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IMTHOTOJCTION

The poincare inequality has been studied by different methods

and applied to many problems [ l - 8 j , In th is paper we propose

to prove an Poincare inequality for the flow-domain defined

below, and apply i t to the Laplace equation with the Diriohlat

or Nejiman boundary conditions. Our resu l t s may also he used

to generalize other results in [1 ,3 ] ,

This paper consists of two sect ions . In the f irs t section

we prove the Poincare inequality for unbounded domains in IRn.

The Laplace equation wi l l be studied in the second sect ion .

1 . POIHCARE INEQUALITY FOR FLOtf-POMAUT

In th is section l e t G ht a, subset of the n-1 dimensional 3paoe

of real numbers Pi b be an application from

0 into [o.ooj and D - ^ ( t , i ) i i e a , o ^ t ^ b j .

Definition 1 . Let h be a continuous differantiablo one-to-one

mapping from D into Rn such that the Jacobian determinant J h { t , i )

i s nonnull for every t > 0 . Then h i s called a flow defined on D

Let h be a flow defined on D and l e t w be a continuous positive

function on h(D) and p £ {1 ,oo ) , For each i in 0 and t in (o,b )

dy

we put

s(h,p

w) sup
B(h.p,«>iO

P~11fOl(ttx))|jb(t,x)|

dt
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Definition 2 . Let h be a flow defined on D, we say V - h(D) i s

a flow-domain parametrised by (h,D). He put

c >p(h,D,W) - }u e c (v) ! Jv flu{y)|ptf(y) + l'u(y)lp)dy < a>

and u(h(o,x)) • 0 for every i in 0 J

We have the following Poincare inequal i ty .

Theorem 1 . Let V be a flow-domain parametrized by (h,D) and p

in_ (o,00). Let u in_ C ) P(h,D,v) , then

Jv W(y}|Pw(y)dy i dp(h,w)%

Proof.

For every ( t ,x ) e D we have i

u(h ( t , x ) ) - \Q ^ (u(h{y,x) ) )dy

By Holder's inequality we have

|u(h( t ( X ) ) | p C j jVu(h(y,x)) |pdy( J*
, P/P-

(1)

Then by Fubini's theorem,theorem of change of variables and {l)

we have

JvMy)|pw(y)dy - JDl«(h(y))|Pw(h(y))| Jh(y)jdy

• i 0 S0
Xl"(MtjTi))|Pw(h(t,I))|Jh(t,i)|dt di

l \ B(h,p,x,t)T>~1w(h(h(t,:O)|j. (t,x

,v) ]Dl?u(h(y))jp | jh(y)|dy - dp (h ,w)/T^u (y )jPdy

Definition 3. Let h he a flow defined on E. If there exiats an i

in ^ l , . . . , n j such that h{y) - ( o , . , . , 1 ^ {y ) , o , . , , ,o) , wa aay

h i s a flow in i d i rec t ion, and have the following r e s u l t .

Theorem 2. Let V be a flow-domain parametrized 'by (h,D). We have

( i ) I£ h i s a floy in i d i rec t ion . then for every u iji

C1 t P (h ,v) we have

i v iu (y) l p v(y)dy - dp(h,») \ v \ ^ (x)!p dx

(ii) If, V is paramatriaed by the flow in i.th direction {hk,D. ),

whare 1 6 i . < ig

P| C^'p(hk,a ,v) ,
k 1

, , , < i i n . Then for every u

we have

Proof.

It is clear that

•axA D*!

) dp(hm,w))

^

By the proof of Theorem 1 we have ( i ) . Prom ( i ) we ^et ( i i ) .

We shall consider a general domain V in III , that i s V may

not be a flow-domain. Let w be a posit ive continuous function

on V and p £ {1 ,oo ) . We denote by Wp{V,w) the space of a l l real

functions u such that
n

Jv ( lu{y)lpw(y) + L | § . (y)lP ) dy)l/p

Let Wp(V,w) ba the closure in Wp(V,w) of the set of a l l u in

C (V) with u | - j v =• 0 .Applying the foregoing theorems we have

Theorem 3. Let p £ (1 ,oa ) and V be a domain contained in the

half gpaoe Wx. , . . . ,xn) € 111" : xn > 0 \ . Assume for every

( i , , , , , I ) i n V , » ( i , , . , , i n ) <• x ~ p



Then for every u & H (V,w) we have

] v ju{y) | p w{y)dy *• A J y 1^7 ( y ) l P dy

= inf j irr^rr)11"1 ' 1^P < a < 1 ̂where A
P

Proof.

He can suppose V - \ (x1,.., ,*n) £ |Hn i XR > o J and

Fix an a in ( l /p , l ) , l e t 0 - Sin~ , D - [o,oo)xG and

b i D »-

h f t . f x , , .

By calculation we have d (h,w) »> r

Theorem 1 we have the desired r e s u l t .

xn_1 , t a

Applying

Remark ( £ =1 • If p - 2, a - - | , we have 7 2 - ( £ = V ) P ~ 1

We have just refound the Letima 2.1 in Chapter I I of [ 4 j ,

as if. £4 J t w a a e e that t h i s eGtimata i s the heat one.

I t i s clear that we have from Theorem 2 and Theorem 3

Corollary 1 , Let V he a domain contained in the 3et

] ( x ^ , . , . , x ) e IR 1 i . | ( , i | l ^ OJ where 1 ^ m ^ n . Assume
2 2 ^2-

w ^ , , . , .x^ ) * (1^+...+ x r |) 2 for every ( x l t . , , , i n ) in V.
Then for every u in WF (Vtv) _.vre have

111 i-1

Remark 2 . If p - 2 , we can use the Caucby-Schwarta inequali ty

to pet t e t t e r estimates as in [7],

Let 's consider the oection-domain i

Theoratn 4 . Let V be a domain contained in the following set

J (xeon3,xsinsTx.j, . . . , 1 ^ ) j x > 0 , 0 < s < 2a^2BT, (x., , , , x n ) £ (R11
~

!^) A (x^ + I Q ) " ^ 2 . Than for every u in

we have

JT lu

Proof.

We can suppose

V - {{xc

and w(x l P . . . ,xn ) - (xj

Put 0 - (o ,00 JxR""1 and

b 1 [O,a.)s0 > V'- [ (xoosa,xsins,x,,.. ,xn) £V 1 s < > ]

b(B,(x,z)) - (i00Bs,iains,z)

By calculation we have

Then we have as in Corollary 1

y ') « ' dy
1 • • " !

By tbe similar procedure for the other half of V, we have the

theorem ,

Remark 3 . If a - Tf ,we have the in teres t ing case, because V

become )Rn \ ( Coioo )xjojx ft*"* )

l e t ' s consider the exterior doisain t

Theorem 5 . Let V be a domain contained in | i S S n t | x | > A >

where I x l - (x?+. . .+x 2 ) 1 / ' Z . Assume w(x) 4 I x l"* with t, > 2- .
^^^^™^~ J. 11 ^^™«»*^™ ' mm ik Via p

Than for every u in W^(V,w)t va have i

lu(jr) lp
p,A,b 'dy

- 5 - -6-



where C . , « i n f ) T—; • ( ' • ) j a < — , — < a <
p,A,b j 1+b-ap-an^ap-1' p ' p p+n

Proof.

We can suppose V t IRm w(x) - \~ . Let k

be the. homeomorphism from [o,2K.)3c [- TJ, -p-J into the following

set 13n i ll x \\ - 1 \ , which ia used in the change of variables

into the polar coordinates, Let Et "be auoh that a 4 — and

h(t ,x)

Then ~ny Calculation we have d » C . , this impliea the

theorem .

2. APPLICATIONS.

In thi3 section ve assume V satisfies the conditions of one of

the theorem 3,4 and 5. Let E be a domain in in" and C (E) be the

space of all real functions u in C (E) having compact support

o 2

contained in E. We denote by H(V) and H(V) the closures in W (V,w)

of the sets C^ (|{n) f| V2(V,v) and C^ (V)OW2(V,w) respectively.

We denote L2(V,w) the set \ i i j y f2(y)w'(y)dy < oo ) .

For each R in H(V) and f in L 2 ( V , H ) , let's consider the follow-

ing Dirichlet probloni

A u - f

where the derivatives are in tha distributional sense.

Theorem 6. The problem (g.11 has in unique solution u in_ H{V) ,

Proof.

Resolving the problem (2.1) is equivalent to findinG a v in H(V) such

that

Att » f - ^g (2.2)

And i t i s clear that {?.?) is equivalent to finding a v in H(V)

such that

(Av,h) - (f,h) - (Ag.h) for every h in C^ (V)

or

-(Vv, Vh) . (f,h) + ( Vg, Vh) for every h in cf (v) (2.3)

where (f,h) - f/(y)h(v)ay and T , 3± ) .

For every u,v in H(v) we put

{( u,»)) - ]v«(y)v{y)w(y)dy + (Vu, 7v)

and fu,vl - ( Vu, Vv)

By the foregoing theorems, these inner products are equivalent

in 8(V). Let's return to the problem (2.},). Since f is in L' (V,w)

an* g ia in H(v), we see that h I • > -(f,g) - (^g,v*h) defines

a continuous linear functional on H(v) for every given f and g.

Therefore by the RieSB Theorem there exists s unicjue v in f!(v)

such that

(vu, vh} - [ v . h ] - -(f,k) -

This implies the theorem .

Remark 4 . If w(i) - (l+|x| )~ , the foregoing theorem ia proved

in |~3~|. In a similar way,we can extend the other results in [ j i for the .

general function w, by e.g. for the Neuman problem,
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