
института 
ядерных 

исследований 
дубна 

C.Burdik, J.Chyla 

Е2-87-325 

ON THE MEANING 
OF PERTURBATION EXPANSIONS 
IN QUANTUM FIELD THEORY 

1987 



1. INTRODUCTION 

In this paper we construct a procedure how to get finite, nontrlvial 
results for physical quantities which within the conventional perturba­
tion theory In fixed renormalieation scheme (BS) are given by divergent 
expansions in appropriate coupling constant. 
The method is based on the idea of Stevenson [1], who showed how the 

renormallsatlon group (KG) invarlance of the theory can - under certain 
circumstances- lead to finite results even for highly divergent series. 
Contrary to him and other authors [2] we, however, do not think that 
this invariance, when applied to divergent series, implies a unique sum 
if such a sum can be defined at all. The role played by the «normali­
sation procedure in the construction of nontrivial quantum field theo­
ries [3] shows definitely that the renormalisatlon procedure cannot ba 
regarded as purely perturbative in nature. It binds intimately together 
all aspects of the full theory and therefore its separation into "per­
turbative'' and "nonperturbatlve" parts is bound to be ambiguous. 
The paper is organised as follows. In the next Section the nature of 

the problem is recalled, necessary notation introduced and the main re­
sults of papers [1,2] briefly reviewed. The importance of the RG inva­
riance for the attempts to sum perturbation expansions is discussed in 
Section 3, where also the main ingredients of our method are formulated 
and its close connection with the Borel summation technique [4] demon­
strated. The implementation of this method by means of higher order RG 
parameters is covered in Section 4, followed in Section 5 by the compa­
rison of their respective merits. In Section в the complications conne­
cted with the nonzero value of the coefficient с in eq.(2) below are 
sketched and numerical results presented.The relation of our results to 
conventional perturbation theory in fixed RS is clarified and the in­
terpretation of the fundamental ambiguity in our procedure outlined in 
Section 7. 

2. THE NATURE OF THE PROBLEM 
In renormalised quantum field theory, such as QCD or QED, the physl-
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cal quantities are conventionally expressed as perturbative expansions 
in powers of the renormalised couplant «*" (не adopt notation of [53). 
This couplant depends in the masslese case on a set of dimensionlegs pa­
rameters CJ and a single dimensionfull scale parameter jtt, , introduced 
in the process of renornalisation. In the following не discuss in deta­
il the case of Baseless QCD with n. flavours of quarks. 
For physical quantities each set of parameters /tt,ci defines certain 

RS { for Green functions additional parameters are needed for a unique 
specification of a given ES ). Let us consider in such a fixed RS per­
turbation expansion of some physical quantity S, depending for simpli­
city on a single external variable 8, in the form 

^ ' 4 / " " (!) 
where the couplant Л/^ij, Ct) obeys the equation slant &*t/t4f (*i) obeye the equation 

at./** I <y* I ' ~ (2) 
We concentrate on the case d=l, for generalisation to d/1 see Section 
3.10. In Baseless QCB the coefficients b,c are fixed once the number of 
quark flavours le given: b=(33-2ry >/6, c=(153-19n^)/(66-4njt). The arbi­
trariness in the choice of the couplant £lfas,Pi) is then a direct con­
sequence of the freedom in the choice of A. and c. ,i?2. 

Within the class of •finite" RS (i.e. those in which all but finite 
number of c^'s are zero and in fact in any RS in which the r.h.s. of 
(2) is Hell-defined convergent series) the equation (2) can be integra­
ted with some consistent boundary condition like [5] 

r.**£ -i"4,gs- * /6w*;fe>'(3) 

Hhere B(x) = l+cx+c, x +c,jr + The dimensionfull parameter f\ appearing 
in (3) specifies unambiguously which of the solutions to (2) we have in 
mind. Conventional N-th order perturbation expansion for the quantity R 
is usually defined by truncating (1) and (2) to the same order [6].This 
is, however, a rather arbitrary step. From conceptual point of view It 
would certainly be better to define once and for all orders of (1) our 
expansion parameter л/с, Ct{) taking it from the class of the well-defi­
ned "finite" RS and then to investigate the convergence of expansions 
like in (1), which is what не are really interested in. Unfortunately, 
there are numerous indications, reanalyeed recently In [1], that the 
perturbation expansions in such a fixed ES are highly divergent. The 
next best choice is to allow for the variation of the RS, but in such a 
way that the corresponding couplant has a well-defined limit for N-»a». 
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There is little sense in coupHeating the situation by considering the 
expansion (1) in such RS where the expansion parameter itself is ill— 
defined in the Unit N-*a> . This attitude has originally been sugges­
ted in [7] and we stick to it in this paper too. 
Although in eome sense the parameter f plays an exceptional role as 

it is connected with the regularleation procedure, mathematically all 
the paraneters T,c- are on the sane footing. We can for instance wri­
te down the analogue of eq.(2), looking this time for the derivative of 
the couplant with respect to c^ [5] € 0 

The parameters Z",c- can, within their definition region (i.e. so long 
as the couplant stays positive number ) be chosen at will, but the RG 
invarlance binds together the behaviour of the couplant OS as a func­
tion of these variables with that of the coefficients Хл. [5] 

Л/г; -r -я / sл-;-#+4<?*л?-$,*/с ( 5 ) 

where all the yO. are RS invariants, depending merely on the external 
momentum Q. The relatione (5) express the formal consistency of pertur-
bative expansions in various RS, in the sense that the N-th order par­
tial SUB ^£- , . , J. 

varies by amount proportional to of* when we change the RS, i.e., the 
values of £""!c ., ieK,N-lJ. Increasing the order N not only are further 
terms added in (6), but in general also the couplant nay change as more 
of the coefficients c4- enter the game. Exploiting all the available pa­
rameters Cj-.i-N-l was essential for the Principal of Minimus Sensitivi­
ty [5] to work, but apart from this it has no special Justification. He 
shall on the contrary take the number of c^'a used fixed for all orders 
and investigate the consequences of the RG Invarlance for each of the­
se parameters separately. 
Changing the value of "Г* or ĉ . we get by means of (5) another series 

corresponding to some other RS. Both the couplant and the coefficients 
tt will be different, but should the original series be convergent, so 
would be the new one and moreover they would give the same result. This 
is the inplication of the RG invarlance for convergent series. For them 
the choice of a particular RS influences the results at each finite or­
der, but the relation (5) guarantees that the full sum (1) is indepen­
dent of it. There is a number of methods trying to resolve this ambigu­
ity at finite order [5,8,9] each of them assuming that there is indeed 
a unique meaning of the full sum in (1) and that the problem is merely 
a question of how best and fast to approach it. 
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In QCD, however, the expansions in (1) are likely to be divergent in, 
any fixed RS [1,7]. In such circumstances, the question of the unique­
ness of the perturbation results cannot be answered prior to giving 
these formal expressions some good meaning. In this case the BG invari-
ance gives us merely an infinite number of divergent series of the type 
(1), each of them associated with one particular RS, connected by rela­
tions (5). These relations express now only the formal consistency - in 
the sense mentioned above - of all these aeries, but do not by itself 
help us in summing them. 
For divergent series we interpret the requirement of RG invariance,be­
side the relatione (5), as the condition, for the moment rather vaguely 
defined, that all the RS should be treated on the same footing. In ot­
her words, when attempting to sum divergent series like (1) we should 
keep in mind that we are dealing not with one particular series, but 
rather with the whole infinite set of them. Starting from some initial 
series in RS ={y*,c?}, the RG invariance generates for us by means of 
(5) the coefficients r̂ , in any other RS= {£".<:,,•} .They, together with the 
new couplant given in (2),define another divergent series, which could 
equally well serve as the initial one. The sum we are looking for shou­
ld not discriminate one RS with respect to others. This is the most we 
can get from RG invariance for divergent series. 

In [1] Stevenson suggested a possible scenario of how to get finite 
and nontrivial reeulte for the sum of divergent series, exploiting the 
above mentioned RG, restricted in hie example to the subgroup associa­
ted with the change of the variable £" . Within the class of these "ae­
ro" schemes he discussed a toy example of the series ' 

fa ( " 
which can be considered as (1) in some initial RS .For the above seri­
es his Principle of Minimum Sensitivity implies that for each finite 
sum of the first И terms in (1) the "optimal" value of 2Г is not cons­
tant behaving at large N as f(S)=^C.JH ,^=0.278 and consequently 

is finite and closely related to the Borel sum of (7). 
This example demonstrates that we can get a finite result for the li­

mit lim R (•f(N)) provided T is not fixed as H--»OQ, but increases to in-
finity. The optimisation condition supplies just the right dependence 
T(N) to yield the finite result. This conclusion has been generalised 
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In [2] to a wider class of series (7) and shown to depend on the aseum-
tion that the Borel transform of the series (1) has finite radius of 
convergence r°. To get finite reeult in the case of series (7) we can, 
however, take any value X-Jt.of the factor^ in the relation £4H)=^N. 
In [2] the optimised result i.e. % ~%* was shown to correspond to the 
maximal possible reeult of all the convergent limiting procedures (8). 
This fact was regarded in [2] as a strong argument infavourof conside­
ring (8) as a "correct representation" of the perturbative part of the 
physical quantity B(Q). We return to this claim in the next Section. 

3. THE METHOD: 
3.1 General remarks. 
The physical question we want to have answered is the following:are the 
higher order terms in (1) really so overwhelmingly Important as indica­
ted by the divergence of these expansions in fixed RS, or do they In 
some way compensate each other between different orders, so that only a 
few lowest orders are of practical interest? He feel that the mere di­
vergence of expansions (1) doee not imply the dominance of high orders 
but to answer this question honestly we should from the beginning take 
thee seriously. 

Our aim is thus to construct a method that takes into account all or­
ders of perturbation expansions, but yields finite results even in the 
case when (1) is divergent in fixed RS. The basic idea has already been 
mentioned in the previous Section. To make such a method of practical 
use, we furthermore require that it 
a/ works order by order, using conventional calculations in fixed RS 
b/ converges for N-->OD in the conventional sense 
c/ contains no analytical extrapolations of any kind (as those employ­

ed in Borel summation technique and its variations) 
d/ respects RG invariance in the sense mentioned earlier 

3.2. Basic formulae 
In this Section the results of ref.[l] are derived in a different mann­
er, which, contrary to the original derivation In [1], is applicable to 
completely arbitrary coefficients гл(£"> of (1) at eome initial T=V* 

£ *AH*4"M / «0 **fr) ( 9 ) 

and which makes transparent the close relation of the "sum" of (9) 
to the corresponding Borel sum. For the moment we stay in the zero RS, 
the case of Cy/0 is subject of Sections 4 and 5. We furthermore assume 
c=0 in this Section. The technical complications connected with nonzero 
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er, which, contrary to the original derivation in [1], is applicable to 
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£ьм*4"м) «с **ес) (9) 
and which makes transparent the close relation of the "sum" of (9) 
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value of с In realistic QCD are coneiderable, but do not change the si­
tuation in any essential way (see Section 6). Defining now as the ini­
tial RS that corresponding to Z*"-0, the EG invariance dictates the de-

(10) 

and then using the relation [10] 
(11) 

arrive at 

be recast into a form of reccurence differential equations 

with solutions (г (Г=0))^гж(0)) 

From (10) we f i r s t foro the N-th partial sum 

relation [10] 

fjihtl 
;(, V™ i f * ' / (12) 

We now investigate the class of llmitting procedures, defined by spe­
cifying the N-dependence of "C" by means of two parameters 

r<n> = £ N / 3 ( 1 3 > 
and obtain 

where the factors ^(N)=H! /((И-^-l)! Vм ) go to unity for fixed,/ 
when N--?OS . 

3.3 The case /b-\ 
For /3=1 and provided that the Borel transform of the initial series 
(9) at T*-0 has a nonzero radius of convergence г*,we can set ̂ ( N ) = l 
In (14) and thus get л, 

*(^-<НЖЫ (15) 
This expression points immediately to the close relation of our pro­
cedure to the Borel summation as it can equivalently be rewritten as 

*(*№- IT *#*b+ <16) 

which differs from the Borel sum of (9) at Z**=0 merely by the finite 
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upper integration bound ( at and thus the weight factor 
exp(-u/«i^)) equals unity). The intimate connection of (15) with the 
Borel sum, so immediate above is in the case of general r^ far from 
obvious if one follows the derivation in [1,2]. We stress that the 
factor multiplying г*(0) In (15) is a nontrivial limit of the sum of 
contributions coming from Increasing number of terms r^tCTNjJc» (tftU 
as N and consequently C(H) go to infinity. 

The series (15) provides therefore well-defined representation of 
R(/K' /S-l) for l/% <r°. For 1/X beyond r°(15) Is of no direct use, 
but in certain cases (14) can still converge if we carefully take in­
to account the factors ^(L(N). This had been demonstrated in [2] for 
the toy example гл(0)=(-1) к!• where re=l, but (14) converges up to 
1/X -3.55. A word of caution is, however, in order here. Although in 
the above example we can go beyond r c . this possibility Is of little 
practical use. We obtained finite limit (14) because we knew exactly 
all the coefficients г л. In practice we can derive the asymptotic 
behaviour of r as k--»<0 and calculate explicitly a few of the lo­
west ones. This would be sufficient to determine r° but would not a-
How us to go beyond it. There the eventual finite limit of (14) is a 
consequence of subtle cancellations between large numbers of opposite 
signs, w.4..< ch necessitate exact knowledge of all гл . Were such an In­
formation available, as in the toy example of [1,2], we could evalua­
te R(%,/?-=l) beyond r" also through analytical continuation from the 
region l/£ < r*. Both procedures require exactly the same kind of In­
formation, but the latter allows us to calculate R(X,/$-U even fur­
ther, up to 1/Jt =• в» where we recover the Borel sum (if it exists)! 
The point X"~Xn Ь'^вУ8 1° exceptional role, contrary to claims in [2]. 

3.4 General /h 
It the original series, given by 1^(0), has r e> 0, the formula (14) 
with /3=1 gives nontrivial, finite result (15). What happens if we 
take /i/1 ? To find out, we rewrite (14), setting <£(N) = 1 : 

«W-^ь. It ^ A W • 
For /?>1 and N-->eo the upper integration bound (N J/%, goes to zero 
and as the integrand is finite within the nonzero r°>£} the limit 
necessarily vanishes. For y4< 1 we have two possibilities: 
a/ the series (15) has finite rVu. Then the upper integration limit 

goes to infinity crossing eventually r° and causing divergence 
of (17). The sane happens if r*-tc but limR( % ,X=1)=0>. 
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Ь/ re=OJ and lirifef f,fl,=l)\<CO as for instance for the eeriee of the 
type (-l)*(qk)! Hith q-<l. For such series the difference 

(17) and the Borel sum behaves in the limit N->« of (17) and the Borel sum behaves in the limit H->OE> as follows. 
The second term evidently vanishes and the first one approaches the 

This vanishes in the limit N-^e» for/3>q and for A =q,s<l and os­
cillates with increasing amplitude for A4.4 and #=q,z>l. Thus we get 
in the limit N~»<» the Borel sum if q < Д41 as well as for/4 =q,z < 1. 
For /3<q or/S =q,z >1 the sequence R (%,,&) diverges. The Borel sum 
is obtained also for /3 = 1 in the limit Z—>0. 

3.5 Conditions for finite, nontrivial limit of R*( %,/i ) 
The above discussion suggests a somewhat special role of p-\ and the 
importance of the finite r e. For series with re=0,iO=l does not yield 
finite results. But could we not choose &>1 in this case and still 
get what we want: finite, nontrivial limit of the sequence R (1£ ,& )? 
Unfortunately, we cannot. To investigate convergence properties of 
this sequence we first write down the expression for the difference 
A R " !R*( rtHJl-R""' (r(N-l)) using 0» =rN4 iW))(Z.ff( C(N)) 

The second and third terms in (75) can be reduced by веапв of (2) and 
(10) so that не obtain in the Unit M—*<k> 

Me shall discuss two distinct possibilities for the sequence R to 
converge *o a finite limit: 
i/ Qf, is a smooth function of N and does not change sign with N ( in 

the asymptotic region N--»OD). Then (18) approximates well the de­
rivative dR" /dN and the finite limit requires this derivative to 
vanish for N-->C© faster than 1/H. For power behaviour Q„(t H» it 
implies />1> except in the case &-1, when it suffices У~>0-This 
fact shall be crucial in the following. 

ii/ 9 W does change sign with N--*CO , Then the criterion with the de­
rivative oannot be used, but jf^ 0 is still sufficient, because 
now the m o c n lv« terma oonapira la such a, manner that finite 11-

8 



СО А 
mit lim R (f(N)) results, as exemplified by the series 7" <-l)/k" 

"* Мяо 

which has the finite limit as N-*ep for апуЛ>0. 
To determine when we get nontrivial results we calculate the deriva-

For finite limit of E*(% , & ) , depending nontrivially on X • Чч must 
not change sign and must behave as 1/H for H--pa>. Then, however, only 
/3 = 1 is acceptable. So only A = l can lead to finite result depending 
nontrivially on J. 

For series with r°-0,&>\ is clearly necessary to guarantee finite 
results.These, however, can not depend on "]C and must in fact be equal 
to zero as R w( % -во ,^8)=0 for each H and R( P,/&) is continuous func­
tion at 1/У =0. For^3>l we therefore get either zero t CO or oscil­
lating behaviour of R " as H—f<x> . 
Summarising, we see that A - \ is the largest value of /3 .leading to 

finite, nontrivlal results for R (% , A). For/3>l only zero , CO . or 
oscillating behaviour of R is possible, while for /3<1 either a> os­
cillating behaviour or finite,^-independent result, equal to the Bo-
rel sum comes out. 

3.6 The case of general Z" 
The derivation of our basic result i.e. the formula (15) is extremely 
simple due to the choice tf-u. If the initial Z°?0, we can, however, 
proceed quite analogously with only minor modifications. Defining now 
f - V~ +*C° eo that A(2?)=l/C£Vr*) a n ( i repeating all previous steps 
setting this time V^-ХЯ we get 

tt-t € t e 

where 

obey 
%(itfUb2fytf-4k 4bffc*<tit(l) 

(19) 

(го> 

Evaluating explicitly Д = (1-exp(-T/;£ ) )/te from (20) we find 

where « e(y) = (l-exp(-y))/y and y= if/g Obviously, < ^ ( %. ,f°) reduces 
to (l/jl /*/(,< +1)! for fixed % and t*-->ff as well as for 2*fi-
xed and, % —*W. For £">0 and Д1-*0 (i.e. y-»<0 only the first term in 
z e(y) contributes and we get ^2(0,с J-^ll'y*) - Д . j recovering, as 
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не must, the original series (9) in fixed RS={ Z*}. The shape of the 
functions ,2(£ ,7°) for .^=0,1 and a typical value ifo-0.Xi.B displayed 
in the Figure.If (15),corresponding to t*=0,has r e > 0 , then seriesОД 
* ^*- _-—>^—"Jill will have the same radius of conver­

gence. The reason is that for fixedX 
and T*the behaviour o f ^ ( ^ , r t as 
a function of уЛ is given by the ex­
pression 

•C'tt 'thich is an immediate consequence of 
(21) and the analytlcity of the fun-
tlon z s(y) s guaranteeing the Taylor 

L. expansion around M.-0. 
-.—*4 V 

<J/ Ц* 4* 4* V Ф 97 
We now come to the Important point of the potential dependence of 

our results (19) on t . He began Section 3 with the rather loosely 
formulated requirement that our procedure must respect RG invariance. 
We can now be more specific: our results (19) must not depend on the 
choice of the initial RS, specified in this case by Г"! That this is 
indeed the case can be verified quite straightforwardly by differen­
tiating (19) with respect to 2* , employing in the process (21) and 
the fact that according to (10) dr*(fc)/dZ* = к г д , C£*). We proceed in 
fact very much in the same way as in the conventional framework where 
the knowledge of (10) and (2) leads to the formal independence of (8) 
of t . For \tji 4. r° our expansions are, on the other hand, conver­
gent series so that all mathematical operations with them make good 
sense and the results, i.e. (19), are really independent ofГ*! 

3.7 The influence of higher RG pa-ameters 
So far we have varied f with N according to (13) but stayed in the 

zero schemes, where all c^=0. Allowing these parameters to assume ar­
bitrary, but fixed values complicates the derivation, but doesn't in­
fluence the final result (19). Taking into account merely c^.eq. (10) 
is replaced by 

and also the couplant has a bit more complicated form. Nevertheless, 
as we shall demonstrate in Section 4.Э the final result for R(JK,^) 
is independent of £. The same holds for all c. ,12 2. 
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3.8 Application to convergent series. <to , j . 
Let us take V"-0 and consider Binple convergent series Z. (-1) &t At!', 
which sums to <7eexp(--%) and thus for Я,—•*<*> (i.e. forF=Q) yields 
conventional result equal to zero.From (14-15) ие get for this series 

which vanishes for /C=0 (and X-CO as any series (15) with r'> 0). 
This is an example of a general situation: conventional results are 
for convergent series recovered only for fi*l or for /S-l, but Jf--»0. 
For /i-X and /С/о * n e procedure embodied in (14-15) is therefore not 
regular. For divergent series there is no reason to reject these va-
llues and all pairs £ , & yielding finite results are In principle 
[equally acceptable. 

The fact that our procedure Is not regular for the values of JC ,/3 
which are required to get finite results in the case of divergent se­
ries is nothing absurd, but indicates that it makes little sense to 
try to split divergent series into "convergent" and "divergent" parts 
Adding the conventional BUB of a convergent series to a divergent one 
"sunned" by neans of (15) differs from the result of applying (15) to 
the formal sum of these series. Similarly for other operations. 

3.9 The case of nonoscillatig series 
Traditionally the oscillating character of the divergent eerlee has 

been considered vital for obtaining finite generalised suns. For in­
stance the eerlee with coefficients rj^0)=k! has In the conventional 
sense an improper limit to for any %,. Hot so according to (15). The 
basic reason for this unexpected situation is again the fact that we 
deal not with one particular series of the mentioned type, but rather 
with the whole infinite set of them. The formula (15) yields finite 
iresults - R(jt . L )=-ln(l-l/J£ )- even in the mentioned case. 

Contrary to the oscillating series we oaonot, however, go beyond 
the point 1/jf =1 (our result becomes complex and thus looses physical 
sense there). For 1/Д< 1, on the other hand, our result -1п(1-1/д£ ) 
is no less sensible than the one for the oscillating series (T) I.e. 
ln{l+l/Jt ). The point 1/jJ =1 corresponds to the conventional result. 

3.10 Generalisation to the case djfl 
For d/l the Invariants J0,- appearing In (5) acquire simple dependence 
on d [5]. If d is a natural number (1) can be rewritten as 

Z 4i/W«'iw -= £%/t)a %), ( 2 3 ) 
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where г(>-)=г А . _ ( f ) . We can then apply (15) and get 

We stress that for us (23) is a definition of the formal expression 
(1) as our procedure does not commute with multiplication of the se­
ries. Should не first apply (15) to (1) with d=l and then multiply 
the reBult with lim<2. ( £"<N)) = 0 we would eet zero instead of (24). 

Jf-t«o 

4. The t.ethod : c e 

4.1 Basic formulae 
In this Section we show that beside T* also any other RG parameters c. 
can serve to define a procedure similar to that of the previous Sec­
tion. We describe in some detail the modifications connected with the 
use of c 4. For c t < 0 the couplant Л (t,c ) is defined as a solution 
of the equation ( assuming as above c=0) 

c а. а ™ПССд«.*-а I (25) 
where /l=2PlcJ . The introduction of c. complicates the dependence of 
the couplant Л ( ^ \ с , ) on t but as we shall hold f fixed and vary c t 

we assume for the moment "Z"~0 and only later in Section 4.3 do show 
that the results are in fact independent of this assumption. 
For V-й the solution of (25) is again simple : &. (0,c: )= *£/ /~-c? 

where ot=0.84 is the solution of the equation 
± - ̂  A lit£L! « 

For Г =0 we also have simply: d «K 0, Cg,)/dê  =h,<f(0,c- ), where h =l/2#cf 
In [1,2] the asymptotic freedom of QCD has been regarded as crucial 
property for the construction of the finite limit as Я — » » . From the 
point of view of mathematics involved, the only essential condition 
for the procedure to work is, however, that as H--»fta the couplant va­
nishes sufficiently fast. In the case of eg the same situation arises 
if we send a-t-oo . In the following all the steps of the preceding 
Section will be straightforwardly reformulated for c £. 
The RG invarlance with respect to c. determines the dependence of 

the coefficients r„(ct)=r (C=0,Cj_) on c t through the relations 

analogous to (10). They have the solutions 
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where (2K-1)! ! =(2k-l) (2k-3). . . l=2V(ktl/2)/^ . Forming the N-th par­
tial виш, separately for odd and even orders, we get 

closely reminiscent of (12). Assuming no» 

we obtair. 
(28) 

) are the sane as in (14). Combining (29-30) w< 

\-l yields finally 

(29) 

(30) 

where ЫлШ) are the sane as in (14). Combining (29-30) we arrive at 

(31) 
provided the r.h.s. of it "converges. The only essential difference of 
(31) fro» (15) lies in the presence of mere P( (J+U/2+1) compared to 
P(j+2) there. The above defined procedure based on the use of c x and 
embodied in 31) is again closely ( although not as much as for t~ ) 
related to the generalised Borel sum of the series JL /, .? *** 

ГА. **.f F/>; * JeT*Bftty4j 9Гг)ш£ ^ - л x TfWk^H) (32) 
for V-l/2. Due to lower value of l/ the use of c A ie less 
powerful and leads to finite results only for series behaving at moet 
like (k/2)!. For such series, however, both X- and c^-based procedures 
are equally good, although they lead in general to different results. 
As far as the conditions for finite, nontrivia] resulte of the 11-

niting procedure specified by (28) are concerned the situation turns 
out to be the same as for f : /& -\ is the only value allowing nontri-
vlal, £ -dependent results for B{/(.& >. The arguments parallel clo­
sely those of Section 3.4 and we shall net repeat them here. 
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4.2 The independence of R(jt , 1 ) of the fixed Z* 
For technical reasons we took at the beginning of this Section T=0. 
To prove that the results (31) do not in fact depend on the value of 
fixed f , we first, calculate the derivative 

Using (2) and (22) this can be written as 

For f=0 and с negative we have -c^Cf-ei ,H4 =( <*//)£ >N * and thus 

If A-i then Q„ must behave as 1/N to yield finitei JK-dependent re­
sults and so in this case dR*( 0 ,o, )/d?-~N~^ as N-->fl» . Repeating the 
above procedure to calculate second and higher derivatives we find 
that they vanish even faster than (33). As all the derivatives dEt"/dr 
at T=0 vanish in the limit N--KO and the functions К (O.c^fN)) have 
finite limit too, R (% , &•*)-1 imRA'( % , T , A -1) must be independent ofT. 
Similar steps can be taken to prove the claim made in Section 3.7. 

In thiB case the roles of fand с ere reversed and we must use (4) in­
stead of (2) and (27) instead of (10). At Сд = 0. d «t,( p . c x) /dc. = Л. , 
ur^V^/de^-^-l)r^t and thus 

eH?M4,V! — , А/а?0<, ф-,)а*$,., 
etc Ъ-о "•"*>..* < 3 4 > 

which behaves for N--Mt? as (2/jj* ) ^ N Г . For finite limit we need 
again (i-\, q„fcl/N or fi/l, вв1/Н^",Д1. In both cases (34) vanishes 
as H-*ao . Higher derivatives are again vanishing even faster than 
(34) and therefore the limiting R(J£ ,/J) is independent of fixed c^. 

4.3 The case of general c/ 
Instead of (26), i.'hich means we take for the initial R£ that specifi­
ed by 2"=0,c*=0, we can build our procedure starting frun general c": 
с1_(М)=-2^И + cj =-2/M(l-y/d()(where y=c//2£ . Instead of (31) we get 

which is analogous to (19) and where X^IC •'I ' obey the relatione 
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and are therefore given through ?e(y) = (/r2% /<< )X ,?, (y)=(2 Х/«(')Л •' 

The functions z^(y), ^(y) have qualitatively the same behaviour as 
the function z e(y) in Section 3.6 (with the substitution y--^-y, cor­
responding to_ the fact that while f>0, Л о). For % -JO, (у-»-в&) we 
again h a v e ^ (c^,,£ )--;XZ (<p. 

5. GENERALISATIONS AND COMPARISON OF У AND ct-
The procedure described in detail for f and с can straightforwardly 
be generalised to any RG parameter c,' . Technical complications ra­
pidly increase, but one feature of the results persists: the higher 
the value of 1, the less powerful the procedure based on the corres­
ponding с • . So from both principal and practical points of view it 
is crucial to know the asymptotic behaviour of the coefficients r. . 
Although there are arguments [ 11], indicating that in QCD perturba­
tion expansions, when considered in fixed RS, are asymptotically fac-
torially divergent and sven of constant sign, they nay contain flaws 
CI] to be taken at the face value. Nevertheless, as stressed earlier, 
our procedure , when 7* is employed, works even for this situation. 
From all +he singularities discussed in [6] those associated with in­
frared renornalons are most likely to find their reflection also In 
our perturbation expansions. Fortunately, these singularities would 
lie in the 1/jC plane far from the origin, the first pole being ex­
pected [6] at l/£ =30 and therefore should not thwart our procedure. 

In previous Sections we demostrated close connection of our formu­
lae and the results of generalised Borel summation techniques. Speci­
fically we saw that the use of X corresponds to 1̂  = 1 in (32) while 
cj, is similar in effect to W = l/2 and generally c^ to V/ = l/i. But 
what about V>1? From the point of view of mathematics all Cj's are 
equally good, so could we not define a procedure, analogous to those 
of previous Sections, which would correspond to V>1 ? He can but it 
suffers a serious drawback. 
The whole philosophy of [1] and our paper is based on RG invariance. 

It is this invariance which generates for us from perturbation expan­
sions In one particular RS an infinite set of other series, associa­
ted with other RS. And it was precisely the existence of these series 
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which enabled us to construct our procedure. Without then we would be 
left with only the "initial" series, such as In (7) and the Borel sum 
would probably seen as the only plausible result. 
For series with r*=0, the formula (15) defines another divergent 

series, the degree of divergence of which is lowered by a factor k!, 
compared with that of the original series. One might then be tempted 
to repeat the whole procedure this time starting with (15). In such a 
way we could handle series up to (kl). Repeating it V-times, series 
up to (kl)" would lead to finite results, which, moreover, would be 
closely related to the generalised Borel sums [32] for V > 1. 

Although formally conceivable, this second and further steps lack 
the fundamental ingredient, namely some analogue of the EG invariance 
which indeed provides the only justification for the whole construc­
tion in Sections 3,4. 

6. THE EFFECTS OF c^O 
In the previous Sections we have asBumed}for technical reasons. c=0, 

although in realistic QCD the value of с=1.5-Я is nonnegligible. The 
complications due to c=0 would, however, otherwise obscure the essen­
ce of the exposition.In this Section we indicate the main steps in 
the derivation of the generalisation of formula (19) to the case c/0. 
Besides the obvious and harmless dependence of the coefficients гд on 
c, the only change therein lies in the fact th^t now also the f..noti­
ons Э>(/£,Г с.с) do depend on it. Their calculation had been done nu­
merically and the results for Z.-§ and 1, ̂ ,=0.1 and c=1.8 is displayed 
In the Figure, together with the curve corresponding to c=0. Clearly, 
the effect of cjfO is nonnegligible, but the -shapes remain qualitati­
vely the same as for c=0. Specifically it still holds that 
а/^(^,г',с)-»(1/(^Н)!)(1/^^!ог <ЧЬ,с fixed and l/£ --> 0 
b/ 3± ( X .Г*.о) -*CjfH for C?e ,c fixed and % -* 0 . 
The essential steps in the construction of our procedure for the ca­
se of the ^"-variable (i.e c.-0,i£2) are the same as in Section 3. 
1/ We start in some initial BS specified by Z* or equivalently the 
corresponding couplant CL^ as given in (3). We define T with respect 
to this Z° as ^ " = T - f e . The couplant a/t)= a (f ,£%, с) is then given 
as a solution of the equation *- _ 

Note that for given 04 , f the couplant is an analytical function of 
с in the neighbourhood of n--0. In the course of the derivation we use 
for instance, the fact that d«/dc=-C* 1п(Д/^ #) at c~0. The equation 
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(36) is for ĉ O transcendental and so Its solution must be found by 
numerical methods. 
2/ The coefficients r are now determined by a generalisation of (10) 

which suggest the general form of its solution 

where the coefficients oC (k,l,j) obey ,as the consequence of (37), 
the reccurence relatione ( oC (k,1,-1)SO) 
l**WW1$-lAU-lfi$i(lfc(iLSfi2:i) i tejU-£-1 (39) 

with the boundary condition cC (k,0, j)= Ve,-. 
3/ Combining now (36) with (38)and assuming Tr(N)=pCN we have 

*' . to 
Щ (I -JL)~4mX Л/mJa mwhTjTjfcWK z » ' «o) 

where 

4/ To prove that the above limit as N--9CO does indeed exist is com­
plicated by the nontrivial and implicit dependence of 5*"Л(£"(Н)) on 
N and ^ ( for c=0 we had simply f e ( f(N) ) = 1/(1+ 1/<<7,Г<Ю) )• One 
way how to proceed is to expand S T around c=0 and then to investiga­
te the Unit of each term in the Taylor expansion separately.The pro­
blem boils down to the proof that for fixed̂ e? all the derivatives 
d'^/dc»/ .1=1,2,. . . have finite limits as П-*Я> . 
5/ In the simplest case 1=1 we first prove by explicit evaluation of 
(41) that the limit 11m &J5, /dc=d.2e/dc at c=0 does exist and is a 
differentiable function of x°- Then we derive recurrence relatione 

They prove that also the derivatives of higher J£* do exist at c=0. 
Moreover, these relatione can be used to show that the total deriva­
tives with respect to с (taking into account also the dependence of<fl̂  
on с as err en in (3)) do obey ,at c=0, reccurence relations 

Igest the following relation at general с : 

eft* ' "'«-""WW"' ' -*-//-j (42) 
which for c=0 reduces to (21). It is easy to show that (42) is exao-
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tly what is needed to prove that the full sun (40) is Independent of 
Z'also in the case c^O! 
6/ To close the construction we should repeat, with appropriate modl-
ficatione, step 5 for all higher derivatives. This can be done but is 
tedious and will be omitted here. 

7. INTERPRETATION AND APPLICATIONS - AN OUTLINE 
In the previous Sections we have described an algorithm, showing how 
a Judicious use of the RG invariance can lead to finite, nontrivial 
results for series divergent when considered in fixed RS.These resul­
ts can, for the ^variable, be written in two alternative ways 

щФ^£у*&«)М%«)) -tw^/xtfc), ( 4 3 ) 
where "tTN)= 2"*^. Provided the coefficients л diverge at most li­
ke k! this series has nonzero radius of convergence r*, inside which 
RCjC ,4 ) can be approached order by order by making use in (43) of 
conventional perturbation calculations which /lupply the coefficients 
Гд (£*). To a finite order the sum (43) depends, besides £ , also on 
the choice off 0, exactly in the same way as in conventional approach 
which ,as we know, corresponds to X=0. We face now three questions. 
The first concerns the meaning of the ")L -dependence in eq.(43). He 

consider it a manifestation of the inherent ambiguity in the separa­
tion of the full theory into its "perturbative" and "nonp' turbatlve" 
parts.Accoding to our understanding this ambiguity oaxmot be resol­
ved within the perturbatLon theory Itself. In the forthcoming paper 
[12] we shall give a number of arguments in favor of this conjecture 
employing, among other facts, the triviality of the full H,<f theory 
and draw analogy between the role of our parameter j£ and Л from (3). 
Secondly, if the perturbation theory should have any predictive po­

wer, then there must be a unique value of JL - to be determined to­
gether with Л from comparison with data - describing with reasonable 
accuracy all the physical quantities of "perturbative" nature. This 
last notion is, however, only very loosely defined concept without gi­
ving first the formal expressions (1) some good mathematical and phy­
sical sense, which is Just what we are trying to do. Even without fi­
xing the value of % we can use our formula (43) to derive mathemati­
cally well-defined, % - independent relatione between any pair of phy­
sical quantities R.,,Rt 

where the coefficients vj* (RS invariants, formed from r. , j£k ) are 
different from those we would obtain by formal manipulations with (1), 
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We consider relatione like (44) as basic reeulte of perturbation the­
ory. Also this point is thoroughly covered in [12]. 
Third, in practical situations (43) oust always be truncated to low 

order and therefore we must aleo choose carefully, as in conventional 
framework, the "optimal" S*. Recall that the coefficients rK 

are in fact functions of the difference 7T-t, t=bln(Q//\ ), and the 
laat term above is ^ and thus also в-independent. For fixed к and Q 
going to infinity the first term dominates and requires Л\ =Я£в, ЗС-1, 
to avoid the large logarithms. This is Hhat is done in the conventio­
nal framework , where the only problem веете to be the question what 
exactly 1С should be. However, it is aleo the "constant" terms х^Ы'^) 
usually neglected,which are factorially divergent! It ie these terms, 
which then require the introduction of nonzero "jL in the relation (13)-
By choosing & =bln(Q//l ), as usually, and assuming ЯГ > 0, we there­
fore do not in the least violate the spirit of the EG improved per­
turbation theory, but merely take into account also the presence of 
the constant terms, which are usually disregarded due to their small 
valuta for ]£•!. If C" is very big, due to big Q, and X modest, It 
takes a large N before £*(N) differs In any significant way from X" 
and thus for email N the sum X^ г л( *-(N) )d**' (tfH)) shall be prac­
tically the same as in fixed BS={J*}. 
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Бурдик Ч., Хила И. Е2-87-325 
О смысле рядов теории возмущений в квантовой теории поля 

Теория возмущений в КТЛ переопределяется таким образом, который позволя­
ет ее применение даже в случае, когда ряды теории возмущений в фиксирован­
ной схеме перенормировок расходятся. Результаты выражаются в виде сходящих­
ся /при определенных условиях/ рядов в степенях свободного параметра х , 
характеризующего использованную конструкцию. Приводятся аргументы в пользу 
того, что эта неоднозначность связана с неоднозначностью расщепления полной 
теории на ее пертурбативные и непертурбативные части. Показана тесная связь 
полученных результатов с процедурой суммации по Борелю и определено их 
отношение к рядам обычной теории возмущений в постоянной схеме перенорми­
ровок. 
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On the Meaning of Perturbation Expansions In 
Quantum Field Theory 

We reformulate perturbation expansions in renorma!ised quantum field 
theories in a way that allows straightforward handling of situations when 
in the conventional approach (i.e. in fixed renormalisatIon scheme) these 
expansions are divergent. In our approach the results of perturbation cal­
culations of physical quantities appear in the form of {under certain cir­
cumstances) convergent expansions In powers of a free parameter x> charac­
terising the procedure Involved, This inherent ambiguity of perturbative 
calculations Is conjectured to be an expression of the underlaying ambigui­
ty In the separation of the full theory Into its perturbative and nonper-
turbative parts. The close connection of our results with the Borel summa­
tion technique Is demonstrated and their relation to conventional perturba­
tion expansions In fixed renormalisatIon scheme !s clarified. 

The Investigation has been performed at the Laboratory of Theoretical 
Physics, JINR, 
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