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1. INTRODUCTION

In this paper we construct a procedure how to get finite, nontrivial
results for physical quantities which within the conventional perturba-
tion theory in fixed renormalisation scheme (RS) are given by divergent
expansionse in appropriate coupling constant.

The method is based on the idea of Stevenson (1], who showed how the
renormalisation group (RG) invariance of the theory can - under certain
circumstances- lead to finite results even for highly divergent series.
Contrary to him and other authors [2] we, however, do not think that
this invariance, when applied to divergent series, implies a unique sum
if such a sum can be defined at all. The role played by the renormali-
sation procedure in the construction of nontrivial quantum field theo-
riee [3] shows definitely that the renormalisation procedure cannot be
regarded as purely perturbative in nature. It binds intimately together
all aspects of the full theory and therefore ite separation into ‘“per-
turbative” and "nonperturbative” parts is bound to be ambiguous.

The paper is organised as follows. In the next Section the nature of
the problem is recalled, necessary notation introduced and the main re-
sults of papers [1,2] briefly reviewed. The importance of the RG inva-
riance for the attempts to sum perturbation expansions is discussed in
Section 3, where also the main ingredients of our method are formulated
and 1its close connection with the Borel summation technique [4] demon-
strated. The implementation of this method by means of higher order RG
parameters is covered in Section 4, followed in Section 5 by the compa-
rison of their reuspective merita. In Section & the complications conne-
cted with the nonzero value of the coefficient ¢ in eq.(2) below are
sketched and numerical results presented.The relation of our results to
conventional perturbation theory in fixed RS is clarified and the in-
terpretation of the fundamental ambiguity in our procedure outlined in
Section 7.

2, THE NATURE OF THE PROBLEM
In renormalised quantum fisld theory, such as QCD or QED, the physi-
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cal quantities are conventionally expressed as perturbative expansions
in powers of the renormalised couplant & {(we adopt notation of [5]).
This couplant dependa in the massless caee on a set of dimensionless pe-~
ramaters c; and a aingle dimensionfull scale parameter /49. introduced
in the process of renormalisation. In the following we diescuss in deta-
11 the case of massless QCD with ny flavours of quarks.

For physical quantities each set of parametere ,chi defines certain
RS ( for Green functions additional parameters are needed for a unique
specification of a given RS ). Let us consider in such a fixed RS per-
turbation expaneion of some physical quantity R, depending for simpli-
city on a esingle external varliable Q, in the form

@
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where the couplant ¢2/; ¢, Cy) obeys the equation
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We concentrate on the case d=1, for generalisation to df1 gsee Section
3.10. In massless QCD the coefficiente b,c are fixed once the number of
quark flavours is given: b=(33-2ns}/6, ¢=(153-19n;)/(66-4ns). The arbi-
trariness in the choice of the couplant ¢a42512) is then a direct con-
sequence of the freedom in the choice of (Jc and ci,igz.

Within the class of "finite"” RS (i.e. those in which all but finite
number of c; s are zero and in fact in any RS in which the r.h.s. of
(2) is well-defined convergent serieas} the equation (2) can be integra-
ted with some consistent boundary condition like [5]

Qs
=4b % =L ca (L
T=éb'y a_*t‘ﬁ- Zica +,/('¢55"/ *;%ICT) dx, (3)

where B(x)=1+cx+qu‘+c,x1+ ..... The dimensionfull parameter /1 appearing
in (3) specifies unambiguously which of the aoclutions to (2) we have in
mind. Conventional N-th order perturbation expansion for the guantity R
is usually defined by truncating (1) and (2) to the same order [6].This
is, however, a rather arbitrary step. From conceptual point of view it
would certainly be better to define once and for all orders of (1) our
expansion parameter ca/t;ry) taking it from the class of the well-defi-
ned “finite” RS and then to investigate the convergence of expansions
like in (1), which is what we are really interested in. Unfortunately,
there are numerous indicatione, reanalysed recently in [1], that the

perturbation expansions in such a fixed RS are highly divergent. The

next best choice is to allow for the variation of the RS, but in such a
way that the corrssponding couplant has a well-defined limit for N-a2@.
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There is little sense in complicating the situation by coneidering the
expansion (1) in such RS where the expansion parameter itmelf jis ill--
defined in the limit N-3@> . Thie attitude hae originally been sugges-
ted in {7] and we stick to it in this paper too.

Although in some sense the parameter 2~ plays an exceptional role as
it 1s conmected with the regularisation procedure, mathematically all
the parameters 2’,c£ are on the same footing. We can for instance wri-
te down the analogue of eq.(2), looking thie time for the derivative of

the couplant Hith respect to ci [5]

da C't'. =
: —/d[} /g/a)f[ %E:yj (4

The pnrameters z. »Cy can, within their definition region (i.e. so long
as the couplant stays positive number ) be chosen at will, but the RG
invariance binds together the behaviour of the couplant @7 as a func-
tion of these variables with that of the coefficients rl‘[5]

2
l,/Z')-Z'-P., N G/z-)‘g,*'l'c*/t,—q)'?k‘ (5}
where all the f% are RS invariants, depending merely on the external
momentum Q. The relations (5) express the formal consistency of pertur-
bative expansions in various RS, in the sense that the N-th order par-

4/-1

P4 /Z"(' zJN-l) 2 Lke)a M/Z’(') (6)

varies by anount proportional to a™! when we change the RS5,i.e., the

values of Z"'.c,;. %.N-l). Increasing the order N not only are further
terme added in (6), but in general also the couplant may change as more
of the coefficients c; enter the game. Exploiting all the available pa-
rameters c(,ifﬂ—l was essential for the Principal of Minimum Sensitivi-
ty [5] to work, but apart from this it has no epecial justification. We
shall on the contrary take the number of c;’s used fixed for all orders
and investigate the consequences of the RG invariance for each of the-

tial sunm

se parameters separately.

Changing the value of T or c, we get by means of (5) another series
corresponding to some other RS. Both the couplant and the coefficients
r4 will be different, but should the original series be convergent, so
would be the new one and moreover they would give the same result. This
is the implication of the RG invariance for convergent series. For them
the choice of a particular RS influences the resulte at each finite or-
der, but the relation (5) guarantees that the full sum (1) ies indepen-
dent of it. There is a number of wethods trying to resolve this ambigu-
ity at finite order [5,8,9) each of them assuming that there i& indeed
a unique meaning of the full sum in (1} and that the problem is merely
a question of how best and fast to approach it.
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In QCD, however, the expansiona in (1) are likely to be divergent 1ﬁ
any fixed RS [1,7]. In such circumstances, the question of the unique-
ness of the perturbation results caunot be answered prior to giving
these formal expressions some good meaning. In this case the RG invari-
ance gives us merely an infinite number of divergent series of the type
{1), each of them associated with one particular RS, connected by rela-
tione (5). These relations express now only the formal consistency - in
the sense mentloned above - of all these series, but do not by itself
help us in summing them.

For divergent series we interpret the requirement of RG invariance, be-
side the relations (5), as the condition, for the moment rather vaguely
defined, that all the RS should be treated on the same footing. In ot-
her words, when attempting to sum divergent series llke (1) we should
keep 1in mind that we are dealing not with one particular series, but
rather with the whole infinite set of them. Starting from some initial
series in RS =(2‘ﬂc:}, the RG invariance generates for us by means of
(5) the coefficients ry in any other RS:(znci} .They, together with the
new couplant given in (2),define another divergent series, which could
equally well serve as the initial one. The sum we are looking for shou-
1d not diascriminate one RS with respect to others. This is the most we
can get from RG invariance for divergent series.

In [1] Stevenson suggested a possible acenario of how to get finite
and nontrivial results for the sum of divergent series, exploiting the
above mentioned RG, restricted in his example to the subgroup associa-
ted with the change of the variable Z°. Within the claes of these "ze-
ro" echemes he iéacuseed a toy example of the series '

2 (—491’(! aolﬂ (1
Lm0
which can be considered as (1) in some initial RS .For the above eseri-

es his Principle of Minimum Senesitivity implies that for each finite
sun of the first N terme in (1) the "optimal” value of Z is not cons-
tant behaving at large N as T(N)=XN . X3D.278 and consequently

&t ¥z,
' Yt = | etp(~ Yo)
,ga %/"/Z'MQ /rf~y /__égz’ﬁz Aa (8)

is finite and closely related to the Borel sum of (7).

This example demonstratese that we can get a finite result for the 1i-
mit lim_ml;”(t’(N)) provided T 18 not fixed as N-#Qbut increases to in-
finity. The optimisation condition supplies just the right dependence
T(N) to yield the finits result. This conclusion has been generalised

m—pey
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in [2] to a wider class of series (7) and shown to depend on the asaum-
tion that the Borel transform of the series (1) has finite radius of
convergence r®. To get finite result in the case of series (7) we can,
however, take any value x!x, of the factor X in the relation Z(N)=XN.
In [2] the optimised result i.e. Z =), was shown to correspond to the
maximal poseible result of all the convergent limiting rrocedures (8).
Thie fact was regarded in [2] as a strong argument infavour of conside-
ring (8) as a "correct representation” of the perturbative part of the
physical guantity R(Q). We return to thie claim in the next Section.

3. THE METHOD:

3.1 General remarks.

The physical question we want to have answered is the following:are the
higher order terms in (1) really aoc overwhelmingly important ae indica-
ted by the divergence of these expansione in fixed RS, or do they in
some way compensate each other between different ordere, so that only a
few lowest orders are of practical interest? We feel that the mere di-
vergence of expansione (1) doee not imply the dominance of high orders
but to answer this question honestly we should from the beginning take
themn serlously.

Our aim is thus to construct a method that takes into account all or-
ders of perturbation expanmione, but yields finite results even in the
case when (1) is divergent in fixed RS. The basic idea has already been
mentioned in the previous Section. To make such a method of practical
use, we furthermore require that it
a/ works order by order, using conventional calculationa in fixed RS
b/ converges for N~»0p in the conventional sensae
c/ containe no analytical extrapolations of any kind (as those employ-

ed in Borel summation technique and ite variations)
d/ reepects RG invariance in the sense mentioned earlier

3.2. Baaic formulae

In this Section the resulte of ref.[1] are derived in a different mann-
er, which, contrary to the origlnal derivation in [1], is applicable to
completely arbitrary coefficlente ry(Z )} of (1) at some initial T=T"*

e 7Y . .

‘Z’;Z‘/rﬂa *Ye?) ; &, =alr?) .
and which makes transparent the close relation of the “sum” of (9)

to the corresponding Borel sum. For the moment we stay in the zero RS,
the case of c!fo ia subject of Sections 4 and 5. We furthermore assunme
c=0 in this Section. The technical complications connected with nonzero
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in [2] to a wider class of series (7} and shown to depend on the assum-
tion that the Borel transform of the series (1) has finite radius of
convergence r®. To get finite result in the case of series (7) we can,
however, take any value x!x. of the factor X in the relation T(N):,ZN.
In (2] the optimised result i.e. x:x. was shown to correspond to the
maximal poseible result of all the convergent limiting procedures (8).
This fact was regarded in [2] as a strong argument infavour of conside-
ring (8) as a “correct representation” of the perturbative part of the
physical quantity R(Q). We return to this claim in the next Section.

3. THE METHOD:

3.1 General remarks.

The physical question we want to have answered is the following:are the
higher order termes in (1) really so overwhelmingly important ae indica-
ted by the divergence of these expansions in fixed RS, or do they in
some way compensate each other between different orders, so that only a
few lowest orders are of practical interest? We feel that the mere di-
vergence of expansions (1) does not imply the dominance of high ordere
but to answer this question honestly we should from the beginning take

themn seriously.

Our aim is thus to construct a method that takes into account all or-
ders of perturbation expansions, but yields finite results even in the
case when (1) ie divergent in fixed RS. The basic idea hae already besn
mentioned in the previous Section. To make such a metnod of Dractical
use, we furthermore require that it
a/ worke order by order, using conventional calculations in fixed RS
b/ convergee for N-»@p in the conventional sense
¢/ contains no analytical extrapolations of any kind (as those employ-

ed in Borel esummation technique and its variations)
d/ respecte ARG invariance in the aenae mentioned earlier

3.2. Basic formulae

In this Section the results of ref.[1] are derived in a differen® mann-
er, which, contrary tc the criginal derivation in [1], ie applicable to
completely arbitrary coefficients r‘(T) of (1) at some initial Z=Z°*

“ s, .
Hlrd) a*te?) ; a, =alr?) .
)
and which makes transparent the close relation of the "sum" of (9)
to the corresponding Borel sum. For the moment we stay in the zero RS,
the case of cilo is subject of Sections 4 and 5. We furthermore assume
¢=0 in this Section. The technical complications comnnected with nonzero
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value of ¢ in realistic QCD are conelderable, but do not change the si-
tuation in any essential way (see Section 6). Defining now as the ini-

tial RS that corresponding to Zm=0, the RG invariance dictates the de-
pendence of the coefficients ry(7Z ) on 7 through relation (5) which can
be recaat into a form of reccurence differential equations

a4, ) )
%——rlék_, /7,'/ (10)

with solutions (x, (= 0))"'!‘.;(0))

hr- ety o l) < vy L),

From (10) we first form the N ~th partial sum

E/Z‘]=Z /)ﬂlf?t‘) ;: &/’}g/f} (1.1)

and then using the telation [10]

gﬂ)‘@://
2”/) ‘Z %z 4“’] (12)

We now investigate the class of limitting procedures, defined by spe-
cifying the N-dependence of T by means of two parameters

arrivec at

Ty =) it (13)
A~f
Aslo) //J](H
B )~ s K0)=4is_ 2= Ty (% ) )

where the tactors 05:‘“’ =N1/((N-8-1) 104" go to unity for fixed £
when N->0

and obtain

3.3 The case /@:1
For /3:1 and providad that the Borel transform of the iritial eseries
(9) at 7°=0 has a nonzero radius of convergence r®,we can set qi(ﬂ)=l
in (14) and thus get

() (1 )%
2x, 8+1)= Z _p,,o /;(/ (15)

This expression points inmediately to the close relation of our pro-
cedure to the Borel summation as 1t can eguivalently be rewrittcn as

@
2[}&,5%)- 0/&% %./,dﬂg’a (16)

which differs from the Borel sum of (9) at Z°=0 merely by the finite
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upper integration bound ( at ZJEO.GV?9=GD and thus the weight factor
exp(-u/dﬂ%f)) equals unity). The intimate connection of (15) with the
Borel sum, so immediate above is in the case of general ry, far from
obvious if one follows the derivation in [1,2]. We stress that the
factor multiplying rg(0) in (15) 1e a nontrivial limit of the ZEF of
contributions coming from increasing number of terms re(ZIN) )ox ﬁhﬁﬁ)
as N and consequently Z°(N) go to infinity.

The series (15) provides therefore well-defined representation of
R(E, ﬂ:l) for 1/x £ r®. For 1/Z beyond r®(15) is of no direct use,
but in certair cases (14) can still converge 1f we carefully take in-
to account the factors ;Q‘(N). This had been demonstrated in (2] for

the toy example q‘{0)=(-lfk!. where r®=1, but (14} converges up to
1/10 23.55. A word of caution is, however, in order here. Although in
the above example we can g0 beyond r® , this possibility is of little
practical use. We obtained finite limit (14) because we knew exactly
all the coefficlents ry. In practice we can derive the asymptotic
behaviour of r as k-2® and calculate explicitly a few of the lo-
weat ones. This would be sufficient to determine r° but would not a-
llow us to go beyond it. There the eventual finite limit of (14) is a
conseguence of subtle cancellations between large numbers of opposite
signe, wihfch necessitate exact knowledge of all r, . Were such an in-
formation available, as in the toy example of [1,2], we could evalua-
te R(?L,/?fl) beyond r® also through analytical continuation from the
region 1/;.(_r'. Both procedures require exsctly the same kind of in-
formation, but thé latter allows us to calculate R(;. =1) even fur-
ther, up to 1/X =@ where Wwe recover the Borel sum (if it exlsts)!
The point x:p' rlays no exceptional role, contrary to claima in [2].

3.4 General

If the original series, given by r‘(O), has r®» 0, the formula (14)
uith'[3=1 givee nontrivial, finite result (15). What happens if we
tak 1 ? To find t, t. 14}, tti =1

ae/jf o find out, we z’ezz e (14), metting p/(‘(N)

Upp)- A, [ 5 4 atre.

For ﬁ)l and N-->@0 the upper integration bound (N"A)/x goes to zero
and as the integrand ie finite within the nonzero r°>0 the 1limit
necessarily vanishes. For ﬁ( 1 we have two possibilities:

a/ the series (15) has finite r% 0. Then the upper integration limit
goes to 1ntin1ﬁy crossing eventually r® and causing divergence
of (17). The same happens if r°=00 but liimR(x,/A:l):m,

o
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b/ r°za and li#R( X, /5:1)}4(» as for instance for the series of the
type (-1) (qk’;' with q< 1., For such serles the difference

/l (o /

/ &L, Z
Loy é

of (17) and the Borel sum behaves in the limit N-»a0 as followus.

The second term evidently vanishes and the first one approaches the

Y e T =

This vanishes in the limit N--302 for /3>q and for /; =q,241 and os-
cillates with increasing amplitude for ﬂu(q and =q,2>1. Thus we get
in the limit N-2@ the Borel sum if q { 441 as well as for [-‘a-q z<1.
For /3<q or /5 =q,z »1 the sequence R (%,ﬂ) diverges. The Borel sum
ig obtained also for ﬂ 1 in the limit ¥ - 0.

serles

3.5 Conditions for finite, nontrivial limit of R¥( %,

The above discussion suggests & somewhat special role of ﬂ:l and the
importance of the finite r°. For eeries with r°=0.ld=1 does not yield
finite vresults. But could we not choose ﬂ)l in this case and still
get what we want: finite, nontrivial 1limit of the sequence RN(x W<BXi
Unfortunately, we cannot.. To investigate convergence properties of
this sequence we first write down the expression for the difference
ARY ¥z ()R (Z (8-1)) using Q =‘r~- (Trona zan

N_ A
al'=Br S [r/zw)-r/m W leis 5 retrpBta e dfeses
The second and third terms in (73) can be reduced by means of (2) and
(10) so that we obtain in the limit N-»>@®

AL =G-8, + (19 G, -

We shall discuss two distinct posesibllitier for the sequence R” to

converge *o a finite limit:

i/ QN is a smooth function of N and does not change sign with N ( in
the asymptotic region N-»@). Then (18) approximates well the de-
rivative dR™ /dN and the finite limit requires this derivative to
vanish for N-3@ faster than 1/N. For power behaviour Q « N
1mp11eeﬁl. except in the case ,6-1, when it sufficea r;o This
fact shall be crucial in the following.

i1/ Q, does change sign with N-2&> . Then the criterion with the de-
rivative cannct be used, butb 0 is still sufficient, because

now the succer ive terms conspire in such a manner that finits li-

o e et s A =i T oy

K}



SR

mit 11,31_'5 (T(N)) results, as exemplified by the serieaZ( 1)‘/'1:"'
which has the finite limit as N-2@ for any &.>0.
To determine when we get nontrivial results we calculate the deriva-

tive d.&"/g.'f/s - g %{3’@’]:— NG, -

For finite limit of B¥( %, /3 ), depending nontrivially on X . q, wust
not change sign and must behave as 1/N for N-»a. Then, however, only
/3:1 is acceptable. So only ﬂ:l can lead to finite result depending
nontrivially on¥.

For series with r®=0, A >1 ie clearly necessary to guarantee finite
results.These, however, can not depend on Z and must in fact be equal
to zerc as RV(L:=® +f2)=0 for each N and R( %, 8) 1e continuous func-
tion at l/x =0. For/!u>1 we therefore get either zero, or oscil-
lating behaviour of RY as N-voo.

Sumnmarieing, we see that =1 is the largest value otﬂ leading to
finite, nontrivial results for R (X ,6) Forﬂ>1 only zero,an, or
oscillating behaviour of RY 1s poesible, while for ﬁ<1 either w, 05-
cillating behaviour or finite, X ~independent result, equal to the Bo-
rel eum comes out.

3.6 The case of general z°

The derivation of our basic result i.e. the formula (15) is extremely
simple due to the choice Z‘=0. If the initial % 0, we can, however,
proceed quite analogously with only minor modifications. Defining now
T= T +T° so that @(T )=1/(Fu 2" and repeating all previoua steps
setting this time F:ﬁﬂ we ¢et

2l peipd>biin 2 00950029 -2 49 F 050,
d

%@ﬁ=ﬁg&ﬁ=§; z‘équé:”/ﬁ] /f) (20)

Z%{Zim/éﬂ);/l;ﬁ' (21)

Evaluating explicitly Z (1-sxp(-T7Z })/2° from (20) we find

Zp(%27) = /)6‘/4’( /7

where Bg(y)=(1l-exp(-¥))}/¥ and y=2% Obviously, 2 (X, 2‘°) reduces
to (1/x)H/(L+1)t  for fixed £ and 2°-3¢ as well as for Tfi-
xed and, x -32.For Z”>D and X-90 (i.e. y-300 only the first term in

Zo(y) contributes and we get %(0,2’) 2(179* )("‘--cz""'J recovering, as

where

obey




we must, the original series (9) in fixed RS={ Z°}. The shape of the
functions ,;( £.7% for _,(:0, 1 and a typical value &, =0.11s displayed
in the Figure.If (15),corresponding to 2°z0,has r® »0, then series (7g)
4 3 . will have the same radius cf conver-
gence. The reason 1s that for fixed X
and Z°the behaviour of%(,‘! 2 as

a function of,A! is given by the ex-
pression

éx P
o 252 malitveplE)

—— —c=ft which is an immediate consequence of
(21) and the analyticity of the fun-
tion 2,(y). guaranteeing the Taylor

*. expansion around ?:0.

47 42 9 v 485 46 @7

We now come to the important point of the potential dependence of
our results {19) on‘zo. We began Section 3 with the rather 1loosely
f.rmulated requirement that our procedure must respect RG invariance.
He can now be more specific: our results (19) must not depend on the
choice of the initial RS, specified in this came by T°! That thie is
indeed the case can be verified quite straightforwardly by differen-
tizving (19) with respect to z° , employing in the process (21) and
the fact that according to (10) dql(zﬁ)/dzp =kr‘4 (2°). We proceed in
fact very much in the same way as in the conventional framework where
the knowledge of (10) and (2) leads to the formal independence of (g)
of £°.  For /X £ r® our expansions are, on the other hand, conver-
gent series so that all mathematical cperations with them make good
sense and the results, i.e. (19), are really independent of Z°!

g7

o]

3.7 The infiuence of higher RG pa-ametaers

So far we have varied 7~ with N according to (13) but stayed in the
agerc schemes, where all c;=0. Allowing these parampeters .o acsume ar-
bitrary, but fixed values complicates the derivation, but doesn’t in-
fluence the final result (19). Taking into account merely c,,eq. (10)
is replaced by

T,
ZhL) 44, to0)- (05 4utir6) "
and also the couplant has a bit more complicated form. Nevertheless,
as we shall demonstrate in Section 4.3 the final result for R(;,I)
ies independent of 4. The same holds for all c,.i22.
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3.8 Application to convergent series. »

Pa & _dv,
Let us take Z%0 and consider eimple convergent seriea ‘.’(-1) /) A@L
which sume to &,exp(-#) and thus for ds--#00 (i.e. for 2":0) yields
conventional result equal to zero.From {14-15)} we get for this meries

go \
Uns~)-2. ) T =5 TF) 1 AeAh)=o

which vanishes for Z=0 (and & =@ ae any series (15) with r® > 0).
This is an example of a general situation: conventional results are
for convergent series recovered only for /5(1 or for [3:1, but ¥-» 0.
For /ﬁ:l and X 70 the procedure embodied in (14-15) is therefore not
regular. For divergent series there is no reason to reject these va-
lues and all pairs ,1_',,6 yielding finite results are in principle
equally acceptable.

The fact that our procedure is not regular for the values of X 7@
which are required to get finite results in the case of divergent se-
ries is nothing absurd, but indicates that it makee little sense to
try to split divergent series into “converdgent" and “"divergent” parts
Adding the conventional sum 3f a convergent series to a divergent one
"mummed” by means of (15) differs from the result of applying (15) to
the formal sum of these series. Similarly for other operations.

‘3.8 The case of nonoscillatig seriea

Traditionally the oscillating character of the divergent series has
been considered vital for obtaining finite generalised sums. For in-
stance the series with coefficients r4 (0)=k! has in the conventional
aense an improper limit @ for any 4,. Not so according to (15). The
basic reason for this unexpected situation ies again the fact that we
deal not with one particular series of the mentioned type, but rather
with the whole infinite set of them. The formula (15) yields finite
results - R( X, {)=-1n(1-1/X )- even in the mentioned case.

Contrary +o the oscillating series we oannot, however, go beyond
the point 1/% =1 (our result becomea complex and thus looses physical
sense there). For 1/ £ 1, on the other hand, our result -ln(1-1/X)
is no less sensible than the one for the oscillating mseries (7) 1i.e.
In(1+1/X ). The point 1/X =1 corresponds to the conventional result.

3.10 Generalimaticn to the case df1
For df1 the invariants JQ-appeuring in (5) acquire simple dependence
on d [6). If d is a natural number (1) can be rewritten as

L4 L Ay
2;; Al/?9624hﬁT?r= f;;«qgaﬂcz /7)), 29)
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where r ()= ‘”_d_(z-). We can then apply (15) and get

2/,:,4::[)"2_; 73] % /) (24)

We atress that for us (23) is a definition of the formal expression
(1) as our procedure does not commute with multiplication of the se-
ries. Should we first apply (15) to (1) with d=1 and then multiply
the result with lime = ¢ Z(N))=D we would get zero instead of (24).
4400

4. The nethod : cg

4.1 Basic formulae

In this Section we show that beside T also any other RG parameters c;
can serve to define a procedure similar to that of the previous Sec-
tion. We describe in some detail the modifications connected with the
use of cg. For cg <0 the couplant & (t’,cl_) is defined as a solution
of the equation ( asauming as above c¢=0)

{ (’,a—a /
- —— _L
(3 & thd ! (25)

where 4= 2" a The introduction of Cq complicates the dependence of
the couplant & (7", CA ) on ‘T but as we Bhall hold 2~ fixed and vary cg
we assume for the moment Z =0 and only later in Section 4.3 do show
that the results are in fact independent of this assumption.

For T=0 the solution of (25} is again simple : .(0.c)=e// ¢,
where 040,84 is the solution of the eguation

P (2¢)

For T =0 we also have simply: d 4(0,c,)/dg =h, a(0,c, ¢ )i where r:’-l/qu
In [1,2) the asymptotic freedom of QCD has been regarded as crucial
property for the corstruction of the finite limit as N-»>@ . From the
point of view of mathematics involved, the only essential condition
for the procedure to work is, however, that as N-9é the couplant va-
nishes sufficiently fast. In the case of cy the same situation arises
1f we send Cy-~C0 . In the following all the stepa of the preceding
Section will be atraightforwardly reformulated for Cq.

The RG invariance with respect to cg deteraines the dependence of
the coefficients ﬁg(cl)fi‘(r=0.cL) on ¢, through the relations

dl.fl/'____/z- 14 A1.218) (21

analogous to (10). They have the soclutions

Sun(4) = Z gj——;:ﬁm@.}f/ﬂgjly

(
G (0) <3 CLAL 24, (0y4) 7.




where (2k-1)!!=({2k~1)}(2k-3)...1= 2‘fﬁk+1/2)ﬂﬁ Forming the N-th par-
tial sum, aeparately for odd and even orders, we get (3v-xwu4)

Aoye f0) /'f’
Brala) = Z A ;+4

2y to) e E)
Rem (t') Z [—J—W % /fﬁ)/”';)/

closely reminiscent of (12). Assuming now

Q(M]r—,‘t’éM)’d (28)
we obtair.
/?1 1)/ o 1:8Y77*
2 / A) }‘O ff)/ /_ WM o (M} (29)
.S Apb) o ¢, EZVTH
L, [,1},5 E 7(;‘—5[ .(”'M )ogﬂw) (30)
where as(U) are the sape as in (14). Combining (29-30) we arrive at

2 p) - j«,ﬂ(/!) - Z;};ﬁ'—ﬁ)/,;l,;,/’f‘jl oy

which for /3-1 yields finallv

2ns-1)= Z, Hniis)”

provided the r.h.s. of it converzes The only essentisldifference of
(31) from (15) liee in the presence of mere [‘((j+1)/2+1) compared to
f3(3+2) there. The above defined procedure based on the use of ¢, and

enbodied in 31) is again closely ( although not as much as for 7~ )
related to the generalised Borel sum of the series .- .'/ 2 “t

Flz)= [é_%/ L)ty B(x)= ﬁ’v/w)”) (32)

for V=1s2. Due to lower value of Y the use of cy i8 lees
powerful and leads to finite resulte only for series behaving at most
like (k/2)!. For such seriees, however, both Z~and c, -based procedures
are equally good, although they lead in general to different results.

As far as the conditions for finite, nontrivial results of the Jli-
miting procedure specified by (28) are concerned the situation turns
out to be the samwe as for 2 : =1 i8 the only value allowing nontri-
vial, Y -dependent results for R(,‘(. ). The arguments parallel clo-
sely those of Section 3.4 and we shall nct repeatl them here.
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4,2 The independence of R(X , ) of the fixed Z°

For technical reasons we took at the beginning of this Section 7Z°=0.
To prove that the results (31) do not in fact depend on the value of
fixed T~ , we first calculate the derivative

X p7) o 5 4
EAE T 2 i) @ aay).
Using (2) and (22) this can be written as

)@, - ﬁ'q,"')[ Na §, ,cﬁ-,)m%, fﬁ-l)ﬂf@«]
For Z =0 and c,

%y negative we have -c, Q & N4'(°(/I’i)N’ -t and thus

& r-%
dﬂd@ T)?t~or#_-;—7qN 4‘)’/’/“5’“’7' (33)

1t A 1 then Q must behave as 1/N to vyield finite x -dependent re-
sults and so in this case dr¥ (o, cp ) /AN ~% as N- -)m . Repeating the
above procedure to calculate second and higher derivatives we find
that they vanish even faster than (33). As all the derivatives dRN/dr
at 7=0 vanish in the limit N-20 and the functions R (0, Cy, (N)) have
finite limit too, R(X Aeh= uma”(x T ./4=1) nuat be {ndependent ot T,
Similar steps can be taken to prove the claim made in Section 3.7.
In this case the rolesof T and c, ere reversed and we must use (4) in-

stead of (2) and (27) instead of (10). At c,=0, dq,(z-,c,_)/dc‘_=a:‘,
dr‘_(l",.fbldc-—(k r, and thus
A /m), ) . Na' G, tfr-1)a’a,,

e, 4 o A <400 (34)
which behaves for N-ao as (2/;4 )QN N’-:/d . For finite limit we need
again AB=1, Q21/N or B#1, @=1/NF J51. In both cases (34) vanishes
as N-»a0 . Higher derivatives are again vanimhing even faster than
(34) and therefore the limiting R(X ,/d) is independent of fixed c,.

4,3 The case of general c:

Instead of (28), which means we take for the initial RE that specifi-
ed by T=0, c‘ -0, we can bulld our procedure starting from general c'
e (M)=-2XH + ¢ =-2X H(l v/M), where y=c/2) . Instead of (31) we get

l/ﬂ;,d-) z”(’)—?/’ ) (35)

which is analogous to (19} and where j(x €, ) obey the relations

&?}qug_qj. $/4:)2,, /2,49
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and are therefore given through Z,(y)=(V2% /et >Z V2, (y)=(2 7/:(‘)»%-'

Z S i) L m"'; ) yid ,,,
Zu /;K,, rrli)/'r]d"d 2(

The functions z,(y), z,(y) have qualitatively the same behaviour as
the function z,(y) in Section 3.6 (with the substitution y-2» -y, cor-
responding to the fact that while 'Z‘) 9, cL°.< (9 For X -30,(y-9-@®) we

again have,\z (e’ x)—?d'ﬁ(‘c ).

5. GENERALISATIONS AND COMPARISON OF T~ AHD cy

The procedure described in detail for 2~ and ¢, can straightforwardly
be generalised to any RG parameter c; . Technical complications ra-
pidly increase, but one feature of the results pereists: the higher
the value of i, the less powerful the procedure based on the corres-
ponding cyp - So from both principal and practical pointe of view it
is cruclal to know the asymptotic behaviour of the coefficiente r‘ -

Although there are arguments [11], indicating that in QCD perturba-
tion expansions, when considered in fixed RS, are asynbtotically fac-
torially divergent and zven of constant sign, they may contain flaws
{1] to be taken at the face value. Nevertheless, as stressed earlier,
our procedure , when Z 1is employed, worke even for this situation.
From all +he singularities discussed in [6] those associated with in-
frared renormalons are poat likely to find their reflection alsoc in
our perturbation expansions. Fortunately, these singularities would
lie in the 1/X ©plane far from the origin, the first pole being ex-
pected (6] at 1/% 230 and therefore should not thwart our procedure.

In previous Sections we demoatrated close connection of our formu-
lae and the results of generalised Borel summation techniques. Speci-
fically we aaw that the use of T corresponds to ¥=1 in (32) while
ce 1s similar in effect to V=1/2 and generally c; to V=1/1. But
what about Y »1?7 From the point of view of mathematics all cy’s are
equally good, 80 could we not define a procedure, analogous to those
of previous Sectiona, which would correspond to ¥>1 7 We can but it
suffers a sericus drawback.

The whole philoesophy of (1] and our paper is based on RG invariance.
It is this invariance which generates for us from perturbation expan-
sions in one particular RS an infinite set of other series, associa-
ted with other RS. And it was precisely the existence of these series

1§
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which enabled us to construct our procedure. Without them we would be
left with only the "initial" series, such as in (7) and the Borel sum
would probably seem ae the only plauasible result.

For series with r®=0, the formula (15) defines another divergent
serieg, the degree of divergence of which is lowered by a factor k!,
compared with that of the original series. One might then be tempted
to repeat the whole procedure thie time starting with (15}. In such a
way We could handle series up to (k!). Repeating it V-times, series
up to (k!)v would lead to finite resulte, which, moreover, would be
closely related to the generalised Borel suma [32] for V¥ >1.

Although formally conceivable, this second and further sters lack
the fundamental ingredient, namely some analogue of the RG invariance
which indeed provides the only Justification for the whole construc-
tion in Sections 3,4.

6. THE EFFECTS OF cfo

In the previous Sections we have assumed, for technical reasons, c=0,
although in realistic QCD the value of c=1.5-~2 is nonnegligible. The
complications due to c=0 would, however, otherwise obscure the essen-
ce of the exposition.In this Section we indicate the main steps in
the derivation of the generalisation of formula (19) to the case cfD.
Besides the obvious and harmlese dependence of the coefficients rg on
c, the only change therein lies in the fact the¢ now also the { .ncti-
ons E (X .Z%.c) do depend on it. Their csiculation had been done nu-
merically and the results for A{'O and 1, 4,=0.1 and c=1.8 is displayed
in the Figure, together with the curve corresponding to c¢=0. Clearly,
the effect of cf0 is nonnegligible, but the shapes remain gqualitati-
vely the same as for c=0. Specifically it still holds that
a/ (X, T%c) =2 (1/(L+1) ) (1/Y #'tor @ .c fixed and /9 -20
b/ th (Z.7%¢) _,%ffl for &, ,c fixed and X -> 0.
The eesential steps in the construction of our procedure for the ca-
se of the T -variable (i.e. ci=0,1§2) are the same as in Section 3.
1/ We start in some initial RS specified by Z*® or equivalently the
curreeponding couplant €, as given In (3). We define T with respect
to this T° as T =7-7°. The couplant art)=A(T ,&,c) is then given
as a solution of the equation

Tm Lt s ch 2102 ],
a o Tl 1+Ca) (36)

Note that for given &y ,T the couplant is an analytical function of
¢ in the neighbourhood of rn=0. In the course of the derivation we use
for instance, the fact that d@/dc=- Q In(R/g,) at c=0. The equation
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(36) is for cf0 transcendental and so its solution must be found by

numerical methods.
2/ The coefficlents r are now determined by a generallsation of (10Q)

A (Te - —
CRLEC)h by, 5+ ), /50)
which suggest the general form of its solution

4 &€
ﬁk /z_-l-d -%o 3 (%o c},;-(-ﬁz;’)dm(/d)l (38)
vwhere the coefficients ¢ (k,1,j) obey ,as the consequence of (37),
the reccurence relations ( ¢ (k,1,-1)%0)
(erellyees, 1)= éoé/l-{ﬂ,})'/{-ok(l-gt,ff) i O4ged-t-1 (39
with the boundary condition & (k,0,))= o5
3/ Combining now (36) with (38)and assuming i?(N):)CN we have

. K4 @
Rl 8+1)=fin 2 MER)R TR@I=2 450507 w0

where
© » 4/ o . 0__ L / 7
N A L L L

4/ To prove that the above limit as N-»@o does indeed exist im com-
plicated by the nontrivial and implicit dependence of ’E'd( 2 (N)) on
N and &, ( for c=0 we had simply T @(TI(N))=1/(1+ 1/( AT (N)) ). One
way how to proceed is to expand a" around c¢=0 and then to investiga-
te the limit of each term in the Taylor expansion separately.The pro-
blem boils down tu the proof that for fixed # all the derivatives
a*&Yact] 1=1,2,... have finite limits as N-2@0 .

5/ In the simplest case 1=] we firmt prove by explicit evaluation of
(41) that the limit lim d. & '/deTd.B,/dc at c=0 does exist and is a
differentiable function of 7°. Then we derive recurrence relations

" . 92, (222 .
Z;Eb 22£?‘é?;glgz;a=1€f{4r-——2ﬁ;£—¢£2:;-4&y%&0§29£5§k.%&!@%ﬁ*§22

They prove that alsc the derivatives of highez-jfe do exist at c=0.
Moreover, these relations can be used to show that the total deriva-
tives with respect to c (taking into account also the dependence ofcl,
on ¢ as gven in (3)) do obey ,at c=0, reccurence relations

g aZxriel
ace 4. e -—@1)5%[&6];:}'0),«0%@;?]{” .
They suggest the following relation at general c :

a2y (x%c] ]
!,,z.., - ')[:‘53,/1’, 27!’)“‘5@’#) (42)
which fbr c=0 reduces to (21). It ie easy to show that (42) is exac-

(37)
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tly what is needed to prove that the full sum (40) is independent of
Z%also in the case cfD!

6/ To close the construction we should repeat, with appropriate modi-
fications, step 5 for all higher derivatives. This can be done but is
tedious and will be omitted here.

7. INTERPRETATION AND APPLICATIONS - AN OUTLINE

In the previous Sections we have described an algorithm, showing how
a Judicious use of the RG invariance can lead to finite, nontrivial
results for series divergent when coneidered in fixed RS.These resul-
ts can, for the Tvariable, be written in two alternative ways

1 ;i? -
’ 1]

X p-9= 443.‘%—-,4{7{”))07’[")) = #22 '?4/'9 z7e)s (43)
where ZIN)= 2‘4;‘[6. Provided the coefficients r, diverge at most 1i-
ke k! this series has nonzero radius of convergence r®, ineside which
R(x ,4) can be approached order by order by making use in (43) of
conventional perturbation calculationas which supply the coefficients
re {(z*). To a finite order the sum (43) depends, besides X , also on
the choice of 22, exactly in the same way as in conventional approach
which ,as we know, corresponds to X =0. We face now three questions.

The first concerns the meaning of the x -dependence in eq.(43). We
conaider it a manifestation of the inherent ambiguity in the separa-
tion of the full theory into ite "perturbative” and “"nonp- turbative"
parts.Accoding to our understanding this ambiguity oannot be resol-
ved within the perturbalion theory itself. In the forthcoming paper
{12] we shall give a number of arguments in favor of thias conjecture
employing, among other facts, the triviality of the full 190 theory
and draw analogy between the role of our parameter X and A trom (3).

Secondly, if the perturbation theory should have any predictive po-
wer, then there must be a unique value of ;Z - to be determined to-
gether with /1 from comparison with data - describing with reasonable
accuracy all the physical quantities of "perturbative” nature. This
last notion is, however,only very loosely defined concept without gi-
ving first the formal expressions (1) some good mathematical and phy-
sical eense, which is Juat what we are trying to do. Even without fi-
xing the value of X we can use our formula (43) to derive mathemati-
cally well-defined, X -independent relations between any pair of phy-
sical quantities R,.Ry

f ”° Lot

’?4",,9 ”tﬂz) ' (44)
where the coefficients v:f (RS invarianta, formed from Tao jik ) are
different fron those we would obtain by formal manipulations with (1),




We consider relations like (44) as basic results of perturbation the-
ory. Also thie point is thoroughly covered in [12].

Third, in practical situations (43) must always be truncated to low
order and therefore we must aleo choose carefully, as in conventional
framework, the "optimal” Z°. Recall that the coefficienta Ty

Ay te)=tyfr-¢) = ZZZH%) +f( y) + AR

are in fact functions of the difference T°-t, t=bln(Q/A ), and the
last term above is ,4 and thus aleo Q-independent. For fixed k and @
going to infinity the firet term dominates and requires‘ﬁ “XQ, X =1,
to avoid the large logarithms. This is what is done in the conventio-
nal framework , where the only problem Beems to be the question what
exactly € should be. However, it 1s also the "constant” terme q‘6¢u@
usually neglected,which are factorially divergent! 1t is these terms,
which then require the introduction of nonzero'x in the relation (13).
By choosing szbln(QAA ), as usually, and assuming XY » 0, we there-
fore do not in the least violate the spirit of the RG improved per-
turbation theory, but merely take into account aleo the presence of
the conastant terms, which are usually disregarded due to their emall
values for k=l. If £° is very big, due to big @, and X modest, it
takes a large N before Z (N) diff.ern in any significant way from T°
and thus for small N the sum Z r, ( ‘t“(N))a (t(N)) shall be prac-
tically the same as inm fixed RS= {2‘}.
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Bypaux Y., Xuna H. £2-87-325

0 cMuiCne pPAROB TEOpWA B03MYUEHWH B KBAHTOBOH TEopuMM NONA

TeopuAa Boamymennit 8 KTl nepeonpegenseTca Tawum oSpa3som, KOTOpeH NO3IBONA-
€T ee NpUMMEHEHWE Jawe B CNyyae, KOrpa PAAL TEOPUM BOIMYWEHWIt B (UKCHMPOBaH-
HOW CXEM€ NepeHOpPMUPOBOK PACXOAATCA., PeayneTaTu BWpawawTCA B BUAE CXOARWMX-
CA /npn onpepeneHHx ycnoBuax/ PAAOS B cTernewAax caoBogHoro napameTtpa X
X3paKTeprayouero MCNOAL30BAHHYO KOHCTPYKUmn. (IPUBOAATCA APryMEHTW & NONb3Y
TOro, UTO 3Ta HEORHOIHAUMOCTE CBA3AHA C HEQAHO3HAYHOCTHI PACWENNEHWA NOJHON
Teopun Ha ee nepTypGaTusHue n HenepTypGaTwaHwe uacTn. [JokasaHa TecHas CBA3L
nofy4YeHHHX peayeTaTOB C MPOUEAYPOii CyMMaunn nNo HOpPeny u ONPefeneHD Mx
OTHOWEHWE K PRAaM OGWUHON TEOPWUWU BOIMYWEHWR B NOCTOAHHOM CXEME NEpPeHDpMU-

POBOK.

Pabora BunonHena B laBoOpaToOpuM TEOPETUYECHON Pr3WUKKW QUAN,

Coob 06 0 HHCTHTYTA ANEpPHbIX Hccneaosannfl. [lyGua 1987

Burdik &., Chyla J. £2-87-325
On the Meaning of Perturbation Expansions In

Quantum Fieid Theory

We reformulate perturbation expansions in renormalised quantum field
theories in a way that allows straightforward handiing of situations when
in the conventional approach (i.e. in fixed renormalisation scheme) these
expansions are diveraent. {n our approach the resuits of perturbation cal-
culations of physical quantities appear in the form of (under certain cir-
cumstances) convergent expansions In powers of a free parameter y, charac-
terising the procedure involved. This inherent ambiguity of perturbative
calculatlons |s conjectured to be an expression of the underlaying ambigui-
ty in the separation of the full theory into its perturbative and nonper-
turbative parts. The close connection of our results with the Borel summa-
tion technique is demonstrated and their relatior tc conventional perturba-
tion expansions In fixed renormalisation scheme !s clarified.

The Investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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