IC/S7/174 INTERNAL REPORT (Limited distribution)

International Atomic Energy Agency **•' ~, ' :' and** •Cnited: Nations Educational Scientific and Cultural Organization

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

POSSIBLE MECHANISM FOR HIGH-TEMPERATURE SUPERCONDUCTIVITY IN THE $Ba(Sr)$ -La(Y)-Cu-0 SYSTEMS $*$

M. Apostol ** International Centre for Theoretical Physics, Trieste, Italy.

ABSTRACT

A high-temperature mechanism of superconductivity is proposed for distorted perovskite-like structures of $Ba_xLa_{2-x}CuO_4$ type. For x close to unity it is shown that the Jahn-Teller effect of the Cu^{2+} cations might bring about an attractive pairing interaction in the wavevector space. In the opposite limit $x \sim 0$ it is argued that the Coulomb repulsion might cause a real-space electron pairing. In both cases optimal values of the concentration x are predicted above $1 - 1/\pi$ and below $1/\pi$ which agree with the experimental data. The corresponding critical temperatures are also estimated.

MIKAMARE-TKIESTE July 1987

* Submitted for publication.

i .;"•• '

 -588 ARX

** Permanent address: Department of Theoretical Physics, Institute for Physics and Nuclear Engineering , Magurele-Bucharest, HG6, Romania.

1. Introduction

The high-temperature superconductivity in the recently discoverea Ba(Sr)-La(Y;-Cu-Q systems [1-5J seems to be related (besides the percolative, interfacial and two-dimensional fluctuation effects) to the orthorhombically distorted oxygen-deficient perovskite-like structures $Ba(Sr)$ _yLa(Y)_{y_{-x}CuO₄} $\text{Ba}_2\text{YCu}_3\text{O}_6$ $\text{s}_{11.5x}$, $\text{o} \leq x \leq 1$, which are layered structures of the $K_pNif^{\dagger}_a$ type [6-8]. They consist of alternating Cu-oxygen and (da(Sr), La(Y))-oxygen layers, the former being rather well separated by an average distance of \sim 6-7 A and screened by the latter. Consequently, we may take, as a first approximation, a single Cu-oxygen layer and neglect its interaction with the others. The copper cation is coordinated by four in-layer and two off-layer oxygen anions, the copper-copper in-layer average distance being a \approx 3.8 A. Suastituting Ba(Sr) for La(Y) (or, equivalemly, lowering the oxygen deficiency) the valence state of the copper catiun changes from Cu²⁺ to Cu²⁺, the ratio Cu²⁺/Cu²⁺ being recognized as critical for the superconducting properties of these compounds. The average valence of the copper cation can be written as $z = 2+x$, according to the stoichiometry given above. We shall consider a square array of N copper sites iduelled by i and introduce the electron occupancy variable n. which may take two distinct values: $n_i = u$ for Cu^{3+} and $n_i = 1$ for Cu^{2+} . The valence z_1 of the i-th copper cation is then given by $z_j = 3-n_j$, and its averaging over all the i sites leads to

-2-

 $\sum_i\,n_i\,=\,N(1\!-\!x)\,,$

(1)

$$
t \sum_{\substack{i,j\\(i,j)}} c_i^{\dagger} c_j + (\alpha_M e^2 / 8a \Sigma) \sum_{\substack{i,j\\(i,j)}} n_i n_j \tag{2}
$$

of these localized electrons includes the electron transfer between two nearest-neighbour sites (ij) and the Coulomp repulsion which is represented. for simplicity, by a short-range interaction (A_{μ}) is the Madelung constant, e is the electron charge and E is the dielectric constant). A similar model has been used recently [9] for BaPb_{1-x}Bi_xO₃.

M strong electron-lattice coupling is expected to occur in these layered structures as a consequence of the oxygen-gisplacive modes [10] and low carrier concentration which is unaole to shielo the optical phonons [11]. Inis interaction has been discussed in various contexts $[12]$ and, in fact, it Can always ue related to the Jahn-Teller affect [13]. Indeed, it is well-known L^{14} J, for example, that the distances between Cu^{2+} and the off-layer oxygen aniuns in U_{μ} uuU_u are much longer $(2, 4$ A) than the in-layer copper-oxygen uistances (i.) A). The Jahn-Teller effect of the Cu^{2+} cation in such type of structures distorts the copper-oxygen bonding and lowers the electronic level of the copper cation. The energy involved in this process may be written, within a simpiifieu model, as

$$
(1/2)M\omega^{2}u_{1}^{2}-g_{0}u_{1}n_{1}-g_{1}u_{1}\sum_{i,j,j}n_{j}, \qquad (3)
$$

where M is the oxygen mass, ω is its characteristic frequency, Q_i is the displacement of the i-th off-layer oxygen anion and summation over (j) is restricted to the nearest-neighbours of the i-th site. The coupling constants $\mathfrak{g}_{\mathfrak{g}}$ and $\mathfrak{g}_{\mathfrak{g}}$ are such as $\mathfrak{g}_{\mathfrak{g}} \gg \mathfrak{g}_{\mathfrak{f}}$. The lattice coordinate $\mathfrak{q}_{\mathfrak{f}}$ can be eriminated from (3) by minimizing this energy with respect to Ψ_i . One finds tnat (3) readnes its minimum al ψ^{\vee} = (M $\omega^2)^{-1}$ (

- 3 -

so that we are left **with** a **lattice-free electron energy**

<u> 2007 - Carl Company, amerikan pada sebagai pertama pada sebagai pertama pada sebagai pertama pertama pertama</u>

$$
-(g^{2}M\omega^{2})\sum_{(i,j)}n_{i}n_{j}-(g_{0}^{2}/2M\omega^{2})\sum_{i}n_{i}, \qquad (4)
$$

where $g^2 = g_0 g_1$ and g_1^2 - contribution has been neglected. In view of (1) one may also **neglect the last term in (4). Therefore, the** model namlltonian proposed for this **type** of compounds can **be** written as

$$
H = t \sum_{\{i,j\}} c_i^{\dagger} c_j + J \sum_{\{i,j\}} n_i n_j,
$$
\n(5)

 $J = (\alpha_{\text{M}}e^2/\text{aa} \xi) - (g^2/\text{a}\omega^2)$, which should be used in conjunction with the condition (1).

Among many oversimplifications of this model there is one which needs a furtner comment. In the dilute limit $x \sim 1$ the attractive electron-lattice interaction would prevail over the Coulomb repulsion and J would acquire a negative sign, Un the contrary, in the opposite dense limit $x \sim 0$ this attractive interaction would be overridden by the Coulomb repulsion and the coupling constant J would become positive. The model hamiltonian (5) does not contain tris feature (J should be $x -$ dependent in this case) which, however, will oe incorporated in the forthcoming discussion. In addition, it is worthwhile emphasizing that J affects all the available electronic states, in contrast to the usual electron-phonon interaction which is restricted to a very thin sneii around tne Fermi surface. The low mobility (small values of t) and carrier concentration favour such an unscreening effect which is one of tne main reasons for obtaining high-values of the critical temperature.

-A-

2. The dilute limit $x \sim 1$

Mccorainy tu the preceding discussion the attractive electron-lattice interaction ($J \lt U$) will, in this case, lead to a standard electron pairing in the wavevector space, described by the pairing hamiltonian

$$
{}^{n}A = c \sum_{k} v_{1k}v_{2k}^{+}c_{k}^{+} - (101/N) \sum_{k} v_{1k-k}^{+}v_{2k}^{+}c_{k}^{+}c_{k}^{+}c_{k}^{+}c_{k}^{+} \tag{6}
$$

where $\mathsf{v}(\mathsf{K})$ = 2(cosk $_{\mathsf{x}}$ a + cosk $_{\mathsf{y}}$ a). For low occupancy we may approximate the Fermi sea by a disc of radius k_{F} , $\frac{1}{4}k_{\text{F}}^2 = 4\pi(1-x)$ and $v(k)$ by r r pwrzez podstanie w pwrzez pods
W pwrzez podstanie w pwrzez podsta $\frac{1}{2}$ are averaging $\frac{1}{2}$, $\frac{1}{2}$ over the effective sea one finds that the effective pairing strength is 4|J\(1- $\vec{\pi}$ + $\vec{\pi}$ x)/N which imposes a lower bound $x_{0} = 1-1/\pi$ for the present approximation.

standaru calculations lead to the critical temperature

$$
I_{C} \stackrel{\approx}{=} 9.12 \tilde{R} \text{ t} (1-x)e^{-\alpha/(x-x_{G})}, \quad \alpha = 2t/|J|,
$$
 (7)

which has a maximum for the optimal concentration

$$
x_{0} = x_{0} + \frac{1}{\pi} \frac{2\alpha}{\alpha + \sqrt{\alpha^{2} + 4\alpha/\tilde{\mu}}}
$$
 (8)

The curresponding critical temperature is given by

$$
T_{C}^{0}\stackrel{\text{d}}{=}9.120\left(1-\frac{2d}{\alpha+\sqrt{d^{2}+1}d\tilde{h}}\right)k+p\left[-\tilde{h}\left(d+\sqrt{d^{2}+1}d\tilde{h}\right)\right],\quad(9)
$$

whicn predicts critical temperatures as high as 10^5 .t [eV] K in the limit $|J| \rightarrow \infty$ ($\alpha = 2t/ |J| \rightarrow 0$). The most interesting prediction is, nowever, the existence of an optimal concentration x_0 (given by (8)) above the limit 1-1/ $\gamma \approx 0.68$. This is in good agreement with the value $x \approx 0.8$ reported for $\text{ba}_{x} \text{Y}_{2-x} \text{CuO}_{4}$ [4].

3. The dense limit $x \sim u$

For small values of x almost all of the sites are occupied oy electrons and, consequently, the Coulomb repulsion will prevail aver the attractive electron-lattice interaction. The coupling constant J in (5) acquires positive values in this case. We argue that in this limit the real-space electron pairing is favoureo via "virtual" electron exchange processes between two neighbour sites. Indeed, suppose that for $x = 0$ an electron is destroyed on the i-th site; at the next moment the Coulomb repulsion will prompt an electron placed on the neighbour j-th site to replace it, ana the i-th electron may well occupy this latter emptied site. It follows that the Coulomb repulsion correlates these two inter-changed electrons in "virtual" pairs, named so as long as the two partners are "flying" between the $(i,j)-t$ n sites. Moreover, one may observe in addition that, as far as the many-exchanye processes are neglected twhich would involve more than two sites), the wavevectors of the two partners (viewed as wavepackets) should be equal in magnituOe ano opposite in direction. The correction to the electron energy levels owing to these "virtual" real-space electron-pairs could be estimated oy means of a standard second-order perturbation calculation. However, the proalem is whether these electrons could bound together in pairs. If such "virtual" electron-pairs .are to exist in the real space the yrounu-state of the system would contain a superposition of states with a variable number of electron-pairs (the partners in a missed pair "flying"

continuously between two neighbour sites), the average number of electrons Deing, of course, constant. This fluctuation effect in the:, total number of electrons miyht well be ennanced oy the two-dimensional geometry of the proolem. The consequence of this pair-number fluctuating ground-state is that the quantity $\Delta_{j_0} = \angle c_j c_j$) may be taken as an order parameter.

The proolem can be looked at from a slightly different point of view, with the same conclusion. Suppose that two neighbour electrons in a completely fillea system are squeezed out of their equiliorium positions against one anolner. They will oscillate arounu these equilibrium positions with an off-site probability which is sensibly large in low-dimensional systems. These oscillations are nothing else but the fluctuations in the electron positions of a two-dimensional Wigner crystal [ibj. As long as two neighbour electrons are off their (i, j) - positions they may be viewed as forming a "virtual" pair; the corresponding grouno-state will then contain a state with one pair lesser anu the parameter $\sum_{i,j}$ = $\langle c_i c_j \rangle$ will acquire non-vanishing values. If the interaction favours (as it seems to do) such a pairing, then the groung-state energy of the system would lower and the "virtual" electron-pair in the real space would be bound. The point is, as it will be easily to see, that the namiltonian (5) with $J > u$ actually possesses such a grounu-state.

Within a mean-field approximation the hamiltonian (5) can be written as

$$
n = t \sum_{(i,j)} c_i^{\dagger} c_j - (3/2) \sum_{(i,j)} (\hat{V}_{ij} c_i^{\dagger} c_j^{\dagger} + n.c.)
$$
 (10)

whicn becomes

Ĵ. \mathbf{r}

À

$$
h = t \sum_{\substack{M \\ \mathcal{R} \\ \mathcal{R
$$

in an extended-orbital representation, where

$$
\Delta_{\mathbf{X}_{\infty}^{K'}} = \sum_{\substack{i,j}} \Delta_{ij} e^{-i\mathbf{X}_{\infty}^{*} - i\mathbf{X}' \mathbf{X}_{\infty}^{*}} \tag{12}
$$

 x_i being the i-th site position vector. In the high-density limit, when practically all the N sites are occupied, one may expect Δ_{ini} not depending on i. In this case $\Delta_{k|k'} = \Delta_k \overline{\delta_{k,-k'}}$ and one can see that only single-exchange processes contribute, in agreement with the previous qualitative discussion. Within this approximation ill) acquires the form

$$
h = t \sum_{k} v(k) c_{k}^{\dagger} c_{k} -
$$

- (J/ZN) $\sum_{k} [v(k+k)] \langle c_{k}^{\dagger} c_{k}^{\dagger} \rangle c_{k}^{\dagger} c_{k}^{\dagger} + h.c.]$ (13)

which, as one can easily see, corresponds formally to a pairing hamiltonian of tne type (6). It follows that the "virtual"-pair exahange-processes discussed above actually lead to a pairing of electrons in the real space, described by the order parameter Δ_{ij} . In the present high-density approximation these real-space pairs of electrons amount to pairs in the wavevector space. For high-occupancy $(x \sim u)$ one may further approximate $v(k+k')$ by its average $4(1-\frac{7}{11}x)$ over the Fermi disc which sets up an upper bound $x^2 - 1/\frac{2}{11}$ for the effective pairing strength $4J(1-\tilde{\mathbb{N}} \times)/\mathbb{N}$. Standard calculations led to the optimal concentration

$$
x_0 = x_0 - \frac{1}{\pi} \frac{2\alpha}{\alpha + \sqrt{\alpha^2 + 4\alpha\ln \pi}}
$$
 (14)

and the same critical temperature as that given by (9). The existence of optimal concentrations below $1/\tilde{p} \cong 0.32$ agrees with the experimental data $x \approx 0.15$, 0.2 ± 3 and $x \approx 0.25 \pm 8$.

4. Conclusions

A simple model has oeen put forward in the present paper for the high-temperature superconducting phases $Ba(Sr)_{x}La(Y)_{2-x}CuO_{a}$ and $Bd_yYCU_yU_{6-2+1, 5x}$ in the recently discovered $Ba(Sr)$ -La(Y)-Cu-0 systems. The salient features incorporated by this model are the two-dimensional geometry of the copper-oxygen layers, the oxydizing function of the $Ba(Sr)$ concentration (ar,equivalently, the reducing function of the oxygen ueficiency) controlled by the x parameter ($u \leq x \leq 1$), the mixed-valence state $\mathcal{C}\mathfrak{u}^{\mathsf{c}*}/\mathcal{C}\mathfrak{u}^{\mathsf{c}*}$ of the copper cations anu the attractive (copper) electron \cdot luxyyenj lattice interaction brouynt about by the Jahn-Teller effect of the ω^2 cations. Ine mooel has ueen treated approximately in two limiting cases: the dilute limit $x \sim i$ anu the dense limit $x \sim u$. In both cases optimal values have been obtained for the concentration x, placed appve 1-1/ $\pi \approx$ u.68 and below i/ γ \approx u.32, which agree with the experimental data. It is concluded that the superconductivity in the uilute range $x \sim 1$ arises by electron pairing in the wavevectur space, owing to the strong attractive electron-lattice interaction which prevails over the Coulomp repulsion. In the opposite limit $x \sim 0$ it has been argued that an electron pairing in the real space would be favoured by the Coulomb repulsion, via the exchange processes uetween the "virtual" electron pairs. It has> been shown tnat, in both cases, the nigh values of the critical temperature cume from the strong interaction which affects almost all of the availaule electron states.

it is wurtnwhile noting that the electron spin does not piay any role within the present model in view of tne fact that there are only two valence states of the copper cation and therefore, we are in the situation of a "nalt-tilleu" uanu. Hobbaro's Couloumb repulsion term is, consequently, much less effective, as compared with the present intersite Couioumb repulsion. Another point of importance that should be noted is the almost complete decoupling between the magnetic activity (as when Gd is substituted for Y) and superconductivity, as a consequence of the layered structure of these compounds, in agreement with the experimental data.'

In spite of its great simplifications tne present model could provide the right way towards understanding the high-temperature superconductivity In this class of materials. The model could ue improved by carefully treating the long-range character of the Coulomb interaction as well as its dependence on the filling factor x. This is likely to provide us with the desired x dependence of J, which should be so as J ζ u for $x \rightarrow 1$ and J \searrow u for $x \rightarrow 0$. A more careful treatment also needs the electron-lattice interaction oy refining its form as to include tne dynamics of the oxygen-displacive modes and the martial effects of the oxygen anions.

As regards the mathematical treatment of the model it should be emphasized that the pairing hamiltonian requires a deeper analysis in the range of strong coupling. The role of the two-oimensional fluctuations of the pair-numuer in the real-space pairing regime should also be further investiyaceu m close connection with the Wigner electron-lattice picture, allowance peing maue for the site dependence of the order parameter Δ ... Although interesing technical proplems will occur (such as the transient regime aetween low anu niyn electron occupancy, wnich, however is not likely to be related to any significant superconducting properties) the physical picture outiineu doove is not likely to ue drastically altered.

acknowledgements

The author would like to thank Professor Abdus Salam, the International Atomic Energy Agency and UNESCO for hospitality at the International Centra for Theoretical Physics, Trieste.

References

- [1] J.G.Bedhorz and K.A.Muller, Z.Phys.B64 (1986) 189.
- LZJ C.W.Chu, P.H.Hor, r.L.Meng, L.Gao, Z.J.Huang and Y.Q.Wang, Phys.Rev. uett. bti {1967}, 4US.
- _>j R.J.Uava, R.b.van Uover, b.batloyg and t.A.Kietman, Phys.Rev. Lett. j>B (1887) 408.
- Ltj M.K.WU, J.K.Asnuorn, U.J.Torng, H.H.Hur, R.L.Meng, L.Gao, Z.J.Huang, Y.Q.Wang and C.W.Chu, Phys.Rev.Lett. 58 (1987) 908.
- ipj P.H.Hur, L.Gao, R.L.Meng, Z.J.Huang, Y.Q.Wang, K.Forster, J.Vassilious, L.W.Chu, M.K.Wu, J.R.Ashborn and C.J.Torng, Phys.Rev.Lett. 58 (1987) 911. Loj H.lakayi, S.Ucnida, K.Kitazawa and S.Tanaka, Jpn.J.Appl.Phys.Lett 26 Uyw/J, 1125.
- L/j s.Ucniua, H.Takagi, K.Kitazawa and S.Tanaka, Jpn.J.Appl.Phys.Lett 26 $(1987), 1151.$
- , b.bjtlogg, R.d.van Dover, O.W.Murphy, i.Sunshine, r.Siegrist, J.P.Remeika, t.A.Rietman, S.Zahurak and G.P.Espinosa, Phys.Rev.Lett. 58 (1987) 1676.
- \Box j i.M.Rice and L.Sneddon, Phys.Rev.Lett. $\frac{a}{b}$
- LluJ L.F.Mattneiss and D.R.Hamann, Phys.Rev. B28 (1983) 4227; B33 (1986) 823.
- Liij A.W.Sleight, J.L.Gillson and F.E.Bierstedt, Solid State Commun. 17 (1975) 27; u.datlogy, Physica 1268 (1984) 275.
- Liz, P.W.Anuerson, Phys.Rev. Lett. 34 (1975) 953; B.K.Chakraverty, J.Physique 40 (1979) 199; 42 (1981) 1351.
- K.H.HUCK, H.Nickisch anu H.Thomas, Helv.Phys.Acta 5o (i^BJJ 237.
- 14 j. J.M. Lungo and P.M. Raccan, J. Solid State Chem, 6 (1973) 52o.
- [15] L.G.J.van Dijk and G.Vertogen, Phys.Lett. Alib (1986) 63.

-11-