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The present report summarizes the work performed within the contract
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distributions resulting from ICRF heating on JET. The work has been per-

formed over a two-year-period ending in August 1986 and has involved a

total effort of 2.4 man years.



Introduction

Ion cyclotron heating has become a reliable method lor supplementary heat-

ing in large plasma experiments. Its flexibility and great technological

potential makes it one of the major alternatives for heating in future

fusion reactors. In most experiments the fast magnetoacoustic wave is

launched by the antenna and the damping of the wave occurs either directly

by ion cyclotron and electron Landau damping or via a mode conversion pro-

cess. In the present context we focus our attention on the case of direct

absorption by ion cyclotron damping and in particular the concomitant dis-

tortion of the velocity distribution of the heated ions. The most promi-

nent feature of this distortion is the high energy tails that are created,

preferentially in the velocity coordinate perpendicular to the magnetic

field.

Deviations from thermal Maxwellian form play an important role in determin-

ing many "secondary" physical quantities and processes, e.g. fusion reac-

tivity, RF power absorption efficiency, high energy particle losses, RF-

driven wave-particle instabilities, as well as for the interpretation of

data from charge-exchange and neutron measurements.

Most of the analytical understanding of the effects of ICRH on the velocity

distribution of the heated ions is provided by the classical paper by Stix,

[l], from 1975. However, this paper is restricted to the minority heating

scheme using the fundamental ion cyclotron resonance frequency and the

subsequent development in the field of ICRH has emphasized several new

aspects and heating scenarii, in particular majority heating at the second

harmonic ion cyclotron resonance frequency, combined neutral beam and RF-

heating scenarii, trapped particle effects and the time dependent behaviour

of the velocity distributions. Extensive computer studies have also been

made of the Fokker-Planck equation describing the RF-driven, quasi-linear

diffusion processes which deform the velocity distribution. However, this

effort has been dominated by numerical calculations and/or codes that are

too cumbersome for routine use in situations where the distribution func-

tion Itself is not of primary interest, but only the means to determine

other plasma properties, e.g. plasma transport.



Thus, there is a great need for analytical or stmi-analytical models that

provide short computational procedure and contribute to the physical under-

standing of the effect of ICRH on the velocity distribution of the heated

ions. The general objective of the work within the present contract is to

contribute Co this goal.

The more specific goals of the present work is to obtain theoretical models

for ion distributions in various RF-heating schemes for JET as well as fo.:

the collisional power transfer to the background plasma particles. Par-

ticular emphasis has been given to the following points:

(i) the properties of the high energy anisotropic ion tails

(ii) majority heating at the second harmonic ion cyclotron resonance

frequency

(iii) the pitch angle dependence of the RF-heated distribution functions

(iv) energy clamping scenarii involving ICRH and NBI with the RF wave

tuned to the first or second harmonic cyclotron frequency of the

injected ions

(v) the relevance of stationary solutions and extensions to non-station-

ary situations when necessary

(vi) formulation and analysis of a bounce-averaged Fokker-Planck equation

which includes toroidal effects on ICRH.

A general description of the content of the work performed within the con-

tract and results obtained in the different problem areas can be given as

follows:

A. Properties of high energy anisotropic ion tails

In an introductory investigation, [2-4], we extended the steady-state

analysis of Stix, [l], to include heating at the second harmonic Ion cyclo-

tron frequency and In particular finite Larmor radius effects which later



proved to play an important role for the ICRF heating scenarii on JET.

Special emphasis in this investigation was given to the properties of the

high energy strongly anisotropic tails and important information about the

anisotropy in terms of perpendicular and parallel temperatures were obtain-

ed.

£. Analysis and use of pitch angle averaged distributions

In a subsequent investigation [5-9] we assumed the distribution function to

be essentially isotroplc and derived analytical and computationally simple

semi-analytical approximations for the ion distributions resulting from

ICRH as well as from energy clamping involving ICRH and NBI. The result

was used to evaluate the weighted velocity space averages of the distribu-

tion, which determine the fusion reactivity and the collislonal power

transfer to plasma background particles and to study their scaling with

RF-parameters like absorbed power and perpendicular wave number. The im-

portance of higher order finite larraor radius effects for the formation of

RF-induced high energy tails was particularly emphasized. Comparison based

on full 2D numerical calculations showed very good agreement with the semi-

analytical results.

In a further analysis [10-11], using a completely new approach, we derived

an equation for the pitch angle averaged distribution which actually is all

that Is needed for the evaluation of velocity space averages involving

pitch angle independent weighting functions. The subsequent solution re-

conciled, in a consistent manner, previous complementary results based on

assumptions of either isotropic or strongly anisotropic distributions.

C_j Effects of particle trapping on ICRH

A new bounce averaged Fokker-Planck equation, accounting for the effect of

particle trapping, was derived in [l2]. This equation was subsequently

analyzed in [l3] using a perturbative expansion in generalized Legendre

polynomials. It was found that trapped particle effects tended to reduce

the overall anisotropy of the distribution, but that they should have

little effect on the isotropic bulk distribution. This in turn implies

little effect on most velocity space averages.



D. Collisionless short time evolution of ion distributions in the

presence of ICRH

Problems in connection with RF-enhanced sawtooth activity, which involve

very short time scales, have focussed the interest on the short time de-

velopment of RF-heated ion distributions. In [11,14,15] we derived ex-

plicit analytical solutions for the collisionless evolution of ion distri-

butions for heating scenari involving conventional ICRH as well as for

energy clamping schemes. The effect of particle trapping on the time

evolution of the ion distributions was also analyzed.

A more detailed presentation of our results is given in the following para-

graphs •

Qualitative picture of RF-driven velocity space diffusion

The most prominent features of distribution functions resulting from vel-

ocity space diffusion due to ICRH can be understood as follows:

In the simplest picture of the ICRH absorption mechanism, an ion following

a magnetic field line receives a small change, Av , of its perpendicular

velocity each time it passes through the resonance layer. During the time,

T, between two consequtive velocity changes phase correlation Is destroyed

by collisions and/or collisionfree stochasticity and the particle performs

a random walk in velocity space. The corresponding diffusion coefficient,

D, can be estimated as

(Av ) 2 2AE 2

D - ± _ - Lm±L (1)
T mx mn
1 2where AE, - •# m(Av.) is the change in perpendicular energy of the oar-

ticle, P is the absorbed RF power density, and n is the density ol absorb-

ing ions.
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Fig. 1 Geometry for Ion cyclotron resonance In a Tokamak, [l].

During the initial evolution of the cistribution function, f, of the heated

ions, collisional effects can be neglected and we obtain the following

equation for the RF-induced velocity diffusion

« . ! * (D. jL.)
öt v. ov, *• 1 dv/

(2)

In the case of ICRH using the fundamental ion cyclotron frequency, the

diffusion constant is independent of v (for not too high energies). The

solution of eq. (2), subject to the initial condition of a Maxwellian dis-
2 2

trlbution of the form f(v.,v,,0) - A exp(~v /v ), is
xi m

f(vi'v«'t) 1+t/t exp
v,

[-4-
vm vm ( 1 + t / to )

(3)

where we have introduced the characteristic tail formation time, t , as

m nT

^ " P R F



1 2Here the temperature, T, i s defined by T - T mv and P__, i s the absorbed
L n tvr

power density computed from eq. (2).

The solution (3) preserves the Maxwellian form but the unaffected parallel

temperature in combination with the (linearly) increasing perpendicular

temperature create an anisotropy in preference of the perpendicular vel-

ocity coordinate. It is particularly Instructive to consider the evolution

of the curves of constant f: the initial circles are transformed into el-

lipses with successively increasing elongation, cf. Fig. 2.

Vv«

••v,'•'V1 2

Fig. 2. Time development of curves of constant f.

Collisional effects will ultimately become Important on time scales of the

order of the slowing down time, t . A qualitative picture of the result-

Ing stationary distribution function should be obtained by terminating the

solution (3) at t - t . The Important parameter determining the increase

in the perpendicular temperature as well as the degree of anisotropy is

then t /t , which apart from a numerical factor of order unity, corresponds
s o



to the characteristic parameter, £, used by Stix, [l,2]. Actually

(5)

However, a complication is introduced by the fact that the slowing down

time will be very different for high and low energy ions, which slow down

primarily on electrons and background ions respectively. The slowing down
1/2time for low energy ions is (m /m ) times smaller than t , where m and

m. denote the masses of electrons and background ions respectively. This

has the important consequence that the temperature rise of the ICRF-heated

low energy ions occur during a much shorter time and becomes corresponding-

ly smaller.

For realistic absorbed RF powers we have the following inequality:

which implies that the bulk part of the distribution only experiences a

small temperature rise whereas for high energies a strongly enhanced tail

can be expected.

Similar arguments can be used to discuss the resulting anisotropy. In the

low energy range, the small temperature rise and the strong pitch angle

scattering should make the bulk distribution almost isotropic, although

with a slight elongation in the perpendicular direction. In the high en-

ergy region, where the perpendicular temperature is strongly enhanced while

pitch angle scattering becomes increasingly ineffective, a strong ani-

sotropy can be expected.

Thus, we arrive at the following qualitative picture of the distribution

function resulting from ICRH: the distribution should consist of an essen-

tially Isotropic bulk with an only slightly increased temperature, T , and
o

an anisotroplc high energy tail with strongly increased perpendicular tem-

perature, T, » T , but with only slightly Increased parallel temperature,
x o



The transition from bulk t0 tail can be expected to occur around

the energy, E , at which electrons and ions contribute equally to the col-

lisional friction force, i.e.

n Z2 2/3

15 Tb (7)

where n , A , and Z denote the density, mass number and charge number

respectively of the background ions, A is the mass number of the heated

ions and n is the electron density.

The explicit solution of the RF-driven diffusion equation, as given by

eq. (3), is only valid when D is a constant (heating at the fundamental Ion

cyclotron resonance frequency). In the case of second harmonic heating,

the diffusion constant is proportional to the perpendicular energy of the

particle. This should tend to make the bulk distribution even more iso-

tropic and further enhance the anisotropy of the high energy tails.

The following figures illustrate the good agreement between the qualitative

picture obtained here and various numerical and experimental results

0

20
ENERGY (keV)

30 40

Fig. 3. Numerical solution of the time evolution of the distribution
function, [l6].
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Flg. 4. Numerically obtained tall temperature evolution [7]. The
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Fig. 5. Stationary level curves as obtained numerically in [l7]<
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Pig. 7. Time evolution of absorbed RF power collisionally transferred
to background ions, P , and electrons, P , [7].
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Finally we emphasize that the different characteristic timescales to reach

steady state for the bulk and tall respectively will reappear In derived

quantities, e.g. the collislonal power transfer to background Ions should

saturate much faster in time than the power transfer to the electrons, cf.

Fig. 7.

Quantitative analysis - the Fokker-Planck quatlon

A quantitative analysis of the RF-induced distortion of the velocity dis-

tribution must be based on the Fokker-Planck equation:

||- - C(f) + Q(f) (7)

where C(f) and Q(f) denote the collision ard RF diffusion operator respect-

ively. C(f) is given by

H • v./v is the pitch angle coordinate and o,f3, and y are the coefficients

of the collision operator, [l,2J. The RF-diffusion operator, Q(f), is

given by

where the diffusion coefficient, 0, is

K is a numerical constant, |E I and |E I are the amplitudes of the left
n + —

and right hand components of the RF-wave. k is the perpendicular wave

number of the RF wave, u is the ion cyclotron frequency, and J , and
cl n—i

J ., are the Bessel functions of order n-1 and n+1 respectively, where nn+i
denotes the heating mode (n-1 for fundamental and n-2 for second harmonic

heating).
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We emphasize that the operators C(f) and Q(f) in eqs. (8) and (9) are ex-

pressed in different variables, (v,n) and (vi»v|) respectively. If we

express C(f) in the variables (v.iv.) or Q(f) *n the variables (v,n), very

complicated expressions are obtained. This "incompatibility" of the oper-

ators C(f) and Q(f) has been one of the major difficulties in analytical

investigations of the Fokker-Planck equation, eq. (7).

The situation is further complicated by the fact that the distribution

function obtained as a solution of eq. (7) consists of an almost Isotropic

Maxwellian low energy bulk part plus a strongly anisotropic high energy

tail. Thus, although the variables (v,n), being the natural variables for

the collision operator, should be very useful in describing the bulk dis-

tribution, they are not very appropriate when analyzing the high energy

tail. Conversely, the variables (v.,v.) being the natural variables of the

RF-diffusion operator, are ideally suited for an analysis of the tail, but

they become very awkward when used to analyze the bulk distribution.

The bulk part of the distribution, which tends to be almost isotropic,

contains most of the heated particles. From this point of view it is natu-

ral to express f, C(f), and Q(f) in the variables (v,ii) and to expand

f(v,n) in terms of Legendre polynomials, P (n), the eigenfunctions of the

collisional pitch angle scattering operator. Thus

CO

i) - E A. (v,t) P. (n) (11)

Inserting this ansatz into eq. (7) and taking the moment with respect to

P,. (ii), one finds the following equation for A». :
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where X is the eigenvalue of the pitch angle scattering operator corre-

sponding to P. and < > denotes integration over the pitch angle variable

Since P (\i) is not an eigenfunction of the RF operator, Q, eq. (12) be-
2n

comes an infinitely coupled system for the determination of {A~}« How-

ever, if the distribution f(v,iO is almost isotropic it is meaningful to

truncate the system by neglecting higher order moments, keeping only the

lowest order (isotropic) moment A (v,t). Assuming steady-state conditions
o

we arrive at the following semi-analytical solution,

v -2av2+ j - (pv2)
A (v) - A(0) exp(- j = äZ_ d v)
° o pv*+2K v F (v)

n n

where

i + 1 •> ki v /—7
Fn(v)-i/ (lVJHjji- /lV)dn (14)

-1 ci

Asymptotic Isotropic solutions of the Fokker-Planck equation

Several informative conclusions can be drawn from asymptotic forms of eqs.

(13) and (14)

(i) Fundamental ion cyclotron heating

2
If we neglect finite Larmor radius effects we can approximate J (x) » 1 In

which case F (v) • 2/3. Furthermore using the high and low energy asymp-

totic expansions of the collision coefficients we obtain, [4]

r) E « E

Ao(v)

exp(- XTT+ET) E » E
c
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1/2where in accordance with our previous qualitative analysis £. - (m /m,) E,

and T denotes the (common) background temperature,o

(ii) Second harmonic ion cyclotron heating

2 2

Approximating J.(x) = x /4 and keeping only second order terms in the ex-

pansion of H.(x) we obtain

A (v) -

exp(-E/TQ)

Bl/U

E « E

E » E (16)

where

71 "ITT
U)
ci

t = (17)

In eq. (17), P denotes the (fictitious) RF power absorbed by a Maxwellian
M

of density n and temperature, T .

The asymptotic solution, eq. (16), confirms our qualitative picture of an

unaffected low energy region and a strongly enhanced high energy tail. In

fact, for sufficiently strong RF fields (T) > 2/3), the tail becomes so

enhanced that the distribution can no longer be normalized, indicating a

run-away phenomenon. This is actually due to the parabolic approximation
2 2

of J.(x). A better approximation of J.(x) for x < 1 is a straight line,

cf. Fig. 8. In this .ontext we emphasize that the explicit form of the

high energy tail may be significantly affected also by the |E_|-contribu-
2 ~2

tion to the RF-diffusion constant since typically |E I /|E I * 10, cf.
[7].
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Fig. 8 Different approximations of J?(x),

However, If we for simplicity use the linear approximation for J.(x) as an

approximation also for H.(x), we find the asymptotic (integrable) solution

Ao(v) exp(- Zy) (18)

where r\ is a constant determined by the slope of the linear approximation
2

for J,. Thus, the run-away situation does not occur when the correct varl-
2

ation of J.(x) is accounted for» Nevertheless, it does indicate the forma-

tion of very strong RF-induced high energy tails and concomitant strongly

enhanced RF power absorption at a certain critical field strength, cf.

Fig. 9.
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Fig. 9 Illustration of the second harmonic absorption "run away" ef-
fect, [7J.

Anisotropy

The isotropic solutions discussed in the previous section are derived under

the assumption that the degree of anisotropy is small so that the influence

of higher order moments can be neglected. The validity of this assumption

can be checked a posteriori by perturbatively determining the first aniso-

tropic moment A 2(v). This yields, [2]

(i) Fundamental heating

A2(v) ~

- EA (v)
o

- U (v)
o

E « E

E » E (19)

Thus the anisotropy is small in the low energy limit and vanishes complete-

ly as E * 0. However, in the high energy limit I A2(v)| /A (v) » C, which
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indicates that for strong RF power absorption (£ > I), the high energy tail

becomes so strongly anisotropic so as to sake inconsistent the perturbative

solution procedure based on a truncated Legendre polynomial expansion.

(ii) Second harmonic heating

- E2A (v) E « E
o c

A,(v) -
' 10

- -^ A (v) E » E (20)
7 O C

At low energies the distribution is very isotropic, even more so than for

fundamental heating (as expected). However, the strong anisotropy in the

high energy limit (independent of RF power) again invalidates the truncated

expansion procedure.

Thus, we are led to the conclusion that a truncated expansion in Legendre

polynomials is very useful for a description of the low energy part of the

distribution, which is almost isotropic, but is not appropriate for an

analysis of strongly anisotropic high energy tails.

Anisotropic high energy tail analysis

In view of the limited success of the Legendre polynomial expansion ap-

proach in describing the high energy tails it is tempting to try to make

use of the simple form of the RF-diffusion operator when expressed in the

variables (v.,v.). The form of the collision operator, expressed in these

coordinates is very complicated but by restricting the analysis to the high

energy, strongly anisotropic tail, important information can be obtained

which complements the isotropic results.

Well out in the high energy, strongly anisotropic tail distribution the

following approximations can be made
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Making use of eq. (21) in the Fokker-Planck equation a new equation can be

derived for the reduced distribution F(v ) defined by

F(vx) = / f(v|,vi)dv| - <f> (22)

If we neglect coupling to higher order moments of the form <v, f> we obtain

the following solution for F(v ):

F(v ) * erp (- / T-± dv (23)
P+2K v, H (k.v./u .)

n i n 1 1 cl

which is strongly reminiscent of the lsotropic solution, eq. (13). The

main differences are: (i) the pitch angle scattering term (y/2) in the

numerator which enhances the friction force and (ii) the RF-dlffuslon is

stronger since the absorbed RF power is no longer assumed to be iso-

tropized.

The asymptotic high energy distributions are found to be

T (1+3^/2)J K cl'
o

(to - 2a) ) (24)
ci

These solutions agree in form with the corresponding lsotropic results,

eqs. (15) and (16) except for higher "temperatures" (5 •*• 11,11 and TI • 15/8n

respectively).

A decisive drawback of this analysis is the fact that it does not, in a

consistent manner join the low energy lsotropic distribution. Thus,

eq. (23) yields the correct asymptotic form of the distribution, but Its
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proper height is left undecided. Nevertheless, the solution (23) gives

important complementary information about the properties of the strongly

anisotropic high energy tails. As an illustrative example we show in Fig.

10 a comparison between full 2D-numeric <1 calculations and the variation of

the local temperature (defined as -(d/ln A (v)/dv) ). Note the transition

from the isotropic temperatures at low energies to the anisotropic tempera-

tures at high energies.

Ttoil

[keV]

150-

»00-

50-

fTtail

100 200 300 400 500 600 700 800

Fig. 10 Local tail temperatures, [7].

Velocity space averages

The situation so far represents a stalemate: we have the isotropic result

based on a truncated expansion in Legendre polynomials, which gives a good

description of the low energy bulk distribution, but which does not give a

good representation of the tail. On the other hand, the anisotropic ap-

proach gives a correct picture of the high energy tail but leaves a con-

stant of proportionality (the height) undetermined and the fundamental
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assumptions of the approach excludes an extension to the low energy iso-

tropic part of the distribution.

However, in many situations the distribution function, f(v,u), itself is

not the goal but only the means to evaluate certain velocity space averages

representing physically meaningful quantities, i.e.

«G(v,n)>> i /G(v,u)f(v,n)d3v (25)

Example of such averages are:

(i) absorbed RF power

G - jmv 2 (26)

(ii) RF power collisionally transferred to electrons and background ions

G - j mv2Ce(v) ; G - ± mv2 C^v) (27)

where C and C denotes the contributions to the co l l i s iona l friction
operator coming from electrons and background ions respectively.

( i i i ) fusion reactivity

G • o(v)v (28)

In particular we note that if G is independent of \x, cf eqs. (26)-(28),

eq. (25) can be rewritten as

2 l
- jG(v)4nv dv ±

/G(v)<f> 4nv2dv (29)
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where <f> denotes the pitch angle averaged distribution.

Obviously, If f is represented In terms of a Legendre polynomial expansion,

then <f> AQ(v) - the l8Otroplc part of f. This implies that even if the

isotropic part of f (A (v)) may not be a very good approximation of the

actual distribution (f(v,n)) for all energies, it should still be a very

good approximation for the evaluation of velocity space averages, except

possibly in situations where the weighting function is strongly ^-dependent

and/or strongly peaked at high energies.

As a matter of fact, this conjecture is verified in a manner which exceeds

expectations in [5-8]. It turns out that the isotropic solution A (v), as
o

given by eqs. (13) and (14) provides useful and accurate results for most

physically meaningful velocity space averages including such high energy

characteristics as fusion reactivity and absorbed power. Examples of the

agreement with full 2D numerical computations are given in Figs. 11-13

0.5

0.4

0.3

Fig. 11

o BAFIC |E_/E+|=7
- x BAFIC |E./E+|=3

0.1 0.2 0.3 0.4

PRP (W/cm3)

Comparison between full 2D numerical results and the results
from the isotropic analysis, [5j for the collisional power
transfer to the electrons.



23

1010

1
COwa
o

A

b
v
JP
ti

10*

108

107

10e

o BAFIC |E_/EJ=7
x BAFIC |E_/Ej=3

0.1 0.2 0.3 0.4

PRF (W/cm3)

Flg. 12 Comparison of fusion rates for the D4- 3He reaction (minority
heating), [5].
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Pig. 13 Comparison of fusion rates for the IH-D reaction (second
harmonic heating), [5].
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Surprisingly good agreement is obtained even for such tail sensitive quan-

tities as the number of tail particles, n , and the tail contribution to

the total p-value, 0t> cf Figs. 14-15. The tail is defined by subtracting

from f a Maxwellian with the same temperature as the low energy part.

0.3

0.2

0.1

o BAFIC
" x BAFIC

;

-

_

|E_/E+|=3

PM (W/cm

/ -

•

-

-

3 ) •

0.1 0.2 0.3

Pig. 14 Comparison of number of tail particles obtained by the isotrop
analysis and full 2D calculations, [5].
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/

TV

i

•

-

'_

PM (W/cm3) .

0.1 0.2 0.3

Fig. 15 Comparison of the tail contribution to the p-value, as
obtained by the isotroplc analysis and full 2D calculations,

[5].
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The Isotroplc analysis has also been extended [6-8] to Include the case of

combined NBI and ICRF heating with the RF wave frequency tuned to the

cyclotron frequency of the Injected Ions, a relevant heating scenario for

JET. The corresponding Fokker-Planck equation, eq. (7), Is then augmented

with a source term S(v,n) and a loss term L(v,|i) accounting for the Injec-

tion and the loss of particles. An example of the corresponding lsotroplc

approximation of the distribution in this case is given in Fig. 16.

fri
Flo)

-5

-10

0.: W/em

50 100 ISO
Energy E

Fig. 16 Example of an isotropic approximation of the distribution of RF
heated beam injected ions, [9].

Again the isotropic approximation is a useful means for evaluating velocity

space averages, even in cases involving strongly anisotroplc injection

sources, cf Figs. 17-19.
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Fig. 17 Colllslonal power transfer to background Ions for an energy
clamping situation, [9].
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Fig. 18 Absorbed RF-power for an energy clamping situation, [9],
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Fig. 19 Fusion reactivity (^e injected into D), [9]

Influence of higher order finite Larnor radius effects

Previous approximations of the RF-induced diffusion constant have employed
2

first order expansions of J ,(x). However, for certain heating scenarii
2

on JET, deviations from, e.g. the parabolic approximation of J.(x) starts

to develop already for energies E > 50 kev. It is therefore Important to

Incorporate higher order finite Larmor radius effects, in particular for

the correct interpretation of absorbed RF power and fusion measurements.

The Importance of FLR-effects in saturating the run-away phenomenon for

second harmonic heating has already been emphasized.

In an expansion to higher order in k. It is important to keep the contribu-

tions to the diffusion constant coming from the right hand component, E ,

of the wave since typically |E_|/|E+| » 1. As an illustration of this

effect we note that to fourth order in k we obtain for fundamental heat-

ing, cf. [7]
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where u. •
l

2 2
k . v . / u . a n d A = J E I / I E . I1 1 ci • — + This result Implies that the

reduction of the diffusion constant which Is due to the J (x) variation Is
2 °replaced by an enhancement due to the Increasing J2(x) contribution If

(5+A)/64 » 1/2, I .e . If |E_|/ |E+ | > 5, cf. fig. 22.

150 -

0)

H 100

50 -

200 400 600

E [:ceV]
Fig. 20 Illustration of the effect of finite k, on the local

temperature, [5], for fundamental heating.
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Pig. 21 Illustration of the effect of finite |Ej/|E+| on the local
temperature for second harmonic heating, [7].
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Pig. 22 Effect of finite k and |E |/|E+| on the absorbed RP power,

[7].
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Direct approach to pitch angle averaged distributions

In our previous analysis we have tried to determine the full distribution

function f(v,n), but then in practice we only used the pitch angle averaged

(isotropic) part in the determination of the velocity space averages. An

alternative approach would be to derive an equation for <f> itself, hoping

to find a significant simplification.

We restrict the present analysis to fundamental heating and neglect FLR

effects. By pitch angle averaging the Fokker-Planck equation we find an

equation of the following form, cf [lO,ll]:

L l (v , ^ X D - L2(v, £j-)<H2f> (30)

where L. and L. are certain inhomogeneous differential operators. Eq. (30)

again implies a coupling to higher order moments, which we, however, can

formally truncate by writing

<H2f> s ^

This yields a self-consistent equation for <f> of the form:

L(v, 27><f> - 0 (32)

which can be solved to give

v -ov + T -T— [Bv ]+K..vri-3ii ,,-v -r- (
,.̂  f r 2 dv v ; 1 L eff dv v e r r " . i
<f>-exp{- J -. 5 -Tj dv}

) ] v 2

2
Provided \x _ , (v) i s known, eq. (33) constitutes an explicit (and exact)err M
solution for <f>. The qualitative variation of He£f(v) i s easily inferred

since

-L,
1/3 for isotropic distributions

0 for strongly anisotropic distributions
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Thus, for the RF-distorted distribution we expect |i2ff * 1/3 as v * 0 and

^eff * ° as v * "* I n d e ed, if we take these limits in eq. (33) we regain

our previous isotropic and anisotropic solutions respectively. Since the

distribution remains essentially isotropic up to characteristic energies
E a By " -% "'Y» where v is the characteristic pitch angle scattering vel-

ocity, [l,2] we have used the following simple function model for u2 :

T exP(-(f")4) 5 v. - 0.55 v, (35)

The corresponding result for <f> relates, in a consistent manner, the pre-

viously unrelated isotropic and anisotropic approaches.

s

b

101

107

10a

10s

RF POWER (W/cm3)

Pig. 23 Comparison between fusion rates (He^+D) obtained by the aniso-
tropic, the isotropic and full 2D numerical computations,
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Effects of particle trapping on ICRH

The original analysis of Stix, [l], involved an averaging over magnetic

surfaces. This averaging did not, however, take into account the modula-

tion of v. and u « v / v that the particle experiences due to toroidal ef-

fects, even less the possibility of trapped particles. In [l2] we derived

a new bounce averaged Fokker-Planck equation which included these effects

on, in particular, the RF diffusion operator. Although the resulting equa-

tion is quite complicated certain qualitative features are easily discern-

ible:

(1) Particles that have the turning points of their banana orbit outside

the resonance layer will not absorb RF power

(ii) the RF-induced diffusion transfers particles towards higher v., i.e.

increases the number of trapped particles

(iii) the combined effect of (i) and (ii) is to cause a pile up in vel-

ocity space around the pitch angle corresponding to the situation

when the tips of the particles banana orbit touch the resonance

layer, cf. Fig. 24

Fig» 24 Illustration of the ICRH-enhanced trapping.

This pile up effect should show up as a horn like deformation of the level

curves of f, as shown qualitatively in Fig. 25.
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•• VHo

Fig. 25 Qualitative plot of the level curves in the presence of trap-
ping effects, [14].

Corresponding inversions of the distribution function with pitch angle have

also been observed experimentally, Fig. 26.

QI4 028 a42 aS6 0.70

Fig. 26 Experimentally measured pitch angle dependence, [19].
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In [l3j we have rigorously analyzed the bounce averaged Fokker-Planck equa-

tion for minority heating using a perturbative expansion in terms of the

eigenfunctions of the pitch angle scattering operator. The analysis is

complicated involving Legendre polynomials with non-integer indices and the

matching of solutions at the RF cut-off boundary in velocity space. The

main results are that toroidal effects tend to reduce the overall aniso-

tropy of the distribution but have little influence on the isotropic low

energy part of f. This also implies that toroidal effects cannot be ex-

pected to significantly affect velocity space averages of the form dis-

cussed previously. A confirmative example of this conclusion is given in

Fig. 27

o as i»
Abiortxd powar watt/cm'

Fig. 27 Effect of particle trapping on fusion reactivity, [17].
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Collisionless short time evolution of RF-heated distributions

Problems connected with RF-enhanced sawtooth activity involves inherently

short timescales and have focussed the interest on the short time develop-

ment of RF-heated ion distributions. However, the corresponding knowledge

is much more Incomplete and in [l4,15] we have derived explicit analytical

solutions for the short time (collisionless) development of ion distribu-

tions for several different heating scenarii. The analysis neglects col-

lisions and is consequently only valid for times less than a slowing down,

t . This should not be a serious limitation in connection with, e.g. saw-

tooth phenomena which occur on a timescale, t of typically 20 ms with the
S t

high energy particles often being expelled from the heated plasma at the
sawtooth collapse, thus "resetting" the heated distribution. Since the tail

12formation time, t , is typically of the order of a few ms (for n -1.5*10
—3 ° 3 e

cm , T-3 kev, and R_-0.25 W/cm we obtain t »3 ms, ef eq. (4)) while the
slowing down time is t -200-300 ms, we have the ordering t « t « t , which

S O St S

establishes the applicability of the results obtained in [l4,15].

The equation we consider is

Öf _ 1 8 (9 2n-l 9f U Q•5— • — T — IK v. . I + Söt v ov v n 1 öv ;

where Ki"Ki » K2»K2k./(4u ), and S represents the source function in the

case of combined NBI and ICRH.

The solution of eq. (36) in the case of minority heating served as a basis

for our qualitative discussion of the effect of ICRH on the distribution of

the heated ions, cf eq. (3).

For second harmonic majority heating the formal solution of eq. (36), for

an initially Maxwellian distribution, Is not very explicit. It is more

illuminating to consider the evolution of a waterbag approximation of the

initial distribution. The corresponding solution for the perpendicular

distribution, F(v ,t), is
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v l 2

F(vitt) - erfc ( (37)

_ 2t
vhere t«4K7t = — and erfc denotes the complementary error function,

Fig. 28 Illustrates the evolution of the distribution. Note in particular
the unchanged low energy region and the strong tai l enhancement.

2Flvt.t)/A

t/t«=O

Fig. Z8 Time evolution of a water bag c
second harmonic heating, [14j.

Whereas for minority heating the RF power absorption is constant (depending

only on the number of particles) for second harmonic majority heating, the

absorbed RF power increases exponentially with time according to

p • —=-
RF tn

(38)

Similar explicit and/or semi-explicit analytical solutions can be given for

energy damping situations involving beam sources assumed monochromatic In

perpendicular energy. An example of the time evolution of an RF-heated

beam distribution is given in Pig. 29. Note in particular that in addition

to the RF-induced tail formation, an enhanced diffusion towards lower ener-

gies also occurs, which should manifest itself as an anomalous slowing down

effect in situations where the tall formation time is significantly smaller

than the slowing down time.
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Fig. 29 Time evolution of an RF-heated beam injected distribution,
[u].

A curious artifact of the time dependent solution in the case of second

harmonic heating of a beam is that the height of the beam distribution at

the injection energy does not, as in the case of fundamental heating, in-

crease unboundedly in time but rather saturates at a finite value. This

again illustrates the strong tail forming property of second harmonic heat-

ing.

An analysis of the time evolution of the distribution function Including

toroidal effects shreds further light on the form and properties of the

pile up at the RF cut-off line in velocity space. It can be shown, [l4],

that the level curves in the case of minority heating evolve according to

- 2esin In constant (39)

where index 0 denotes that the velocity coordinates are taken in the equa-

torial plane of the plasma cross section, index R denotes values evaluated

at the resonance layer, and e is the inverse aspect ratio.
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The initially circular level curves are deformed into successively more

elongated ellipses, which at a finite time, t, , transform into hyperbolas.

The characteristic time t, is determined by
t h

t - 2-
n 2esin 9R/2

(40)

The asymptotes of the hyperboles lie in the cut-off region in velocity

space but approaches the cut-off line as time increases. This implies a

run-away phenomenon in time.

However, collisional effects will again stop this development and the im-

portance of the run-away phenomena is determined by the ratio

-5- - -£ 2esin20 /2 (41)

Thus, in the bulk region where the slowing down time is small and t /t,«l
s n

we expect the ordinary almost circular stationary level curves. However,

the elongation can be expected to increase with energy and for realistic

RF-power absorption and aspects ratios (e.g. t It -20, 0 -it/2, and e-0.1)
S O K

the high energy level curves should correspond to the hyperbolic situation.

In addition, collisional pitch angle scattering should "round off" t'ue

subsequent strong gradients and lead to a hornlike form of the level curves

around the cut-off line, as qualitatively shown in Fig. 25.

The good agreement of this qualitative picture with the result of full 2D

numerical calculations is illustrated in Fig. 30.

-1.0

TRAPPEO-
TRANSIT
BOUNDARY

1.0

Fig.ZO Numerically obtained level curves in the presence of trapping
effects, [20].
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Conclusion

The main results of the work performed within the contract are:

(i) Simple analytical and/or semi-analytical expressions have been de-

rived for the isotropic part of ion distributions heated by ICRH and

also for energy clamping schemes involving both NB1 and ICRH.

(ii) These isotropic expressions have been shown to be a useful and accu-

rate means to evaluate most physically meaningful velocity space

averages. They furthermore only require short computational proce-

dure and are Ideally suited for use in situations where the distri-

bution function itself is not the final goal but the means to evalu-

ate other physical characteristics, e.g. in transport codes.

(iii) Finite Larmor radius corrections to the RF-induced diffusion con-

stants have been shown to significantly affect the formation of high

energy tails and to play an important role for the interpretation

of, eg. absorbed RF power and fusion yield data.

(iv) A new bounce averaged Fokker-Planck equation has been derived which

'cakes into account totoldal effects on the particle velocity. This

equation has subsequently been solved perturbatively in the limit of

an almost isotropic distribution. This result, together with the

result of a collisionless analysis, Indicate that although toroidal

effects could lead to important changes in the high energy charac-

teristics of the distribution, the isotropic part is not signifi-

cantly affected and consequently neither is the physically important

velocity space averages.

(v) Explicit solutions have been derived which describe the collision-

less short time development of ion distributions subject to RF-in-

duced velocity space diffusion. The results should be particularly

useful for sawtooth applications.
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Finally, we want to emphasize that an important result of the present work

is undocumented but may well turn out to be the most valuable: the in-

creased understanding and the physical intuition, which the involved

people, both at CTH and JET, have acquired of the influence of ICRH on the

distribution functions of the heated ions and the subsequent interaction

with the background plasma. In this context we also gratefully acknowledge

the inspiring role played for the present work by T. Hellsten, W. Core and

H. Hamnen at JET, who by direct collaboration and/or numerous informative

discussions have contributed to t;he present understanding.
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