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The method of Baier and Katkov is applied to calculate the correction terms to the Sakalov-
Ternov radistion formula due to the variation of the magnetic field strength along the trajectory
of a radiating particle. We carry the calculation up to the second order in the power expansion
of Br/B, where r is the formation time of radiation. The expression is then used to estimats
the quantum beamstrahlung average energy loas from e*e™ bunches with gaussian distribution in
bunch currents. We show that the effect of the field variation is to reduce the average energy
loas from previous calculations based on the Sokolov—Ternov formula or ita equivalent. Due to the
limitation of our method, only an upper bound of the reduction is obtained.

1. INTRODUCTION

For future ete™ linear colliders, radiation induced by beam~beam collision is expected to ba
very strong [1]. This radistion, called beamstrahlung, would causa substantial loss of energy and
degredaticn on energy resolution. Due to these concerna, the study of the subject haa been intensive
during recent years. Rigorously speaking, the problem is very complex in the sensa that the ete™
bunches would be continuously deformed during collision. A complete analytic treatment would
be formidable If not impossible. Fortunately, it occurs that in a large range of beam parameters
the bunches would only be slightly deformed. It is therefore a reasonable approximation to assume
no bunch deformation in a calenlation as a first attempt.

Himel and Sigrest [2] estimated the average beamsirshlung energy loss in a conceptual
§ TeV+5 TeV collider, with number of particles in each bunch N = 1.2 x 10%, and beam nalse
or =2.5 A, 0; = 0.4 ym. The calculation assumes uniform particle distribution within a cylinder
bunch, where the radius ia R = 20, and the length is L = 2/3 o,. By assuming ne distuption, each
particle would execute a linear trajectory at a fixed impact parameter with respect to the oncom-
ing bunch. An approximate radiation power spectrum based on the well-known Sokolov-Ternov
formula for uniform magnetic fields [3] was then used to nbhman nvmgefmﬂtlonnlm-m loas
of (¢) = 14.5% [4].

Recently Blankenbecler and Drell [5] studied this problem with a different approacn. They
sum over individual potential scatterings of a test charge traversing through tha oncoming bunch
in the target's rest frame. This is an Eikonal type aproximation but retaining one more order in
the expansion of the phase. The result agrees reasonably well with Himel and Siegrest. Soon after
Bell and Bell [6] showed that the two approaches are equivalent to the extent that the spin fip

- contribution to the radiation was omitted in the Blankenbeckler-Drell calculation, which is minor.

On the ather hand, there have also been efforts to calculate beamstrahlung from gaussian

. bunches. Noble developed a computer simulation code for beamatrahlung with negligible disrup-
- tion [7]. During the collision, at each time step the Sokolov—Ternav radiation probabllity is invoked
_‘based on the local fleld strength. The result for the same beam parameters turns aut to be very

close to the calculations on an equivalent cylinder bunch. Yokoya independently developed a com-

- puter code which Is capable of simulating both béammhlung and distoption effects [8]. Again

the Sokolov-'l‘emuv formula was used in the code.
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As is weil-known, the Sokolov-Ternov formula was derived by assuming a uniform field, whereas
in the problem of beamstrahlung the feld is both spacially finite and inhomogeneous., In the
calculations invoking uniform cylindrical charge distribution, the radiating particles da experience
constant field along the trajectories inside the target bunch if disruption is neglected. But to enter
and to exit the target, the particles would encounter abrupt changes of field strength. In the case
of gaussian bunches the field strength is continuously changing during the traverse of the radiating
particle even if disruption is neglected. The smooth variation in the latter case can be considered
as a smearing of the abrupt discontinuity in the former case. One natural question therefore arises

as to how important this “slope” effect would be in the context of modifying the average fractional
energy loss in beamstrahlung.

In this paper wa present a calculation based on a method developed by Baier and Katkov {9,10],
which enables one to calculate radiation intensity in inhomogeneous fields. The homogeneity of a
field along particle’s trajectory can be tested by the condition

Br
5 <1 . (1)
where B characterizes the change of the field within the radiation formation time r. While saving
only the zeroth order of Br/B in the radiation formula, Baier and Katkov reproduce the well-
known expressions in both classical and quantum regimes, Our task is to retain higher terms in
the expansion of Br/B, and apply to our specific problem.

In Sec. 2 we review briefly the Baier—Katkov method. We thea derive the extra term for the
radiation formula up to the order (Br/B)? for head-tail symmetric inhomogeneous felds in Sec. 3.
Our reault shows a reduction from the leading Soknlov-Ternov contributinn in the quantum regime
and no effect in the clasical regime, A physical argument is given to explain these facts. The
expression is then applied to the specific numerical example of Hime] and Siegrest in Sec, 4, Due
to the limitation of our perturbative approach to the Baier-Katkov method, however, we are only
able to estimate the upper bound of the radiation reduction due to the “slope™ effect, which gives
a lower bound of average fractional energy loss (€} 2 10.2% for the Himel-Siegrest parameters.

3. BAIER-KATKOV METHOD -

Our starting point is the Baier-Katkov method of radiation calculation [9,10]. A similar method
had been used earlier by Schwinger [11]. The method is based on the realization that when the
radiating particle is ultrarelativistic, its radiation in a magnetic fleld is 2 quasi-classical problem.
By that we mean the motion of an electron becomes more and more “classical” as its energy
increases that it makes sense to describe the particle by its trajectory. The radiation ia therefore
viewed as induced by the bending of the trajectory. The only role that quantum physics plays
is the noncommutativity between the electron field 2:ad the photon feld, and the conservation of

: initial and final energies in a discrete manner. The general expreasion of radiation intensity (in the

Coulomb gnuge) Is

J (—%«l [ [ ata smtne @ paeain | (@)
where « = 1/137 is the fine structare constant, (w,£) the four-momentum of the photon, {i|, {f|
the initial and final states of electron, respectively, and M the transition matrix. To the accuracy
of the order of 1/, Baier and Katkov show that the phase factor from M*M

FAGNSEAL) = e { [ur +

S (F- (e -y -wr)]} @

where r = tz — ¢ and ¢ = t; + 3, commutes with both the Hamiltonian X and the electron

*+. . momentum 7. After summmg over the spins of the final electron and polatizetions of the photon,
‘and averaging aver “the initial electron spins, the radiation mtenstty can be written as
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‘fu_" = (2—:)-,- f Lk fdr G (5(81) 7 (ta)) exp {i [wr + % (& - (7o) - e - wr)]} R

where £ and £/ are the initial and final energies of the electron and

G(Et) Tt = [(1 +£) G5 -1

6 e 2)]

From now on we will simplify the notations by designating 7, and #; foz ¥(t)) and #{ty), respectively.
Similar notations apply for 7{t). It is cbserved that the dominant contribution of the r integration
in Eq. (4) comes from the value at or ~ 1/+. This corresponds to the situation where the electron
position vector has swept through an angle 1/, or correspondingly the outcoming phuton lies
within an open cone of angle 1/-y. We shall call this period of time the radiation formatior. time r,
and the corresponding distance of travel by the electron the radiation formation length, &5, Sincs
1/v & 1 we can Taylor expand #; and 73 in terms of v} and #i:

(5)

ul-i‘g=ﬁ'1.[ﬁ+&1r+%§,r’+%"§1r3+...] N
. (6)
E-(R-f)=F- [.rlf+§;7,a+a:7,f=+...]
In their paper [9] Baler and Katkov truncated the expansion at 572, thus the assumption was
8|t
Qe -
(1/2)imy |

Since B « ¥ in z magnetic field, and i = constant, we have 7 ¥ = 0. Taking time derivatives
successively, we have

= -

=—§F , T-V=-307 ,ete. (8

ay

v-

Using these relationa the assumption can be translated into Br/B < 1, as is in Eq. (1). Now we
define a dimensionless, Lorentz invariant parameter T:

B-3E € ©
where B, = m3c“/eh =~ 4.4 x 10'3 Gauss is the Schwinger critical field strength, and w, is the
critical frequensy in classical sychrotron radiation. The radiation intensity for electroms in an
inhomogenous field satisfying Eq. (1) can then he obtained in terms of T:

dly '{-§m=r= (1-Zfr+er+.) , Tl . ©

Zr@)am?@r)+... , T>1 .

In the above equation the expression for T « 1 is the well-known formula for classical syn-
chrotron radiation, including the quantum correction first derived by Schwinger [11), and indepen-
dently by Sokolov, Klepikov and Ternov [12], and higher terms in T. The expression for T > 1
corresponds to the synchrotron radiation in the extreme quantum Kmit studied by many people,
bat we will from now on simply call it Sokolov—Ternov formula [3]. The fact that Baier and Katkov
reproduce these formulas in a straightforward manner suggests the power of this method.




3. RADIATION FROM INHOMOGENEOUS FIELDS

Consaider a magnetic field that points to the direction transverse to the axis where an electron
enters, and its strength that varies along the axis. Let t = 0 when the electron passes the geometric
center of the field. We are interested in the case where the field variation is such that B(t) is an
even function in ¢, which is also called head-tail symmetric. Since from Lorentz force ¢ « B(t),
we see that © cc B(t) is an odd function in t. Therefore, in the study of radiation from a head-tail
symmetrie inhomogeneous magnetic field, the terms linear in & would vanish when integrating over
t. This means the leading correction term is of the order #2. We shonld thus retain the Taylor
expansion in the integrand @ up to the term &y~ ' r* where the recurrence relation

bons - .
o -

=3 T—AT-F (1)

which i obtained from one more derivative on Eq. (8), links the term with & & and #- & where
both are even functions in time.

As for the phase, retaining terms up to &- &' we have

o {ifur + £ (F- e -7)—or) |} =am (i(Go + 41 (12
where
By = uér [1—,;-'7—%5-17”%6-;7#] ,
andu=w/é', A= E/u, is the phase angle that gives rise to {10) in the previous sectlon, and

- 1 .a' 5. -3.3 _1'_ v-U
Ql—llef ETU ™+ 190 (3-?
is the additional phase that we retain. Notice that in #; and the last term in &g we had made the
approximation of replacing A by 7.

We-further assume that @1 < 1, which is usually satisfied if only 4 21, or the final energy of
the electron £' :» m. This does not introduce extra assumption since the Baier-Katkov method
has already assumed relativistic electron before and after emitting the photon. Thersfore we make
the following approximation:

exp {~i (%o + $:)} = (1 — i®;)exp {—io} . (13)

Retaining terms o the same order in the integrand G, and combining with Bq. (13), we find the
integrand to be

Qe
(U]
+
-
L]
3|
S
3‘;
—_—

C=Go+G+Gy , (14)
where

Go = --—(1+u)——(1+u+ )o’r’

is the part that reproduces the Sokolov—Ternov formula, Gy & Br/B iz an odd function in time
and would give zero contribution for head-tail symmetric fiolds, and G in

—
G = (1+u+ )(:g,+%%)é‘r‘
w2 (252) (o) e 8

ué B B T
+ 120 1+u+ )(DB5+ZB‘) p'r .
In the above expression the vector products #- 7" and & - 4 have been replaced by B2 and BB.

4



This is because the only components that 7 and ¥ contribute are proportionsl to 7' x ﬁ and #x E,
respectively.

Following the mathematical techniques used by Baier and Katkov [9], we introduce angles ¢
and o, where 4 is the angle between the unit vector # of photon propagation and the plane (¥, l:J‘),
and p is the angle between the projection of # on (7, §) and 7, i.e.,

A .T=vcoapsing , A-T=isinpcosd . (16)

Taking into account the fact that up to terma of highest order in 1/4? the prineipal contribution
comes from small  and i, and by shifting the origin of r to 7 + /4, the phase can be written as

=uf [(l-ﬁ'ﬁ‘)f—%ﬁ';?f"Féé’f’]

7
uﬁ#’n o)
=3 (+ Pry+z v’) '
where
yEl-u’cu’ﬂz%-}-O’ ,
and

1 1
=e——p and yp=—br .
v
With the definition of T in Eq. {8) the coefficients in the phase can be symbolized by

3=t 3/
b-gn 5 (1'8)

The radiation intensity assoclated with head-tail symmetric inhomogeneous field is then
lﬂ': # -
(2 ka’dkduml jdzjdyG:u‘p{ lb(s-l- S ry+z v')} . (18)
Recall that u = w/€' = w/(€ ~w), and k¥dk = wdw, we find that

= rﬁ:ﬂ—)‘: . (19)

The inmmtinmovar:: and y give Bessel functions of fractional arder Ky;a(n) and Kyps(n). For
the evaluation of the integral over u it is convenient to introduce the representation [13;

1 {—8)Pim + 4
o ml_[ __ITM)_1 e

where 1 - m < A <0, After this transformation the integration over u turns the Bessel functions
into gamma functions, multiplied by a factor (y3u)~¥*+=)/2 among other things. We can then
carry out integration over sinf =5 # by the following formula [13]:

[earsetiaa = [+ pepieiing = GEEEIEA




All integrations in Eq, (18) are straightforward, though tedious. The result before carrying out
the final integration over s is

dfy I(3s/2+1) [T{a+4)  T(s+2)] I'(—4a)
il

13/5 i f b YOTY raaz e |t T T | TeT )

(- EE B G e DG
R G DTG G D)
JES R EHREHECH) I
(5520 (B G e G G-e (D)
S RGO NEONEHEES
B+ DG G ()
e (e DG D)} -

where —1 < A < 0. The above expression includea only contributions from the o%r* and 4757
terms in Eq. (15) because it can be shown that the contribution from the 455 term is significantly
smaller, and thus negligible.

The integral over s can be evaluated by closing the contour of integration either to the right
for T <« 1, or to the Jeft for T > 1. For T « 1, we have

diy
=0 . T<t, : (23)
jdentically. For T > 1 we have, 1o the leading order in T,
dh _ _ofln (2\p (1) (615t 13B) .y
T‘.ﬁr(s)r(s)a(som gg) 6T . T . (24)

This result is valid for any head-tail symmetric inhomogeneous magnetic field which satisfies the
assumptions given previcualy.

Now we apply Eq. (24) to the field from a relativistic gaussian bunch with standard deviation
Os:

B(t) = Boe /%2 | (25)
where the time of flight of the teat electron traversing the oncoming bunch is ¢ = #/2, Then we get

‘ )
% = -EEI;?ﬁm’(ar)’l’ {ET(;IT?F' [usm (03.) - 1804)] } . T>1, (26
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P TR | _U--niml‘mqiwm_-—"ﬂ |

where F = lp/o, is the formation length parameter associated with Zp{w) in the quantum limit
for photon frequency w = £:

1
tplw =€) = ""’(E)”a=(;) a?";—;’; . (27)

Combining Eqs. (23) and (26) with Eq. (10}, we obtain

. Jarmd (14 887 asT2 ) T« ,

T 32 rasz(a) am3(ET) {1 _ra 6' m [12997 (,g.)’ - nm]} . T>1

&Illb.
&l&

(28)

Qur result can be appreciated by the following physical arguments: Consider the differential
radiation intensity P{w) where

[4
dr
%= [P . )
o
In the classical limit P{w) in the case of a uniform field scales as

P Wi/t wSwe
W) ~ ‘%e"""" , wlug (30)

as shown by the solid curve in Fig. 1. As is introduced in Eq. (9), classieal limit T < 1 corresponda
to the situation we < £, meaning the typical frequency of radiated photons is much less than the
kinetic energy of the radiating particles. Thus the entire spectrum of Eq. (30) is observable. On
the contrary, the extreme guantum limit T 3 1 corresponds to £ < w,, therefore the spectrum
qu;;l the electron enngy is kinematically forbidden, and the observable spectrum scales roughly
as wl

In the case of nonuniform fields the spectrum differs from that of uniform ficlds. In the classical
limit the problem has been studied by Coisson [14], and independently by Bagrov, Fedosov and
Ternav [15]. It is found that for a short magnet which is comparable in length with {g, the
radiation spectrum is modified in such a way that the low-frequency regime ia suppressed in favor
of high frequencies beyond w,. The total intensity, however, remains the same, The prediction was
confirmed by Bossart et al. [16] with observations in SPS at CERN. We can extrapolate this fact by
suggesting that when the magnet length L* < £g, the spectrum would be a constant independent
of w up to & maximum frequency w* ~ we(£p/L") (see the dashed curve in Fig. 1}. Qur result for
the classical limit shows that the total intensity d/dt ia the aame for uniform and gaussisn felds.
This i a canfirmation of the previous studies.

The situation for short magnef.s is different in the quantum limit. Again, spectrum beyond £ is
energetically forbidden. But now that the low frequency regime is suppressed, the overall intesnity
is redu:ed This explains why our dI;/d¢ is opposite in sign from dlp/dt. From Eq. (28) it can
'be seen that when {r < 04, or when the bunch is very long, dl3/dt — 0, and we have vanishing
correction to the Sokelov-Térnovformula. A proncunced effect oceurs when £g is not much smaller
than ;.
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Fig. 1. Radiation spectrum in the two asymptotic limits. For long magnets,
L* > I, we have the well-known spectrum in solid curve. In the opposite limit
L* < Lg, the spectrum approaches a constant. In quantum limit we observe only
the low frequency regime.

4. QUANTUM BEAMSTRAHLUNG

We now apply Eq. (28) to a specific example. In order to appreciate the slape effect, we choose
to calcuiate the same set of beam parameters first discussed by Himel and Siegrest, where the
Lorents factor for 5 TeV beams is ¥ = 1 x 107, number of particles per bunch N = 1.2 x 105, bunch
size o, = 0.4um and 0, = 2.5 A.

To focus on the longitudinal effect, we assume “cylindrical gnuuun bunches, i.e., uniform
density in r < 20, and gaussian in 2. Then

T(o,5) = Tope /1, (33)
where p = r/0y, ¢ = z/0y are the normalized coordinates, and

reXe 1N
V2ra,a,

in the reference beamstrahlung parameter corresponding to twice the feld atrength (i,

|B| = 18) [17] a¢ (p,¢) = (1,0) in the target bunch. The formation length parameter F is
alzo a function of ¢ and p:

To= = 5004 > 1 (34)

1/s 1/3 s - .
A e LT
where tha.referenceformntim length parameter
3\ 0018
pm(9)"" 2 - M s o0

Let us first calculate the average energy loss based on Sokolov-Ternov formula (i.e., dlp/dt).
Let € = (€ — £)/€.be the fractional energy loss of an electron having impact paramster p. Then
the average fractional energy lons of the entire bunch is

j( 1mao/a)papa

L o Tedo . (37)
- for our. cyllndrical gaussian bunclies. Replacing dt by (05/2)ds; and defining .
rD = % ] (3‘)_



we find for the leading Sokolov-Ternav term

(b= g gBL o [ ar (s9)

where the mean impact parameter

_ [ ahaa]™ _
(o) = [————f: —| = 1.30

in our example. For the Himel-Siegrest parameters we have

(c0)oo = 15.2% , (40)

which agrees reasonably well with previous calculations (2,4].

To include the correction term we should realise that our perturbation breaks down befare
dly/dt and dI;/dt becomes equal in magnitude at some point ¢ = ¢ from the centroid of the
bunch, beyond which the total intensity would turn negative and be eertianly unphysical. Since we
Inck the knowlsdge on the behavior of higher order terma, we can only eatimate the upper bound
of the reduction effect by extending dlz/dt all the way to ¢ and assuming total suppression beyond
that point, as shown schematically in Fig. 2. From Eq. (28) this threshold oceurs at

ig}.{/ﬁ; (la;n:)’ e (120972 —1804) =1 . (41)

From this equation it is obvious that the cut-off - is radial dependent. For the sake of aimplicity in
our discussion, we make a further approximation by evaluating ¢. at the mean impact parameter
{p) = 1.30, and we get

=149 . (42)
Thus the mean radiation loss is suppressed to
‘ (s, = {ende, + (el » “)
where
%
(‘0". = 18 ';,;(:, 3) rln(a-r o)![! . [(P):/a . / 8-;’,,#]
—ta
and
eady, = *Ezgj—s)rio(a'ro)”’ [g—:,ij%l"}(p)"/’ i " P129978 - 1‘3«)@]
)
Plugging in numbm we get: :
' (eo)y, = 0.78{sc)oo = 11.8% (49)
and
(. = —01(eoheo = ~1.6% . (45)
Thus the corrected quasitum beamstrahlung average fractional energy loss is
(&) & {e)e, =102% . (48)

This is substantially different from the previous resulta.
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Fig. 2. Radiation intensities as function of longitudinal target bunch coordinate ¢.
The dash-dot curve is the Sokolov—Ternov radiation. The dash curve is the negative
of our gaussian slope correction. The net intensity is represented by the solid curve.
Beyond the point ¢ where dlo/dt and - dI/dt meet, we assume a total suppression,

5. DISCUSSION

Due to the constraints of the perturbative approach to the gaussian slepe correction, we can only
estimate the upper bound of the reduction. The pathology lies in that while the B-field strength
decreases exponentially to the head and the tail in the oncoming target bunch, B incresses more
than exponentially, These facts force Br/B ceases to be much less than one at some point. The
symptom is actually rather generie in heamstrahlung. For example, consider replacing the gaussian
distribution by a parahalic one. Though we may have the advantage of tezminating the field at
some finite distance, but the fact that B-field vanishes forces upon us that somewhere before the
bunch ends, Br/B < 1 must be violated.

As long as the cut-off ¢, ia several standard deviations from the bunch center, however, the

' correction that we calculated would be valid since the field beyond ¢. would contribute very little

{0 the radiation in the first place. For the case of Himel-Siegrest parameters the situation is a little
awkward. As shown in the previous section, the average energy loss within ¢. accounts for only
~ T8% of the total loss based on Soholov—'l‘emov formula. To improve the calculation, methods
other than perturbation should be pursuit.

‘. Aside from this technical difficulty, the physics involved is rather clear: In addition to the
beamstmhlungparameter'l‘o,mmntepmeter the radiation formation length parameter Fy,
is essential in determining beamstrahlung properties. When Fp approaches unity, the reduction of
themageenergyhssmtheqmtummbmnmeglw‘hle. Actuzlly, cur claim is that

-:_'nnton]y(s) ia reduced, but also the energy resolution is improved because there would be less hard
. ":‘photons radiated as can be seen from Fig. 1. These features suggest that the situation is in favor
- of ultrashort bunches in future linear cnllldnrn [lB] if this is technically attainable.

We should point out that for the pu.rpose of estimating the energy loss we calculated the

*«..- gecond order correction in Br/B for-an ideal symmetric bunch. In reality, the bunches would be
" continuously deformed during colllslon. and the head-tail symmetry is dustroyed. In that case there

will even be first order correction in Br/B. Recently there has been intereat to conslder colliding
beams'at an angle mfnturehnmcolhders In this scennmthohead—ta:lsymmetrylanawmlly
bxokm, a.nd the ﬁrst order conectmn would appear inherently.

ot o

A

L]
N

1




ACKNOWLEDGEMENTS

The author has benefitted from various helpful discussions with J. S. Bell and A. Hoffmann
of CERN, T. T. Wu of Harvard, and R. Blankenbecler, 8. D. Drell, T. Himel, R, D,, Ruth and
P, B. Wilson of SLAC. A special acknowledgement goes to K. Yokoya of KEK, who took the pain
of checking some of the calculations involved in this paper,

REFERENCES

(1] See, for example, B. Richter, [EEE Trans. Nucl. Sci. 82, 3828 (1985).

- [2] T. Himel and 1. Siegrest in Laser Acceleration of Particles, editors C. Joshi and T. Katsculeas, -
AIP Conf. Proceedings No. 130 (1985). Iy

|3) A. A. Sokolov and I. M. Ternov, Synchrotron Radiation, Pergamon Press (1067).
[4] See Ref. 2. A trivial mistake of a factor of 2 was made by the anthors.
(5] R. Blankenbecier and 5. D. Drell, Phys. Rev. D 36, 277 (1087).
[6] M. Bell and J. S. Bell, CERN Report (1987) [unpublished].
[7] R. J. Noble, SLAC-PUB-3871 (1986). To appear in Nuel. Inst. Meth.
(8] K. Yokoya, Nucl. Inst, Meth., A251, 1 (1986) and K. Yokoya, KEK Report 85-9 (1985).
(8] V. N. Baier and V. M. Katkov, Soviet Phys. JETP, 28, 854 (1968). -
[10] V. N. Baier and V. M. Katkov, Soviet Phys. JETP, 38, 807 (1969).
[11] 3. Schwinger, Proc. National Academy of Sci. 40, 132 (1954).
[12] A. A. Sokolov, N. P. Klepikov and L. M. Ternov, Saviet Phys. Doklady, 89, 665 (1953).
[13] I. S, Gradshteyn and 1. M. Ryalik, Tables of Integrals, Series and Products, Academic Press -
(1980). - .
[14] R. Coisson, Optics Comm. 22, 135 (1977) aad Phys. Rev. A 20, 524 (1979).
[15] V. G. Bagrov, N. I. Fedcaov and I. M. Ternov, Phys. Rev. D 28, 2464 (1983},
(16] B. Bossart, J. Bosser, L. Burnod, R. Coisson, E. D’Amico, A. “Ioffiuann and J. Mann,
Nucl. Inst. Meth, 164, 374 (1979).

[17] The validity of this assumption in the quantom limit has been examined by P. Chen and
R. J. Noble, SLAC-PUB—4050 {Aug. 1588).

{18] P. Chen, in Physics at Future Accelerators, ed. J. Mulvey, CERN 87-07, Vol. 1 (1957). -

DISCLAIMER

This repart was prepared as an account of work spansored by an agency of the Uni
Government. Neither the United States Govesnment nor an: ng:neyge thﬂeocy L nolrj:ll:;d n? ll;l:r
::i::lo'y_;sl.hmnks any warrnng, Express or uu.phu!, Or assumes any lega! liability or respoasi-
) y ph 13 ¢y, compl e, oF fi of any information, apparatus, product, or
: E:m:m isclosed, or represents |hn.ns use would not infringe privately owncd rights. Refer-
cc herein to any speml?c commereial producl, process, or service by trade name, trademark,
mn.nufas:(umr, ar ol!urmu does not necessarily coastitute or imply its endatsement, recom-
;%nd;x;r‘; l1:r ?avor:;s by the United States Government or any agency thereol. The views

of authars ex hecei coessar

United Seuiy o athars ofmnny age::;t:‘ h:-; Eul a rily state or reflect those of the

||li[-,'==" '=!!! " —




