

neransnych

IC/87/5

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

THE POINCARE INEQUALITY FOR FLOW-DOMAINS AND ITS APPLICATIONS

Duong Minh Due

1987 MlRAMARE TRIESTE

UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

n de Santa Bandari (Santas Palaca de Tarra de Tarra) de Santa Constantino de Santa Contra de Santa de Tarra de

 $\mathcal{A}_{\mathcal{A}}$

 $\tilde{\mathbf{r}}^{\perp}$

 Λ^+ $\mathbf{1}$

 Λ $\frac{3}{4}$ 147

 Λ $\frac{3}{4}$

 Λ $\frac{1}{4}$ e go

IC/87/5

International Atomic Energy Agency

and **United Nations Educational Scientific and Cultural Organization**

INTERNATIONAL CENTRE FOK THEORETICAL PHYSICS

THE POINCARE INEQUALITY FOR FLOW-DOMAINS AND ITS APPLICATIONS *

Duong Minh Due ** International Centre for Theoretical Physics, Trieste, Italy*

ABSTRACT

He establish a Poincare inequality for some unbounded domains and apply it to study the Dirichlet problem for these domains.

> **MIEAMARE - TRIESTE January 1987**

*** To be submitted for publication.**

**** Permanent address: Department of Mathematics, University of imlnh City, 227 Nguyen Van Cu, Hochiminh City, S.R. Vietnam.**

IMTHOTOJCTION

The Poincaré inequality has been studied by different methods **and applied to many problems [l-8 j , In this paper we propose** to prove an Poincaré inequality for the flow-domain defined **below, and apply it to the Laplace equation with the Diriohlat or Nejiman boundary conditions. Our results may also he used to generalize other results in [1,3],**

This paper consists of two sections. In the first section we prove the Poincaré inequality for unbounded domains in \mathbb{R}^n **. The Laplace equation will be studied in the second section.**

1. POINCARE INEQUALITY FOR FLOW-DOMAIN

In this section le t *G ht a,* **subset of the n-1 dimensional 3paoe** of **real numbers** p_i^{n-1} and $r \longmapsto b$ be an application from **0** into $[0,\infty]$ and $D = \{(t,x): x \in G, 0 \le t \le b_x\}$.

Definition 1. Let h be a continuous differantiablo one-to-one mapping from D into R^n such that the Jacobian determinant $J_{\mathbf{k}}(\mathbf{t},\mathbf{r})$ **is nonnull for every t > 0 . Then h is called a flow defined on D** Let h be a flow defined on D and let w be a continuous positive function on $h(D)$ and $p \in (1, \infty)$, For each x in 0 and t in (o, b_{χ}) **we put**

$$
a(p,p,x,t) = \int_{0}^{t} \frac{\partial h}{\partial y}(y,x) \Big|_{p=1}^{\infty} dy
$$

$$
d_p(b,w) = \sup_{(y,x) \in D} \int_{y}^{b_x} \frac{a(h,p,x,t)^{p-1}w(b(t,x))|J_h(t,x)|}{|J_h(y,x)|} dt
$$

-2-

Definition 2. Let h be a flow defined on D, we say $V = h(D)$ is

a flow-domain parametrized by (h,D). We put
\n
$$
C_0^{1,p}(h,D,w) = \{u \in C^1(V) : \int_V (u(y))^p d(y) + |vu(y)|^p) dy < \infty
$$
\nand $u(h(o,x)) \to 0$ for every x in 0²

We have the following Poincare inequality.

Theorem 1. Let V be a flow-domain parametrized by (h, D) and p
in
$$
(0, \infty)
$$
. Let u in $C_0^{1,p}(h, D, w)$, then

$$
\int_V |u(y)|^p w(y) dy \leq d_p(h, w) \int_V |\nabla u(x)|^p dx
$$
Proof.

For every
$$
(t,x) \in D
$$
 we have:
\n
$$
u(h(t,x)) = \int_0^t \frac{3}{\theta y} (u(h(y,x))) dy = \int_0^t \nabla u(h(y,x)) \cdot \frac{\partial h}{\partial y} (y,x) dy
$$
\nBy holder's inequality we have
\n
$$
|u(h(t,x))|^{p} \leq \int_0^t [\nabla u(h(y,x))]^{p} dy \left(\int_0^t \left| \frac{\partial h}{\partial x} (y,x) \right|^{p/p-1} dy \right)^{p-1}
$$

$$
h(t,x))[P \quad 4 \int_0^1 |\nabla u(h(y,x))|^{p} dy \quad (\int_0^1 \left| \frac{\partial h}{\partial y}(y,x) \right|^{p-1} dy)^{p-1}
$$

$$
= s(h,p,x,t)^{p-1} \int_0^1 |\nabla u(h(y,x))|^{p} dy \qquad (1)
$$

Then by Fubini's theorem, theorem of change of variables and (1)

we have

$$
\int \int \int |u(y)|^{p_{W}(y)} dy - \int \int |u(h(y))|^{p_{W}(h(y))} |J_{h}(y)| dy
$$

\n
$$
= \int_{C} \int_{0}^{b_{x}} |u(h(t,x))|^{p_{W}(h(t,x))} |J_{h}(t,x)| dt dx
$$

\n
$$
\leq \int_{0}^{b_{x}} (\int_{0}^{t} |\nabla u(h(y,x))|^{p} dy) s(h,p,x,t)^{p-1} w(h(t,x)) |J_{h}(t,x)| dt dx
$$

\n
$$
= \int_{0}^{b_{x}} (\int_{y}^{b_{x}} \frac{s(h,p,x,t)^{p-1} w(h(h(t,x)) |J_{h}(t,x)|}{|J_{h}(y,x)|^{p}} dt) |\nabla u(h(y,x))|^{p} |J_{h}(y,x)| dy dx
$$

\n
$$
\leq a_{p}(h,w) \int_{0}^{b_{x}} |\nabla u(h(y,x))|^{p} |J_{h}(y,x)| dy dx =
$$

\n
$$
= a_{p}(h,w) \int_{0}^{b_{x}} |\nabla u(h(y))|^{p} |J_{h}(y)| dy = a_{p}(h,w) \int_{y} |\nabla u(y)|^{p} dy
$$

Definition 3. Let h be a flow defined on D. If there exists an i

in $\{1,\ldots,n\}$ such that $h(y) = (o,\ldots,h,(y),o,\ldots, o)$, we say h is a flow in ith direction, and have the following result. Theorem *2*. Let V be a flow-domain parametrized 'by (h,D). We have (i) If h is a flow in ith direction, then for every u in $c^{1,p}_c(h,v)$ we have $\int_{V} \ln(y) \left| \frac{F_W(y)}{y} \right| dx = d_p(h, w) \int_{V} \left| \frac{\partial u}{\partial x} (x) \right|^{p} dx$ (ii) If V is parametrized by the flow in i.th direction (h^k, D_k) , where $1 \le i_1 < i_2 < ... < i_m \le n$. Then for every u $\bigcap_{k=1}^m c_o^{1,p}(h^k, B_k, w)$, <u>we have</u> Proof. $),\ldots,{\rm d}_{_{\rm m}}({\rm h^m}, {\rm w}\,)$)

It is clear that

$$
\nabla u(h(y,x)), \frac{\partial h}{\partial x_i}(y,x) = \frac{\partial u}{\partial x_i}(h(y,x)), \frac{\partial h_i}{\partial y}(y,x)
$$

By the proof of Theorem 1 we have (1) . From (i) we get (ii) .

1111111111

We shall consider a general domain V in \mathbb{R}^n , that is V may not be a flow-domain. Let w be a positive continuous function on V and $p~\in~(\textbf{1,co})$. We denote by $\mathtt{W}^{\text{p}}(\mathtt{V},\mathtt{w})$ the space of all real functions u such that

$$
\int_{V} (|u(y)|^{p} v(y) + \sum_{1}^{m} |\frac{\partial u}{\partial x_{1}}(y)|^{p} |y|^{1/p}
$$

Let $W_0^P(V, w)$ be the closure in $W^P(V, w)$ of the set of all u in $C^1(\overline{v})$ with $u|_{\partial v} = 0$.Applying the foregoing theorems we have Theorem 3. Let $p \in (1, \infty)$ and V be a domain contained in the half space $\{(\mathbf{x}_1,\ldots,\mathbf{x}_n)\in\mathbb{R}^n: \mathbf{x}_n>0\}$. Assume for every (x_1, \ldots, x_n) <u>in</u> y_1, \ldots, x_n , z_n ⁿ,

Then for every
$$
u \in W_0^p(V, w)
$$
 we have
\n
$$
\int_V |u(y)|^p u(y) dy \leftarrow \Lambda_p \int_V \frac{\partial u}{\partial x_n}(y)^{p} dy
$$
\nwhere $\Lambda_p = \inf \left\{ \frac{a^p}{1-a} \left(\frac{p-1}{ap-1} \right)^{p-1} : 1/p \leftarrow a \leftarrow 1 \right\}$
\nProof.
\nWe can suppose $V = \left\{ (x_1, ..., x_n) \in \mathbb{R}^n : x_n > 0 \right\}$ and
\n $w(x_1, ..., x_n) = x_n^{-p}$
\nFix an a in $(1/p, 1)$, let $0 = \mathbb{R}^{n-1}$, $p = [0, \infty) x0$ and
\nh $p + p$
\n $h(t, (x_1, ..., x_{n-1})) = (x_1, ..., x_{n-1}, t^2)$
\nBy calculation we have $d_p(h, w) = \frac{a^p}{1-a} (\frac{p-1}{ap-1})^{p-1}$. Applying
\nTheorem 1 we have the desired result.

Remark 1. If $p = 2$, $a = \frac{2}{3}$, we have $\frac{a}{1-a}(\frac{p-1}{ap-1})^{p-1}$ We have just refound the Lemma 2.1 in Chapter II of $[4]$, as in $\lceil 4 \rceil$, we see that this estimate is the best one. It is clear that we have from Theorem 2 and Theorem 3 Corollary 1. Let V be a domain contained in the set $\{(x_1,\ldots,x_n) \in \mathbb{R}^n : x_1,\ldots,x_m > 0\}$ where $1 \in \mathbb{R}$ of . Assume 2. 2.광 where $\mathbf{x}^{(1)}$, $\mathbf{x}^{(1)}$, $\mathbf{x}^{(1)}$ is the state of $\mathbf{x}^{(1)}$ in $\mathbf{x}^{(1)}$ in $\mathbf{x}^{(1)}$ Then for every **u** in $W^{\text{p}}_{\alpha}(V,w)$ we have \overline{i} i=1

Remark 2. If $p = 2$, we can use the Cauchy-Schwartz inequality to get better estimates as in $[7]$.

Let's consider the section-domain :

Theorem 4. Let V be a domain contained in the following set
$$
\{(\text{xcos}, \text{xsins}, x_1, \ldots, x_n) \mid x > 0, 0 < s < 2s \le 2k, (x_k, \ldots, x_n) \in \mathbb{R}^{n-2}\}
$$

$$
\frac{\text{Assume } w(x_1, \dots, x_n) \triangleq (x_1^2 + x_2^2)^{-1/2}.
$$
 Then for every u in
$$
\int_V |u(y)|^p w(y) dy = \frac{1}{p} a^p \int_V (\sum_{1}^2 \frac{\partial u}{\partial y_1}(y)^p)^{-p/2} dy
$$

Proof.

We can suppose

$$
V = \left\{ (\cos s, \sin s, x_1, \dots, x_n) : x > 0, \ o < s < 2a < 2\pi, x_i \in \mathbb{R} \right\}
$$

and
$$
w(x_1, \dots, x_n) = (x_1^2 + x_2^2)^{-p/2}
$$

Put $G = (0, \infty) \pi R^{n-1}$ and

h:
$$
[0,a)x0 \longrightarrow V' = \{(\text{reoss}, \text{seins}, x_3, \ldots, x_n) \in V : s \le a\}
$$

h(s, (x, z)) = (reoes, xsins, z)

By calculation we have

$$
d_p(b,w) = \frac{a^p}{p}
$$

Then we have as in Corollary 1

$$
\int_{V'} |u(y)|^{p}u(y)dy = \frac{1}{p} a^{p} \int_{V'} \left(\sum_{1}^{2} |\frac{\partial u}{\partial y_{1}}(y)|^{2} \right) p/2 dy
$$

By tbe similar procedure for the other half of V, we have the theorem ,

$$
'''''
$$

Remark 3. If a \blacksquare We have the interesting case, because V become $\mathbb{R}^n \times$ ([o,co)x{O}x \mathbb{R}^{n+1})

Let's consider the exterior domain t

Theorem 5. Let V be a domain contained in $\{x \in \mathbb{R}^n : |x| > 1 > \lambda \}$ where $|x| = (x_1^2, \ldots, x_n^2)^{1/2}$. Assume $w(x) \in |x|^{-b}$ with $b > \frac{n}{2}$. \mathbb{F} hen for every u in W^P(V,w), <u>we have</u> : $|u(y)|^p u(y) dy \leq C_{p,A,b} \int \sqrt{v^2 u(y)}^p dy$

where
$$
G_{p,A,b} = \inf \left\{ \frac{a^p a^{p-b}}{1+b-ap-an} (\frac{p-1}{ap-1})^{p-1} : a < \frac{b}{p}, \frac{1}{p} < a < \frac{1+b}{p+n} \right\}
$$

Proof.

We can suppose $V = \{x \in \mathbb{R}^m : |x| > \lambda\}$ and $w(x) = \{x\}^{-b}$. Let k be the homeomorphism from $[0,2\pi]x$ $[-\frac{\pi}{2},\frac{\pi}{2}]^{n-2}$ into the following set $\big\{\mathbf{x} \in \mathbb{R}^n \, : \, \|\mathbf{x}\| = 1 \big\}$, which is used in the change of variables into the polar coordinates, Let a be such that a $4\frac{b}{p}$ and $\frac{1}{p}$ \lt a \lt $\frac{1+b}{p+n}$, we put h ; $\left[A_{1} \circ \mathbf{0} \right] \times \left[(0, 2\pi) \right] \times \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]^{2}$ $h(t,x) = t^4k(x)$

Then by calculation we have $d_p = C_{p,A,b}$, this implies the theorem .

////////////

2. APPLICATIONS.

In this section we assume V satisfies the conditions of one of the theorem 3,4 and 5. Let E be a domain in \mathbb{R}^n and \mathbb{C}^2 (E) be the space of all real functions u in C^2 (E) having compact support contained in E. We denote by H(V) and $\frac{0}{H}(V)$ the closures in $N^2(V,w)$ of the sets $c^2_n(\mathbb{R}^n) \cap \mathbb{W}^2(\mathbb{V},\mathbb{W})$ and $c^2_n(\mathbb{V}) \cap \mathbb{W}^2(\mathbb{V},\mathbb{W})$ respectively. We denote $L^2(V,\nu)$ the set $\int f : \int_{V} f^2(y)\vec{u}(y) dy < \infty$.

For each g in H(V) and f in L²(V,w), let's consider the follow-For each R in H(V) and f in L ² (V,H) , let's consider the follow-

$$
\begin{cases}\n\Delta u = f \\
u|_{\partial V} = g|_{\partial V}\n\end{cases}
$$
\n(2.1)

where the derivatives are in the distributional sense.

Theorem 6. The problem (2.1) has an unique solution u in
$$
H(V)
$$
. **Proof.**

Resolving the problem (2.1) is equivalent to finding a v in $H(V)$ such

$$
\Delta \mathbf{u} = \mathbf{f} - \Delta \mathbf{g} \tag{2.2}
$$

And it is clear that (2.2) is equivalent to finding a v in $\hat{H}(V)$ such that

 $\overline{7}$

$$
(\Delta v, h) = (f, h) \rightarrow (\Delta g, h) \text{ for every h in } \mathfrak{c}_0^2 \text{ (V)}
$$

or

$$
-(\nabla_{\mathbf{v},\mathbf{v}}\mathbf{v}) = (f,h) + (\nabla_{g,\mathbf{v}}\mathbf{v}) \text{ for every } h \text{ in } \mathbb{G}_{\sigma}^{2}(\mathbf{v}) \quad (2.3)
$$

where $(f,h) = \int_{\mathbf{v}} f(\mathbf{y})h(\mathbf{y})d\mathbf{v}$ and $(\nabla_{\mathbf{v},\mathbf{v}}\mathbf{v}) = \sum_{1}^{n} \left(\frac{\partial_{\mathbf{v}}}{\partial x_{1}}, \frac{\partial_{\mathbf{h}}}{\partial x_{1}}\right).$

For every u, v in $\hat{H}(V)$ we put

$$
((u,v)) = \int_{V} u(y)v(y)u(y)dy + (Vu, Tv)
$$

and
$$
[u,v] = (Vu, Tv)
$$

By the foregoing theorems, these inner products are equivalent in $\frac{\theta}{H}(V)$. Let's return to the problem (2.3) . Since f is in $L^2(V,w)$ and g is in H(V), we see that h \longmapsto $-(f,g) - (\nabla g, \nabla h)$ defines a continuous linear functional on $B(V)$ for every given f and g. Therefore by the Riesz Theorem there exists a unique v in $\mathbf{f}(\mathbf{v})$ such that

$$
(\forall u, \forall h) = [v, h] = -(f, h) - (\forall g, \forall h)
$$

This implies the theorem .

,,,,,,,,,,,,,

Remark 4. If $w(x) = (1+|x|^2)^{-1}$, the foregoing theorem is proved in $[3]$. In a similar way, we can extend the other results in $[3]$ for the. general function w, by e.g. for the Neuman problem,

ACKNOWLEDGMENT.

The author would like to thank Professor Abdus Salam, the International Atomic Energy Agency and UNESCO for hospitality at the International Centre for Theoretical Physics,TRIESTE.

that

REFERENCES

 \sim

- [2] H. Brezis and E.H. Lieb, "Sobolev inequalities with remainder terms", J. Funct- Anal. 62, (1985) 73-86.
- [3] D.M. Duo and L. Dung, "Compactness of embeddings of Sobolev spaces" (to appear),
- [k] G.P. Galdi and S. Rionero, "Weighted energy methods in fluid dynamics and elasticity", Lecture Notes in Math. 1134, Springer, Berlin (1985).
- [5] D.D. Joseph, Stability of Fluid Motions, Vol.1, Springer Tracts in Natural Philosophy {27), 1976.
- [6] J. Maulen, "Losungen der Poissongleichung und harmonische Veotorfelder in unbeschrankten Gebieten", Math. Meth. in the Appl. Sci. $\frac{1}{2}$, (1983) 233-255.
- [7] S. Rionero and F. Salemi, 'On some weighted Poincare inequalities", Fisica Matematica, Suppl. Bull. Un. Mat. It. IV5, No.1. (1985) 253-260.
- [6] E.T. Sawyer, "A weighted Inequality and eigenvalue estimates for Schrödinger operators", Indiana Univ.Math. J. 35, No.1 (1986) 1-28.

and the same of the company

 \mathbf{T}

$\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$, where $\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})$, and the contribution of the con

 $\label{eq:2.1} \mathcal{L}(\mathcal{L}(\mathcal{L})) = \mathcal{L}(\mathcal{L}(\mathcal{L})) = \mathcal{L}(\mathcal{L}(\mathcal{L})) = \mathcal{L}(\mathcal{L}(\mathcal{L})) = \mathcal{L}(\mathcal{L}(\mathcal{L}))$

 $\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2}$

 $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$

 $\begin{array}{c} 1.1 \\ 1.1 \\ 1.1 \end{array}$

 $\begin{array}{c} 1, \\ 1, \\ 1, \\ 1, \\ 1, \end{array}$

 $\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array}$

 \bar{V}