid for any head-tail symmetric inhomogeneous magnetic field which satisfies the 
assumptions given previously. 

Now we apply Eq. (24) to the field from a relativistie gauasian bunch with standard deviation 

B M » * i ^ M , (25) 

where the time of flight of the teat electron traversing the oncoming bunch is t = c/2. Then we get 



where F a IR/Q, is the formation length parameter associated with IR{W) in the quantum limit 
for photon frequency u = £: 

(27) 

dt dt dt 

Combining Eqs. (23) and (26) with Bq. (10), we obtain 

§om?T*(l + ^ T + 48Ta + . . .) , T « l , 

(28) 

Our reaolt can be appreciated by the following physical argument*? Consider the differential 
radiation intensity P(ui) where 

e 
^-jrWdu . (29) 

D 

In the classical limit P(u) in the case of a uniform field scales a* 

PM ~ 1 
as shown by the solid curve in Fig. 1. As is introduced in Eq. (9), classical limit T < 1 corresponds 
to the situation u e '< £> meaning the typical frequency of radiated photons is much less than the 
kinetic energy of the radiating particles. Thus the entire spectrum of Eq. (30) is observable. On 
the contrary, the extreme quantum limit T » 1 corresponds to £ « uet therefore the spectrum 
beyond the electron energy is kinematically forbidden, and the observable spectrum scales roughly 
as w1/*. 

In the case of nonuniform fields the spectrum differs from that of uniform fields. In the classical 
limit the problem has been studied by Caisson [14], and independently by Bagtov, Fedosov and 
Ternov [IS]. It is found that for a short magnet which is comparable in length with IR, the 
radiation spectrum is modified in such a way that the low-frequency regime is suppressed in favor 
of high frequencies beyond w«. The total intensity, however, remains the same. The prediction was 
confirmed by Boasart et al. [16] with observations in SFS at CEEN. We can extrapolate this bet by 
suggesting that when the magnet length L* >C IR, the spectrum would be a constant independent 
of (if up to a maximum frequency u* ~ UC(IR/L') (see the dashed curve in Fig. 1). Our result for 
the classical limit shows that the total intensity dl/dt is the same for uniform and gautaltn fields. 
This is a confirmation of the previous studies. 

The situation for short magnets is different in the quantum limit. Again, spectrum beyond £ is 
energetically forbidden. But now that the low frequency regime is suppressed, the overall intesnity 
is reduced. This explains why our dlt/dt is opposite in sign from d/o/dt. From Eq. (28) it can 
be seen that when IR<. og, or when the bunch is very long, dlt/dt -» 0, and we have vanishing 
correction to the Sokolov-Terhov formula. A pronounced effect occurs when IR is not much smaller 
than Of. 
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Fig. 1. Radiation spectrum in the two asymptotic limits. For long magnets, 
V 3» £g, we have the well-known spectrum in solid curve. In the opposite limit 
£* •< tjt, the spectrum approaches a constant. In quantum limit we observe only 
the low frequency regime. 

4. QUANTUM BEAMSTRAHLTJNG 

We now apply Eq. {28) to a specific example. In order to appreciate the slope effect, we choose 
to calculate the same set of beam parameters first discussed by Himel and Siegrest, where the 
Loxents factor for 5 TeV beams is 7 = 1 x 10T, number of particles per bunch N = 1.2 x 108, bunch 
size <t, = 0.4pm and o> = 2.5 A. 

To focus on the longitudinal effect, we assume 'cylindrical gaussian" bunches, i.e., uniform 
density in r < la, and gaussian in 2. Then 

T(p,c) = T<«»e-*1/1 , (33) 

where p = r/o>, g — */a* •*• **• normaliied coordinates, and 

T 0 = T ^ l S = 5094>1 (34) 

is the reference beamstrahlung parameter corresponding to twice the Seld strength (i.e., 
\B\ st \S\) [17] at (p,f) = (1,0) in the target bunch. The formation length parameter F is 
also a function of J and p: 

where the reference formation length parameter 

(36) 

Let us first calculate the average energy loss based on Sokolov-Ternov formula, (i.e., dTo/dr). 
Let e={£ — f j / f be the fractional energy loss of an electron having impact parameter p. Then 
the average fractional energy loss of the entire bunch is 

for our cylindrical gaussian bunches. Replacing <tt by (u,/2)rff, and denning -



we find for the leading Sokolov-Teraov term 

- 0 0 

where the mean Impact parameter 

(39) 

{!>) = 
JoV^ 

L K& 

3/J 

= 1.30 

in our example. For the Himel-Siegrest parameters we have 

(«o)«. = 15.2% , (40) 

which agree* reasonably well with previous calculations (2,4|. 
To include the correction term we should realise that our perturbation breaks down before 

dlo/dt and dTi/dt becomes equal in magnitude at some point f = fc from the eentroid of the 
bunch, beyond which the total intensity would turn negative and be certianly unphysical. Since we 
lack the knowledge on the behavior of higher order terms, we can only estimate the upper bound 
of the reduction effect by extending dlj/dt all the way to fe and mumming total suppression beyond 
that point, as shown schematically in Fig. 2. From Eq. (28) this threshold occurs at 

1 $ (£) ' r *V*< l« la?-» i ) - l • (41) 

From this equation it is obvious that the cut-off u is radial dependent. For the sake of simplicity in 
our discussion, we make a further approximation by evaluating & at the mean impact paiameter 
<p) = 1.30, and we get 

fc = 1.49 . 

Thus the mean radiation loss is suppressed to 

(42) 

"(43) 

where 

and 

fo>}*. = 
_18-r(2/3) 

243 
i(3To)»/'L»/».Je^/»J 

Plugging in numbers we get 

{*o> t.= 0.78(«o)™ = H.8?8 

and 
(H)u = -O.U(«o)» = -1.6% . 

Thus the corrected quantum beamstrahlung average fractional energy loss is 

(e)2:(e) f c=10.2H . 

This is substantiaity different from the previous results. 

(44) 

(45) 

(46) 
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Fig. 2. Radiation intensities as function of longitudinal target bunch coordinate f. 
The dash-dot curve is the Sokolov-Ternov radiation. The dash curve is the negative 
of our gaussian slope correction. The net intensity is represented by the solid curve. 
Beyond the point & where dlo/dt and - dli/dt meet, we assume a total suppression. 

5. DISCUSSION 
Due to the constraints of theperturbative approach to the gaussian slope correction, we can only 

estimate the upper bound of the reduction. The pathology lies in that while the B-fleld strength 
decreases exponentially to the head and the tail in the oncoming target bunch, Br increases more 
than exponentially. These facts force BT/B ceases to be much less than one at some point. The 
symptom is actually rather generic in beamstrahlung. For example, consider replacing the gaussian 
distribution by a parabolic one. Though we may have the advantage of terminating the field at 
some finite distance, but the fact that B-field vanishes forces upon us that somewhere before the 
bunch ends, BT/B < 1 must be violated. 

As long as the cut-off & is several standard deviations from the bunch center, however, the 
correction that we calculated would be valid since the field beyond u would contribute very little 
to the radiation in the first place. For the case of Himel-Siegrest parameters the situation is a little 
awkward. As shown in the previous section, the average energy loss within & accounts for only 
«* 78% of the total loss based on Sokolov-Ternov formula. To improve the calculation, methods 
other than perturbation should be pursuit. 
.'-. Aside from this technical difficulty, the physics involved is rather clear: In addition to the 
beamstrahlung parameter To, one more parameter, the radiation formation length parameter Ft), 
is essential in determining beamstrahlung properties. When FQ approaches unity, the reduction of 
the average energy toss in the quantum regime becomes nonnegligible. Actually, our claim is that 
not only (e) is reduced, but aho the energy resolution is improved because there would be less hard 

-.'photons radiated as can be seen from Fig. 1. These features suggest that the situation is in favor 
of ultrashort bunches in future linear colliders [18| if this is technically attainable. 

•' We should point out that for the purpose of estimating the energy loss we calculated the 
- second order correction in BT/B for an ideal symmetric bunch. In reality, the bunches would be 
'•'• continuously deformed during collision, and the head-tail symmetry is destroyed. In that case there 

will even be first order correction in BT/B. Recently there has been interest to consider colliding 
beams at an angle in future Knear colliders. In this scenario the head-tail symmetry is naturally 
broken, and the first order correction would appear inherently. 

dl.dlg dl| 
dl" dt ot 
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