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ABSTRACT

Two examples dgre presented in this paper, the first is
unfavorable to the c-boundary construction given by Geroch, Kronheimer
and Penrose but in favor of that given by Budic and Sachs, while the
second plays an opposite role. The second example is also an example
of e causally continucus spacetime with a "reslly big gap', contrary

te¢ what was believed in the literature.
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1. INTRODUCTION

In order t¢o have a better description of spacetime
singularities within the framework of classical general
relativity, one would like to construct an enlarged topological
space M interpreted as the spacetime manifold M with some singular
boundary @ attached. Various constructions have been put forward.
The constructions of b—boundary‘ and g—boundaryz have been known

to be unsatisfactory”*.

The construction known as the c-boundary
{causal-boundary) construction given by Geroch, Kronheimer and
Penrose‘ in 1972 makes use only of the causal structure of the
spacetime and hence has certain merit from the physical point of
view. However, as 1illustrated by its authors, it fails to
construct a Hausdorff topological space M which is also a causal
space in general. To surmount this difficulty, Budic and Sachs
gave an improved definition of the c¢-boundary construction in
19746. They proved that the resulting Hausdorff topological space
M is also a causal space with causal structure extended from that
of the original spacetime (M,g) itself, provided that {(M.g) is
causally continuous (a causal requirement much Stronger than
distinguishing required by Ref. 5), thus it makes good sense to
ask whether signals with speed less than or equal to that of light
¢can be sent between a regular poeint and an ideal point. We will
refer to the c-boundary construction given in Ref.5 as the GEP
construction and that given in Ref.6 as the BS construction. In a
recent paper by Kuang, Li and Liang’. it was shown that for some
singular exact solutiopns to Einstein equations the c-boundary of
the GKP construction is unsatisfactory, for example, the "singular
portion* of the c-boundary of Taub’'s plane-symmetric vacuum
solution turned out to be a single point, suggesting that it might
not be fruitful describing the structure of singularities using
the notion of c-boundary defined by GEKP. Besides, as will be shown
in the next section, there is something else that is also
unfaverable to the GEP construction. The fact that these two
deficiencies do not exist in the BS construction suggests that the
BS construction might be more acceptable. Nevertheless, we will
give an example in section 3 showing that there is also something
unfavorable to it, a arawback which is not shared by the GEKP

construction. Therefore it seems still an open Question whether
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one cdan construct some improved c¢-boundary which is free of
deficiencies.

3. AN EXAMPLE UNFAVORABLE TO THE BS CONSTRUCTION
2. A SECOND EXAMPLE UNFAVORABLE TO THE GEP CONSTRUCTICN

We first give a brief outline of the essential contents of

Assuming the reader is familiar with the GRP construction, we the BS construction relevant to this paper as follows.
present the example as follows. Define binary relations z and » on a time-orientable
Let (g,q) be a three-dimensional Minkowski spacetime with spacetime (M,g) as usual. Define concepts IP and IF as in the GKP
Cartesian coordinates ({t,x,y) and (M,n) a subspacetime where construction. Denote the power set, the topology, the collections

M={{t,x. :y>0]. Conside future di ted timelike curve M
it x.y):y>01 sicer a tu recte - re of past sets, future sets, IP's and IF's of (M,g) as J,‘?,ﬂ, &,
with the origin (0,0,0) as its future endpoint in M and a past

directed timelike curve AcM with (0,0.0} as past endpoint in M. » “a' anddq,respectively. Define a map I : tg"yij by I S=i{xeM:x«s

{resp. A} 1is Ffuture {resp. past} inextendible in M. It 1is for some seSl v Se4ﬁ. Define a map f:H-hJZ’ by ix=I_|xIV xeM.

reasonable to require that the TIP, I (y,M), and the TIF, I’ {A.M}, . - . .
q_ @ r A Define a map {:sﬂtﬁp by YU=I [xeM:x«u Vv ueUl=interior{xeM : x«u ¥V
bu identified in M, and this is exactly the case according to the

BS tdentification rule. It 1is however not true in the GKP uel | v UEE?" The maps I, I and + are defined dually. DPefine =2
construction. Indeed, there exist two open sets 01 ang O; with and » on,ﬁt:ﬁi by table 2.2 in Ref.6. For example, if P,Qe,ﬁ . then
t (r.M)'e01 ! I‘(l‘M).eoz and 01n0z=ﬁ' To see this, consider the P»Q iff Pn{Q-#. Define an equivalence relation -~ on J&t}Jﬁ as
following two subsets of M: ~ v A
A= [(t.x.y):tox, y>0l, follows: for A,Be Ml (or AL ), A+B iff A=n; for el , Badl . a-n
B = [{t,x,y):t<x, y>0l. iff A=¢§B and B=}A. Define the causal completion of (M,g) as E=,jluﬁ

They are, respectively, a TIF and a TIP in M, since there exist . —
¥ p ¥ /v, then 2 and » are well Adefined on M. Define the extended

some past (resp. future} inextendible timelike curves a, (resp. §} _ _
in M such that A = It(a.M) and B = I_(ﬂ,M). For instance, one can Alexandrov topolegy & on ¥ as the smallest topology omn M such
take the following curve to be gB:t=t, x=t+l/t, y=1/t (t>1}), and that for all ceM, each of the following four subcollections is

dually £ . A di the GEP ti , th 1lowing tw - . - - =
ually for a. According to the i°“5tr“° ron ¢ following two open: I"icl, I tecl, K icl=M-J lc}, K lcl=M-J"(c}, where
subsets of the Intermediate space a en: . = - =

uhse © T interme P M are op 1" {cix=laeM:ancl, and J' IcI=laeM:azcl. It was shown that {(M,z.» .77}

R . # A . . . R =
AT = 4P 5[}& :Pq}{and P=I" {5} = I+(S)¢A for all SeM 1. is a causal space with Hausdorff topology and 4:M+M has all the
desired properties {(e.g., it is a dense imbedding) provided that

ool

- hd -
B ={F EJH?:FQ}(and F=I" (S} » I (S)gB for all sgM |. ({M.g) is causally continuous, thus the boundary & is mnaturally

- . . - . interpreted as the causal-boundary of (M.g).
t 1 traightf d t k th LM} eB” ™" d I . . ; . 3
. lf\? raie orvar © chee at I7 an (r.m) An essential requirement for constructing a causal completion

€A by showing that any SeM with I° (S ,M}=I" (o.M} [resp.
I {S,M}=I (y.M)] satisfies I {S.MI¢B [resp. I" (S, M)  gal.
“*" and B

M which is both a Hausdorff topological space and a causal space

\‘ is the causal continuity of {M,q). A spacetime (M,g) is said to be
Consequently A “** can be taken to be the desired O and . . . . s . - . .

a ¥ 1 causally continuous iff it is both distinguishing and reflective.
0z respectively. Note, however, that this is not true if we are

(M,g} is said to be reflective iff Mx=Ix ana }ix=ix v xeM. The

dealing with M instead of M since the origin (0,0,0) can then be causal continuity of spacetimes has been investigated in detail by
taken as S violating the requirement in the definitiens of AV some authors® ®®*''?_ It was pointed out in Ref.8 that "rcughly, a
and BNV causally continuous spacetime ...... has no really big gaps {gaps



of “dimension' more than 2}" and some statements similar in spirit
to it can also be found in the other refervences quoted. However,
we have found a four-dimensional spacetime ({artificial though)
with a "really big gap”, i.e., a "gap" of four-dimensions which is
causally continuous. It is also this spacetime to which the
application of the BS construction gives some unfavorable result,
as will be illustrated shortly.

Although the motivation of the BS construction was to
overcome the non-cooperation between the Hausdorff topology and
the causal structure of the resulting space M, it turns out that
the two defects of the GKP construction mentioned in sections 1
and 2 are also surmounted. Nonetheless, the following example
1llustrates that it might have its own drawback.

Consider an (n+l)-dimensional Minkowski spacetime tﬁ.n).
Denote the Cartesian coordinates of M by (t,x?,...,x"). Let
a=(—1,0....,0)&ﬁ and b={1,0,...,0)e§. By removing a closed subset
R=Closure[I'(a.§) n IM(b,ﬁ}] ¢of the same dimension from M we get a
submanifold M=M-R and a subspacetime {M,n). Since two spacetimes
(ﬁ,n) and {M,p} will be alternatively dealt with, we will,
whenever necessary, add subscripts Ye or "M" to the symbols for
the relation » and maps I , I, %, I, { and + to clarify the

spacetime involved. We wWill also write i;ani;b instead of

1% (a,M)aTl (b,M) to be in accordance with the BS notation. It will
be proved in the next section that the subspacetime (M.,n) 1is
causally continuous provided that n > 1, thus the BS construction
1s applicable. Let M be the causal completion of (M.n). In

addition to the infinity portion 8i of the c-boundary @, there is
also seome "singular portion"” B'- Cbviously, there 1is a natural
correspondence between R and 6' , hence one would, intuitively,
expect thal near 3s the topological structure of M should be the
same as that of M, i.e., the way of "gluing” aS to M should be the

same as that of "gluing” AR to M. However, the following shows
that it is not the case, thus suggesting that there might be
something unsatisfactory about the BS construction.

Choose a point e={-1/2, -1, 0,...,0)gM, then iue - ine is a

regular point in M. Let y ¢ M be a past inextendible timelike

curve which, viewed as a curve in ﬁ, has b as its past endpoint,

then I;r is an ideal point in M. Since {I;r fn iue # #, we have,

according to the BS construction, I:y » i"e or equivalently I;r €
I'Ifnei. Consider a point sequence lfif in M defined by fi=(1'
1/i, 0,...,0), then one has a corresponding point segquence IFi) in
M defined by Fi=fufieu. Since finfin iHe=ﬂ, we have F‘ﬂ I'{fue]

for any i. This, together with the fact that I+!i"el is an open
set in the extended Alexandrov topology., implies that !Fil does

not converge to I;r in M. It is however obvious that if£]
1

~ —
converges to b in M, therefore we conclude that the topology of M

near I;r is different from that of M.
4. PROOF OF THE CAUSAL CONTINUITY OF (E—R.ﬂ)

Throughout the proof we will use the following notation : for

xeM (resp. xeM) and ScM (resp. ScM)}, we write x&S (resp. xx S8 )

M
iff xgs {resp. xgs) Vv s€S. Dual statements (if any}) to those in
[
the following lemmas are taken for granted and are not written.

LEMMA 1. Let x, yeM and [u | be a sequence in M satisfying

(1) Iuilcfx, '

(2} x is a limit point of [(u !,

then y«ix iff y«lu }. '

This lemma is truel for all chronological spacetimes, the
proof is trivial and is omitted.

To prove the causal continuity of (M,n) is to prove

hiuc=ic and kﬁHc=&Mc for all ceM. Since i;cnR#ﬂ and i;cnkfﬂ would

imply c¢eR, we have only three possible cases:

(1) Ixcnr=p, i;cnk=ﬂ:
{2} I-cnRpe, igcnk%:
()] I;cnk=ﬂ, i;cnkfﬂ.

LEMMA 2. i;cnR=ﬂ implies iMc=i;c.

PROOF. It suffices to show iﬁcgiﬂc. For any xeiﬁc, the timelike

-6-



curve connecting ¢ to X must not intersect R or there would be

yei;cnk. Hence xEENc .

]
LEMMA 3. b ~C.
1‘" NCEfK?MC
PROOF. For any xefM?Nc, there exists yeM, xgyﬁchci;c. Let Iuj!
be a sequence in ?Mc with ¢ as 1ts limit point, then yﬁlu]i which
implies yzlutl, hence y»iﬁc and xefﬁ?qc. Note that 1lemma 1 has
M M
been used twice. -
Since we always have IHc;‘I"ch and ?Mc E{HIHC, what remains

t«: be shown is} I cef e andf % ccf ¢. On account of lemmas 2 and 3
M M MM M

as well as the causal continuity of (g,n). tiﬂc&fﬂc is true for

cases (1) and (3), while *MiHCETNC is true for cases (1) and (2).

Trerefore the essential issue is to prove fhincgiﬂc for case (2)

s10ce }ﬂfﬂcgﬁﬁc for case {3) will then follow dually.

Let c:(tc,x;,...,x:), then i;cnRgﬁ implies t <0. Define
Stsfﬂihcnl(t,xi,...,x"):tzol.
§ el fnentit,xt, .. . x™ it 0f=T.c i(t, x', ....x"):t O],
1T AW v
Slefnfﬂcnl(t,xi,...,x"):t>0i,
§ = w L x™ =1~ Lo x™:
2 Tﬁi“cn!(t,x A XM 0l IMcnl(t. x*, x"re>0],
then $ T c=$ us_, s 5 -R, 5 ¢c5 -R. We want to show S I ¢ and
MM 1% 1= 2"z 1w
S Ef C.
25

~ v
Let DGS1€SL“R, then pEIFC' The timelike curve connecting c to

P must not intersect R or there would be qERniﬁp which implies

pei;an!(t.xi,...,x"}:t£0|cR. thus peiuc.
Let p={t .xl,...,x')es , then peinteriorlyeﬂ:yginc} and one
P B P 4
can choose a<t such that p'={t -a.x*,....x")einterior
P P P
lyeM:y»? ¢t, i.e., p'»?% c. Let v =t -1/i.xt, ... x"), then
M M [ 3 i c < <

lvilcﬁﬂc and {vll converges to ¢. By lemma 1 we have p'a[vll,

hence there exists timelike curves » in M connecting v to p
1 1

Since t -a»0 and t -1/i<0, each 7lmuch intersect the plane
P <

-J—

Eml(o,x’,....xnil at some point qleEnM. The timelike property of
r, gives

(t -1/7i)3> (x* ~x") %+ 4 (x" -x" ).
[ q‘ c q‘ <

while qterinE and r‘nR=¢ yield

) 2

1oix! 1+ L+(x™ )2,
L] % .

i

On the other hand, 1im(tc—1/i}=tc implies that all q ‘s with
L

sufficiently 1large i are within a compact region of the

n—dimensicnal Euclidean space E, hence there exists a subsequence

lq;! of lqi! such that Iq;l converges to a point q=(0,x:,...,x:)sE

satisfying
t Patxt-xt ) P -x™?, (1
c q € q c
1 {xt 1%+, o+ ix™ R, {2)
9 q

And q;ein'ciﬁp' implies qeclosure(i;p')ci;p.

LEMMA 4. If there exists reE satisfying
{a) r is sufficiently close to g so that rei;p.
{b) rE(i;c—k)nE=(i;an)—(RnE).
then prHc.
PROOF. Since (ﬁ:q)is a Minkowski spacetime, reiﬂp implies that
there exists a timelike geodesic y connecting r to p. But reE-R

implies pnR=@, hence peiﬂr . On the other hand, requirement ({b}

leads to re§;~R=S1sf"c, therefore peiﬂc. m
Let Bo, BecE be open balls centered at (0,0,....0) and

(D,xi,...,x:) with radii 1 and |t°| respectively, then the
-]

requirement rEIi:c-R)nE and inequalities (1), (2) are equivalently

to reBe-closure(Bo} and geclosure(Bc)-Be respectively. Since BegBo
or ¢ would be in R, it is clear that one can always find such an r
for any q unless ge@BcnfBe and n=1. Therefore we conclude that the

spacetime (M.,n) with n>1 is causally continuous.
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