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INTRODUCTION

The Poincaréd inequality has been studied by Aifferent methods
and applied to many problems [1-8] » In this paper we propose
to prove an Poincard inequality for tbe flow-domain defined
below, and apply it to the Laplace equation with the Dirichlet
or Neuman boundary conditions. Cur resulte may alsc be used
to generalize other results in [1,3],

This paper conaists of two mections, In the first section
we prove the Poincard inequality for unbounded domains in R,

The Laplace equation will be studied in the secend section.

1. POINCARE INEQUALITY FOR FLOW-DOMAIN

In this asction let G be 4 subset of the n=1 dimensional apace
of real numbers m“"’l an! Y ———p b_be an application from
¢ into [0,0] ana D=f{ (t,x) 1z eEQ ,c,gtfbxj .
Definition 1. Let h be a continuous differantiable one=to~one
mapping from D into R such that the Jacobian determinant I {tx)
is nonnull for every t » O, Then h is called a flow dafined on D
Let h be a flow defined on I and let w be a continuous positive
function on h{D) and p & (1,0 ), For each x in O and t in (o,bx)

we put

K E_
a(h,p,x,t) = Jolg—];;{y.x)lp-l dy

Pr alhypen t )P e (,2))]9, (8]
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Definition 2 . Let h be a Tlow defined on D, we say ¥V = h{D) is

a flow=domain parametrized by (k,D). We put -

Ccl,’p(h.D,w) -juectv) . L. NP y) « lvu@)Ply < @

and u(k{o,x)) = O for avery x in G 3 .

We have the following Poincar$ inequality.

Theorem 1 , Lat V be a flow-domain parametrized by (h,D) and p

in {0,®). Let u in Gi’p{h,D,w) , then

[y ) Pelr)ay & dp(bmfvlvu(x)lpaz

Froof.

For every (t,x) € D we bhave :

t 1
u(n () = § o TaeENY - [ Vub o). P
By Holder's inequelity we have
»/p-2

t t
lata(e,enl? € [ ITueio Pay( [ 1) ay
p-1 [ P
- st P JTub )Py Q)

Then by Fubini’s thecrem,thecrem of change of variables and {1)

we have
Jla G Puyray jniu(h(y))l Pu (o r))l 3, (vl ay

b .
" .{G !Dxlum(tm))lpwﬁh(t,x))|.:rh (t,x)ldt ax

b 1
é U,,‘(j,,lvu(h{y.x))l"dy)s(h,p,x.t)P'lw(h(t,x)lI,nth”*

S {bx be B(h,p,x,t)p_lw(h(h (t,x))th(t,xx
oo My j Iy sx ) |
‘ dp(h ) JG]DIl Vu(h(y,x))IPIJ’h (v,xJydx =

- dp{h,w) JDqu(h(y))]leh(y)ldy - dp(h,w)IVJVu(y)]de

1T

Definition 3. Let h be a flow defined on L. If thera exigts an i

4t )| Vu (b (v,x ) Y8 (v 4% )] dydx

in %1,...,:1} such that h{y) = (o,...,hi{y),o,...,o) , W8 Bay

th

h is a flow in § " direction, and have the following result.

Theorem 2. Let V be a flow-domain parametrized by (h,D). We have
th

(i) If h is a flow in i

dirsction, then for avery u in

Ci’p(h ;W) we have

M |P ax

jv!u(Y)]pw(Y)dy - dp(h,") Sv\-}jxi

(ii) 1f V is parametrized by the flow in i M givection (hk,Dk),

b3
where 1 ‘il 4 i, £ ...(i]11 €n . Then for every u in

S
nl Co'p(h ,Dk,w) y We have
k=

I Ju
fu e Priny < %ma!(dp(hlpw),....dp(hm,w))k§ Nﬁiw)lp“y

Proof.

It is clear that

3 b,
-a_:i(b(lﬁx))- ‘TS";(Y’I)

Vulb(y,x)). .3—};_ (y,x)
31

By the proof of Theorem 1 we have (1}, From (i) we get {1i).

11111
We shall consider a general domain V in " y that is V may
not be a flow=domain, Let w be a pogitive continuous function
on Vand p € {l,0), Wo denote by Hp(V,w) the space of all real

functions u such that n

’ 1
o QP + {2 @] ) et/
v T
Let Wz(v,w) be the closurs in WP (V,w) of the set of all u in
Cl (V) with uhv a O Applying the foregoing theorems we have

Thegrem 3. Let p & (ly,e0 ) and V be a domain contained in the

balf space %(11,...,111} e " x, >0 {. Assume for every

(xl....,xn) in V , w(xl,...,rn) P4 x;p .

.



P
Then for every u € W_ (Vyw) we have

Ju P
{tet)Poiiay e s fy 122 )7 a .

! P Assume w(x,jeeex ) & (x4 xz) %1, Then for gvery u in
herg A = inf& _%,?__(_L'}_)P'l 1 1/p € a ¢ } 1 n 177 -
LIS 1-a ‘ap-1 P Hg (Vyw) we have

2

b f.

We can suppose V = i(xl""'xn) e ®" x, > 0} and 1 i
W(zyseeasx,) = xn"p Proof.,
n=l We can suppose

Fix anain (1/p , 1), let 0 = iR" ~, D = [0,00 )x0 and

bt D +—————p R" V= {(xcoa a,xsina,xB,...,xn) 1 X0, o<s<23<2n:,xieﬂg

&
h(t,(Il,...,In_l)) = (xl""'xn-l’t ) and w(xll'l'!xn) - (If + xg)-p/z'
P - - -
By calculation we have dp {(hyw) = ﬁ-(;%:%—)p 1 Applying Put G = (0,00 JrR" 1 ana
Thecrem 1 we have the desired result. ki [0,a)20 ——> ¥’ i(xcoss,:sins.xy..,xn) €EV: 8 <&a 3
1T h{s,{xyz)) = (xcoma,xsins,z)
o P oo =
Remark 1. Tf p = 2, a = = , w8 have _:_(LE._)P 1. 4 ., By caleulation we have
—— 3 1=-a ‘ap=1 »
We have just refound the Lemwa 2.1 in Chapter II of [4], ap(h ) = %

as in [4 ] s wo ge® that this ectimate is the best one, Then we have as in Corollary 1

2
Jv.lu(ar)\p\f(y)dy - %ap Jv' (g:l%i(y)] 2 p/2 dy

By ithe aimilar procedure for the other half of V, we have the

It ig clear that we have from Theorem 2 and Theorem 3

Corclliary . leat V be a domain contained in the cet

i(xlllll'xn) € 'Rn ¥ xl,...,xm >, oj where 1 £m .fn. Asoume

2 2, &£ . theorem ,
w(xl,....xn) £ (xl+...+ x,) 2 for every (xl,....xn) in ¥, eore

Then for every u in W' (V,w) we have 1
- 0 A p———— ? ﬁ . .
JV ha ()1 Pwiy)dy < _ﬁ ;JV|%1 (y)l dy Remark 3, If a = 1\ ,we hava‘-t‘he interesting case, becauge V
becoms B" N { [0,00 )x{0fx R )

Remark 2, If p = 2 , we can usze the Cauchy-Schwartz inequality R Let"s consider the exterior domain 1
to get bDetter estimates as in [T]. Theorem 5, Let V bo a domain oontanined im {x ER" ¢ JxiPA> O i '
Let”s consider the section=domain 1 where x| = (xf+...+xi 1/2. Asgume wix) & lzl-.b with b >-E- .
Theorem 4, Let V be a domain contained in the following sot Then for every u in HE(V,w), wa have 1
. n-2
i(xcozs,xsms,xl....,xn) 1 T 20,0 8 <€2ag2K ,(xl...,xn)EfR f Sv la(y)Pulylay & cp,A,b gv\vu(y)\pdy
=5- -




1

n,ap=b
_ aa p~lyp-1 . ,b 1 1+b7]
where Cha, ™ 1nf% Tro—ap=an ap-l) 3 oaf e < a< Py
Proof.

We can suppose V ESF em™ :ixy ¥ Aiand wix) = \x\_b . Let k

n-~2
be the homeomorphism from [0,2M)x [- %. % into the following
get %x eu” . fxh=1 % , Which is umed in the change of variables
into the polar coordinates, Let a be such that a £ % and

%(a(m,wepu‘t

pn
-2
i
b1 [As00 (0,27 ) [—% V5 y—— v
h(t,x) = t7x{x)
Then by calculation wa have d_ = Cp Ah ! thie implies the
Laa |

P
thaorem .

I

2. APPLICATIONS .,

In this eection we assume V satisfies the conditions of one of
the theorem 3,4 and 5. Let E ba a domain in &" and C: (E} be the

space of all real functions u in 02

(E) having compact support -
contained in E. We denote by H{V) and ?I(V) the clomures in W (Vyw)
of the sets C;" (ﬂ{n)ﬂw‘?(v,w) and Cg‘ (V)ﬂh’?(‘!,w) respectively,
We denote LE(V,H) the get 2 i _S v fz(y)l;l(y)dy { E .
For each g in H(V) and f in LE(V,w), let’s consgider the follow-

ing Diriehlet problem

4 Hu = F
a.
i alyy = &l (2.1

where the derivatives are in the distribntional sense.

Theorem 6., The probplem (2.1) has an unique solution w in H{V} ,

Proof .

. o
Resolving the problem {2.1) is equivalent to finding a v in H{V) such

that

be = f- &g {2.2)
And it is clear that {7.?) is equivalent to Finding a v in o)
such that
(Av,h) = {f,h} - (&g,n) for every h in cz’ n
or
~(Vv, Vh) = (f,n) + (Ve, ¥») for gvery b in X (V)  (2.3)
oo (£,1) = [t (IR wna (T, Vn) = ) (2L, 2.

] }xi
For every u,v in ﬁ(v) we put
(Caw)) = Sy + (Va, )
and  (u,v] = (Vu, Vv)

By the foregoing theorems, these inner products are equivalent
in f{¥). Let*s return to the problem (2.}), Since f is in L?(V,w)
and g is in H{V), we see that h —=3» -=(f,g) — (Vg,Vh) defines
e continuous linear functional on ﬁ(v) for every given f and g,

Therefore by the Rieas Theorem there exists & unicque v in E(V)
such that

(vu, vh} =[v,h]a —(f,h} ~ {Tg, ¥h)

This implies the theoren ,

FEIIE01E
Remark 4 . If w{x) = (1+-|:|:I2)'1 , the foragoing theorem im proved

in [3]. In a similar way,we can extend the other results in [37 for the.

.general function w, by e.g. for the Neuman problem,
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