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1. INTRODUCTION

Considerable efforts has been devoted to derive physically

interesting four-dimensional models starting from theories de-

fined in multidimensional space-time. There is a lot of attract-

ive ways for dimensional reduction procedure. For example, it

is possible to avoid some problems of pure gravitational theory

by introduction of Yang-Mills fields with gauge group G coupled

to fermions. This will bring certain arbitrariness, but on the

other hand, it is possible to find a natural role for the new

fields in string theories . Such kind of arguments force us to

choose ED supersymmetric theory in ten dimensions as a fundamen-

tal theory of particle interactions. An important step in the

investigation of such a composite Einstein-Yang-Mills theory is

to determine the effective theory emerging from the Yang-Mills

sector. An appropriate formalism, namely Coset Space Dimensional

Reduction (CSDR) has been developed by Manton and his collabora-

tors [1-3} .

Even in this frameworks we have still a large degree of free-

dom. Namely, one may try to obtain only the Weinberg-Salam model

[4,5] or to get [2,5,6] Grand Unified Theories after the

geometrical symmetry breaking. One may also require the four-

dimensional theory to have gauge group SU(3) x SU(2) x U(l), with

the Higgs sector which breaks the symmetry down to SU(3) x U(±)

in the usual way. In this paper we will examine various GUT's

which could arise after CSDR if the gauge and fermion fields in

ten dimensions are placed in the loweest 24 8 representation of Ee
6

group.



2,DESCRIPTION OF THE CSDR SCHEME.

Let us briefly recall the coset space dimensional reduction

procedure [1,3] . One starts with a pure gauge field theory with

gauge group G coupled to fermions in 4+N dimensional space-time M

which is assumed to be the direct product of Minkowski space and

a compact coset space S/R. S is a compact Lie group and R some

fixed Lie subgroup of S. For the coordinates on this space-time

we write z - (x , y ), where xLis the Minkowski coordinates and y**

label extra dimensions. We would like to get the lagrangian

which is independent of the extra coordinates. This can be

achieved by demanding that the dependence of the fields on the

extra coordinates be a gauge transformation. Thus the lagrangi-

an, being gauge invariant, is independent of the extra coordi-

nates and when it is inserted in the action on M, one may in-

tegrate over the coset space coordinates, and obtain a Yang-

Mills-Higgs theory in four-dimensional Minkowski space.

S acts naturally as a symmetry group on S/R, and hence on M,

via (right) multiplication producing a mapping of M onto itself U-°*

-»- ̂ , One can restrict attention to an infinitesimal mapping de-

fined by the vector fields : y - y + £t . To every generator of

S there corresponds one field f

, so Ĵ , represent Lie algebra of S. Vector field B., which is

independent on the extra coordinats possesses L>B^- 0, where L.is

the Lie derivative with respect to £ ^ . For the S symmetric
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gauge field one have instead L t A - D W, where D W is infini-

tesimal gauge transformations h^ (z) - AM(z) + JD^W with some W

= W (z)T^ in the Lie algebra of G. The complete solution of this

equation can be expressed, in terms of arbitrary fields A?(x) and

< • n oo ,
(i)

where hJP should obey the constraints [1]

Vm,Vn, Vp - 1, . . .,dim R,

(2a)

(2b)

Vi,

where f are the structure constants of Res. Because of the

™ n, p

constraints (2a) , the fields <P would have no kinetic term and

one may fix them to be constants, and from (2b) we see that *-P

generate an R subalgebra of the gauge group algebra. That is R

had to be a subgroup of G, the original gauge group, for such

solutions to exist . Corresponding generators in G we shell

denote by T , m = 1, ..., dim R. Further, in view of <2a), that

subgroup H of G ,all of whose elements commute with all elements

of R (namely the centralizer of R in G) was the resultant gauge

symmetry after the dimensional reduction

The second constraint can be rewritten as

(3)

V oi j V n. 5- dim H}

-k-



where 4 I are structure constants of G. Adjoint representation
A a$c

of S (ad S), decomposes into irreducible representations of R ac-

cording to the branching rule

ad $ = aJ
(4)

Similarly, the branching rule for ad G into irreps of

(where R is the embedding of R into G) is

G * (51

Applying now Schur's lemma to the Eq.(3) one obtains that for
I i

each pair (n,, n.) where n., and n. are identical irreps, there1 J L J
is an m. multiplet of Higgs fields in the four-dimensional

theory.

The Higgs potential is determined by the primary gauge in-

teraction and does not contain any uncertainty but the explicit

minimization of the potential requires hard work. However, in the

case when S = R has an isomorphic image in G, the gauge group K

after Higgs symmetry breaking precisely coincides with the cen-

trali2er of S in G [7]. Moreover, V is zero in this case, which

is the minimum possible. Such mechanism of symmetry breaking nat-

urally avoids the problem of non-zero cosmological constant, at

least classically.

Four-dimensional fermion multiplets can be identified in the

similar way [3]. One first notes that R is naturally embedded

into the SO(N) of S/R in such a way that the H of SO(K) has the

branching rule

tf = (6)

where n . are the same irreps as occur in (4). This follows from

the way R acts on tangent vectors at the point which R leave

fixed. In this way the embedding of R into SO(N) is uniquely

determined. Next one takes the spinor S_ of SO(N) and decomposes

it into irreps of R

(7)

Then one has to decompose the representation F of the gauge group

G to which the fermions are assigned under R« x K

(81

It turns out that for each pair of (s-, s.) where s. and s. are
-( j -t -j

equivalent irreps, there is an h- multiplet of spinor fields in

the four-dimensional theory. It is possible to obtain parity

violation in the dimensionally reduced theory provided one starts

with Weyl spinors and rank S = rank R.

In principle, exhaustive search should be made for a groups

G,S and R , where the centralizer of R in G contain SU(3) x U(l).

But in general, there is too many ways for searching. For the

reasons outlined in the introduction we choose G - E o and for the
a

coset space we assume that dim (S/R) = 6 and rank S - rank R.

All such six-dimensional coset spaces with S being simple are

given in table 1 [5]. After the groups G, S,R are fixed one
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may still obtain different H depending on the embeddings of R

into G and S. We shall consider successively the geometrical

symmetry breaking resulting in E~ , SOflOl and SU(5) GUT's.

3. EXAMPLES OF UNIFIED THEORIES

3.1. £„ GUT's in 4-dimensions

3.1.1. S/R = G,/SU(3) and H - E. (see also [5,8]).

The R is going to be identified with the one appearing in

the decomposition E
X

SU(3) x

248 - {8,1) + (1,78) + (3,27) + if, 27*)

Using Table 1 one find that the geometrical Higgs are assigned to

2 7 + 2 7 and left fermions lie in 2 7 + 7 8 . This example

possesses simple supersymmetry in both 10 and 4 dimensions. The

group G2 = S has an isomorphic image within Ê , . The central-

izer of S is K = F .Thus, the E- theory is broken by the

Higgs field to a vectorlike F theory.

3.1.2. S/R - Sp(4)/SU(2) x U<1) and H - E,, x U(l) {see also[8])
6

The adjoint E^ has SU(2) x U(l) x E. branching rule

248 = (1,27| {-2} + (2,27) (1) + (2,1) (3) + h.c. +

(3,1) (0) + (1,78) (0) + (1,1) (0) .

The Higgs fields arc 27(-2) + 27(1) + h.c. and f̂  is 27(2) +

78(0) + 27 (-1) + 1(0). Explicit calculations of Higgs potential

show [8] that E, can be broken down to F or SO(10) but in the

former case the minima of the potential have the lower value.

3.2. SO(10) GUT's in 4-dimensions.

3.2.1. S/R - SO(7)/SO(6} and H = SO(10) (see also [5]}.

The decomposition of the adjoint E under SO(6) x SO(10) is

248 - (15,1.) + (1-15) + (6,101 + (4,16.) + iC^ •

Using table 1 one may easily find that there will be one Higgs

field 10 and one ljj-plet of fermions. The Higgs field break

SO(10) down to SO (9), but one may think [5] that this Higgs is

responsible for the electroweak breaking ( then the inverse ra-

dius of coset space should be of order M w ) leaving SO(10) break-

ing on the GUT scales for the other mechanisms ( such as radia-

tive corrections a la Coleman-Weinberg [5]).

3.2.2. S/R = SU(4)/SU(3) x U<1) (or Sp(4)/SU(2) x U(l) ) with

H - SO{101 x U(l).

For the first coset space we identify SU(3) with the same fac-

tor in decomposition E x SU(3) c s and U(l) as that in SO(10) x
6 o
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U(l) c Ef . The branching rules for the adjoint are ( E^SU(3) x

u (l) x so(iO) )

248 - (1,16) (-3) + (3,1) (4) + (3,10) (-2) + (3,16T(D

+ h.c + (8,1) (0) + (1,11(0) + (l,45_)(0).

We have two Higgs multiplets 10(-2) + 10(2) and one fermion mul-

tiplet 16(3). One may obtain almost the same decompositions if

one embeds SU(2) of the second coset space in SU(3) in such a way

that the branching rules for SU(2) <=• SU(3) are 3 = 3, 8 = 2 +

5.The only difference will be that one obtains one additional

fermion multiplet in 3_6 < —1) due to the fact that 3_ - _3 for the

SU(2). (SU(2[ x U(l) embedding into S correspond to the line 3 of

the Table 1, embedding of the line 4 do not give Higgses and use-

ful fermions).

3.2.3. S/R = Sp(4)/SO(2) x U(l) with H - SO(10) x U(l) x 0(1).

Now we will proceed as in the case 3.2.2 with the main differ-

ence that we enibedd now: SU(2) x Udl c: SU(3). This gives

248 = (2,1) (3,0) + (1,16) (0,-3) + (2,1) (1,4) +

(1,1) (-2,41 + (2,101(1,-2) + (1,101 (-2,-21

+ (2,16* (1,1) + (1,16H-2,1) + h.c. +

(3,1) (0,0) + (1,1) (0,0) + (1,1) (0,0) + (l,45)(0,0).

Content of the four-dimensional theory crucially depends upon

embedding U(U c R into 0(1) x U(l) c S0(2) x U{1) x U(l) x

SO(10). One may obtain scalar and fermion fields in different

corabinations from 1,1Q,16. We find that the interesting theory

arise when U(l) is identified with the second U(l)

factor(identifying with the first one bring us exactly to the
a-

case 3.1.2). We have for the Higgses 10(2,2) + 16(1,1) + h.c.

and f - 10(2,2) + 16 (-1,-1) (embedding R <=- S correspond to the

line 4 of the Table 1).

3.3. SO(5) Grand Unified Models

3.3.1. S/R - SO(7)/SO<6) with H = SU(5> x 0(1)

Identifying SO(5) with the same factor which appear in the decom-

position SU(5) x SU(S) <=. Eg and then taking the SO<6) x U(l) max-

imal subalgebra of the another SU(5) factor we obtain the follow-

ing branching rules for SO(6) x SU(5> x U(l) <=• E „

2_4J = (4,1) (-5)+(l,10) (4) + (4,10) (-l) + (4,_5) (-3) +

(6,5) (-2)+ h.c. + (l_5,l) (0)t(l,24) (0) + (l,l) (0) .

We have 5(2) + M-2) for the Higgs fields and the fermion sector

coincides with the phenomenologically acceptable one f - _5(3) +

10(-D + l(-5) .

3.3.2. S/R - Sp(4)/SU(2) x 0(1) with H = SU(3) x SU(5) xU(l)

Using the 0(1) x SU(2) x SD(3) subalgebra of SU(5) we have for

SU(2)xSU(3)xSU(5) xU(l) C E g ;

248 = (1, 1,51 (6) + (l,3*5) (-4) + (2,3,5) (ll + (2,l,10) (3* +

(1,3,10) (-2) + (2,3,^) (-51+h.c. + (l,l,U (0) +

(3,1, 1) (0) + (1,8,11(0) + (l,l,24)(0) .

Interesting content in four dimensions gives the line 4 of the

Table 1. We obtain the fermion sector of the minimal SU(5) model
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f - (3,10)(2) + (3,^1(-1) and for the Higgs particles one gets

(3,101(2) + (,3rM(-l) + h.c. We would obtain three fermion gen-

erations if it would be possible to identify SU(3) with the fla-

vour symmetry with subsequent appropriate symmetry breaking.

3.3.3. S/R - SU14)/SU<3)xU(l> with H - SU(5)xO(1)xU(1}

We have for SU (3) xSU (5 ) xU (1) xU (1 > = Ê , :

2JJ - (3,1) (0,-4} + <l, 10* (4,0) + (3_, 10) < 1,-1) + (1, 10) (1,3) +

(3^5) (-2,-2) + (3,5) (-2,2)+(itl) <-5,l) + <l,l) (-5,-3) +

h. c. + (8,1 MO, 0) + < 1,241 (0,0)+ (1,1) (0,0)+ (1,2-1 (0,0) .

As in the case 3.2.3 there is different embeddings of 11(1) ̂  R in

U<l)xU(l) <=- G here as well. If we choose embedding Y = (3/8)Y^ +

(7/8) Y , where Y is the generator of U(l) <̂  R and Y and Y, are

generators of U(l)xU(l) ^ E then we get fermions in 1(5,-1) +
O

5(2,-2) + W d , 3 ) and no one scalar field.

The results of this chapter are summarised in Table 2,

4. CONCLUSIONS

In this paper we have analysed particle content obtained

after coset space dimensional reduction of pure Yang-Mills E^

theory in 10 dimensions searching for the standard grand unified

models after geometrical symmetry breaking. We find that fer-

mions with correct SU (3) x SU(2) x U(l) quantum numbers appear

more or less in the regular way, however, the number of genera-

tions n is less than is required by phenomenology (with the

-11-

only exclusion of 3.3.2), One may avoid this difficulty assum-

ing more generations in 10-dimensions. For example one may think

about N - 4 supersymmetric E^model [6] which will lead then to

the 4n generations in four dimensions. Such a model could help

to resolve another difficulty of this approach. We do not find

complete sequence of Higgs fields which are needed for the Grand

unification symmetry breaking. Usually appear only Higgses which

could be responsible for the electroweak breaking (this require

to identify inverse radius of coset space with M w ) . The ways out

could be as follows i) Some "primordial" Higgses are responsible

for the symmetry breaking, (for example its role could be played

by scalar particles of N = 4 SUSY E^[6]). ii) One should investi-

gate coset spaces with more than one characteristic curvature

[2,5]. However, in oder to resolve hierarchy problem one should

obtain (geometrical) SUSY braking on the electoweak scale. In

principle such C.S.D.R. procedure may exist, iii) C.S.D.R. should

be combined with other geometrical mechanism of symmetry break-

ing, say of the type of "Wilson loops".

In any case one might hope that the models discussed here may

have some connection with the true theory.
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Table 1

Homogeneous spaces S/R of dimension 6 (S is simple) and branching

rules for the vector and spinor of SO(6) into representations of

R are listed (see [5]). We do not consider the space

SU(3|/U(l|xU(l) and omit this one from the Table.

S/R

1. SO(7)/SO(6)

2. SU(4)/SO(3)xU(l)

3. Sp(4)/SU(2)xU(l)

4. Sp(4)/SU(2}xU(l)

5. G2/SU(3)

Vector

6

3(-2) +

3(-2) +

1(2,+1(-

3+2*

3(2)

3(2)

2,+2,l»+2(-l,

Spinor

4

1(3) + 3(-l)

1(3) + 3(-l)

l(2,+l(0)+2(-l)

1 + 3



Table 2

Content of physical fields in reduced theorv

S/R

G /SU(3)

£0(7}/SO(6)

SU(4) /SU(3)xU(l)

Sp(4) /SU(2)xU(l)

gauge group

SO(10)

SU(5) xU(l)

SOUO)xU(l)

SU(5)xU(l)xU(l)

E xU(l)
6

SO(10)xU(l)

SO(10)xU(l)xU(l)

SU(3)xSU(5)xU(l)

scalar fields

27

10

5(-2)+5(2)

10(-2)+10 (2)

-

27(+l)+27(-2)

10(-2)+10(2)

10 (2,2)+16(l,l)

(3TlO> (2)

+ (3*5) (-1J

fermion fields

27 + 78

16

5*(3)+10(-l)+l<-5>

16(3)

j. (5,-1)+51*2,-2)+10 (1,3)

* • * •

l(0)+2_7 (2)+27 (-1) +7J(0)

16(-1)+16 (3)

10(2,2)+^6(-1,1)

(£, 10) {2) + {£,S){-l)






