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ABSTRACT

Two examples a're presented in this paper, the first is

unfavorable to the e-boundary construction given by Geroch, Kronheimer

and Penrose but in favor of that given by Budic and Sachs, while the

second plays an opposite role. The second example is also an example

of a causally continuous spacetime with a "really big gap", contrary

to what was believed in the literature.
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1. INTRODUCTION

In order to have a better description of spacetime

singularities within the framework of classical general

relativity, one would like to construct an enlarged topological

space M interpreted as the spacetime manifold M with some singular

boundary d attached. Various constructions have been put forward.

The constructions of b-boundary*" and g-boundary have been known

to be unsatisfactory . The construction known as the c-boundary

{causal-boundary) construction given by Geroch, Kronheimer and

Penrose in 1972 makes use only of the causal structure of the

spacetime and hence has certain merit from the physical point of

view. However, as illustrated by its authors, it fails to

construct a Hausdorff topological space M which is also a causal

space in general. To surmount this difficulty, Budic and Sachs

gave an improved definition of the c-boundary construction in

1974 , They proved that the resulting Hausdorff topological space

M is also a causal space with causal structure extended from that

of the original spacetime (M.g) itself, provided that (M,g) is

causally continuous (a causal requirement much stronger than

distinguishing required by Ref. 5), thus it makes good sense to

ask whether signals with speed less than or equal to that of light

can be sent between a regular point and an ideal point. He will

refer to the c-boundary construction given in Eef.5 as the GKP

construction and that given in Ref.6 as the BS construction. In a

recent paper by Kuang, Li and Liang , it was shown that for some

singular exact solutions to Einstein equations the c-boundary of

the GKP construction is unsatisfactory, for example, the "singular

portion" of the c-boundary of Taub's plane-symmetric vacuum

solution turned out to be a single point, suggesting that it might

not be fruitful describing the structure of singularities using

the notion of c-boundary defined by GKP. Besides, as will be shown

in the next section, there is something else that is also

unfavorable to the GKP construction. The fact that these two

deficiencies do not exist in the BS construction suggests that the

BS construction might be more acceptable. Nevertheless, we will

give an example in section 3 showing that there is also something

unfavorable to it, a drawback which is not shared by the GKP

construction. Therefore it seems still an open question whether

- 2 -



one can const.ruct

deficiencies.

some improved c-boundary which is tree of

2. A SECOND EXAMPLE UNFAVORABLE TO THE GKP CONSTRUCTION

Assuming the reader is familiar with the GKP construction, we

present the example as follows.

Let (M,7|) be a three-dimensional Minkowski spacetime with

Cartesian coordinates (t,x,y) and (M,ri) a subspacetime where

M=I(t,x,y):y>0]. Consider a future directed timelike curve ycM

with the origin (0,0,0) as its future endpoint in M and a past

directed timelike curve A.cM with (0,0,0) as past endpoint in H. f

(reap. A) is future (resp. past) inextendible in M. It is

reasonable to require that the TIP, I (y,M), and the TIF, 1* (^,M),

bu identified in M, and thia is exactly the case according to

BS identification rule. It is however not true in the

construction. Indeed, there exist two open sets O and O

I~(/-,M)*€O , I*U,M)*€O and 0 no =0. To see this, consider
1 2i 1 2,

the

GKP

with

the

following two subsets of M:

A = I(t,x,y):t>x, y>0l,

B = I(t,x,y):t<x, y>01.

They are, respectively, a TIF and a TIP in M, since there exist

some past (resp. future) inextendible timelike curves a (resp. p)

in M such that A = I* (a,Ml and B = I (/8,M) . For instance, one can

take the following curve to be /}:t=t, x=t+l/t, y=l/t {t>D, and

du-illy for a.- According to the GKP construction, the following two

subsfts of the- intermediate spaced are open:

. . .,#

B F-£^
#:I

P=I~(S)

and F=I* (S)

for all SfiM

I" (S)£B for all

i ir.n
[resp.

It is straightforward to check that I+(K,M)'cB"*' and

eA1"' by showing that any S£M with I* (S,M)=I+ U,M>

I~{S,M)=I~(y,H>] satisfies I~(S,M)^B [rcsp. I+(S, M)

Consequently A1**' and B*""1' can be taken to be the desired O

O respectively. Note, however, that this is not true if

dealing with M instead of M since the origin (0,0,0) can then be

taken as S violating the requirement in the definitions of A '

and D' x .

O

we

and

are
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3. AN EXAMPLE UNFAVORABLE TO THE BS CONSTRUCTION

We first give a brief outline of the essential contents of

the BS construction relevant to this paper as follows.

Define binary relations z and # on a time-orientable

spacetime (M,g) as usual. Define concepts IP and IF as in the GKP

construction. Denote the power set, the topology, the collections

of past sets, future sets, IP's and IF's of (M,g) as j£ .'p'.JD, ^.

J\ , and^M. respectively. Define a map I": j£ -*• jD by I"S=!xeM:x«s

for some seSl V Sê J . Define a map i-.H'+JP by ix=I~lx|V x«M.

Define a map +:[7*J^by iu~I~ {xcM:x«u V UGU I =interi or I xeM : x«u V

ueU I V UeJT" • The maps I* , I and f are defined dually. Define i.

and » on.jAuJ\ by table 2.2 in Ref.6. For example, if P.QEA. . then

P»Q iff Pr>tQi*l&. Define an equivalence relation •* on J( u J\ as

follows: for A,B6jt( (ory^ ), A-B iff A=B; for teji. , BeJ{ , A-B

iff A=^B and B=fA. Define the causal completion of (M,g) as M= j\ J{

l-r-, then i. and » are well defined on M. Define the extended

Alexandrov topology J7" on K as the smallest topology on M such

that for all ceM, each of the following four subcollections is

open: I* 1cI , I~lcl, K* )ct=M-j" lei, K~IclsM-J+ Icl, where

I*fc|*laeM:a»c), and J*IcIs[aeM:ajc]. It was shown that (M,>,»,£?")

is a causal space with Hausdorff topology and T:M-*M has all the

desired properties (e.g., it is a dense imbedding) provided that

(M,g) is causally continuous, thus the boundary 6 is naturally

interpreted as the causal-boundary of (M,g).

An essential requirement for constructing a causal completion

M which is both a Hausdorff topological space and a causal space

is the causal continuity of {M,g>. A spacetime (M,g) is said to be

causally continuous iff it is both distinguishing and reflective.

(M,g) is said to be reflective iff fix-ix and |lx=lx V xeM. The

causal continuity of spacetimes has been investigated in detail by

some authors6'8'9'10. It was pointed out in Ref.8 that "roughly, a

causally continuous spacetime has no really big gaps {gaps



of 'dimension" more than 2)" and some statements similar in spirit

to it. cun also be found in the other references quoted. However,

we have found a tour-dimensional spacetime (artificial though)

with a "really big gap", i.e., a "gap" of four-dimensions which is

causally continuous. It is also this spacetime to which the

application of the BS construction gives some unfavorable result,

as will be illustrated shortly.

Although the motivation of the BS construction was to

overcome the non-cooperation between the Hausdorff topology and

the causal structure of the resulting space M, it turns out that

the two defects of the GKP construction mentioned in sections 1

and 2 are also surmounted. Nonetheless, the following example

illustrates that it might have its own drawback.

Consider an (n+1)-dimensional Minkowski spacetime (M,»j).

Denote the Cartesian coordinates of H by (t,x± ,...,x"). Let

a=(-1,0,,..,0)«M and b=(1,0,...,0)eM. By removing a closed subset

R=cJosure[I* (a,M) n 1 (b,M)] of the same dimension from H we get a

submanifold M=M-R and a subspacetime (M,7)). Since two spacetimes

<H,r;) and (»,f)i will be alternatively dealt with, we will,

whenever necessary, add subscripts "M" or "M" to the symbols for

the relation » and maps I , I*, i, I, ̂  and f to clarify the

spacetime involved. We

1* (a.M)ril (b,M) to be in accordance with the BS notation. It will

be proved in the next section that the subspacetime (M,?j) is

causally continuous provided that n > 1, thus the BS construction

is applicable. Let M be the causal completion of (H,r)). In

addition to the infinity portion 9 of the c-boundary 3, there is

also some "singular portion" d . Obviously, there is a natural

will also write I~an$—b instead of
MM

correspondence between 3R and S hence one would, intuitively.

expect thjt. near d the topological structure of M should be the

same as that of M, i.e., the way of "gluing" d to M should be the

same as that of "gluing" $R to M. However, the following shows

that it is not the case, thus suggesting that there might be

something unsatisfactory about the BS construction.

Choose a point e=<-l/2, -1, 0,...,0)sM, then I e — i e is a
M n

regular point in M. Let y c M be a past inextendible timelike

curve which, viewed ;is a curve in M, has b as its past endpoint.

- 5-

then I* r is an ideal point in M. Since ̂  I*y f\ I e j« 0 , we have,
M MM

according to the BS construction, I+y » 1 e or equivalently i'y c
M M H

I* II el. Consider a point sequence If I in M defined by f =(1,M i i

1/i, 0,...,0), then one has a corresponding point sequence {F.1 in

M defined by F,=1 f eM. Since }l f o I e=0, we have F ̂  I* {I e|
i H i H I M i f^

for any i. This, together with the fact that I+ 11 el is an open
set in the extended Alexandrov topology, implies that {F I does

i
not converge to I*f in M. It is however obvious that If ]

N i
converges to b in M, therefore we conclude that the topology of M

near I*y is different from that of M.

4. PROOF OF THE CAUSAL CONTINUITY OF (M-R,7))

Throughout the proof we will use the following notation : for

xeM (resp. xeM) and S£M (reap. SfiH), we write x«S (resp. x« S )
M

iff x«s (resp. x«s) V s«S. Dual statements (if any) to those in
H

the following lemmas are taken for granted and are not written.

LEMMA 1. Let x, yeM and lu I be a sequence in M satisfying

(1) lu. Itlx,

(2) x is a limit point of lu I,
i

then y«Ix iff y«!u.I.

This lemma is true for all chronological spacetimes, the

proof is trivial and is omitted.

To prove the causal continuity of (M,IJ) is to prove

MT c=Ic and il c=^ c for all ceM. Since I— cr\R/0 and I~cnR/0 would

imply ceR, we have only three possible cases:

(1)

(2) I^

(3)

LEMMA 2. I~cnR=0 i m p l i e s I c=I~c .
M KM

PROOF. It suffices to show I~csJ c. For any xel~c, the timelike
M M H
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curve connecting c to x must not intersect R or there would be

yeI~cnR. Hence xBl c . _
M M •

LEMMA 3. \ i c d i c .

PROOF. For any xef i c, there exists yeM, x»y»f cci~c. Let |u I

be a sequence in ^ c with c as i t s limit point, then y»(u I which
M rl l

implies y»|u I, hence y»I~c and xsf^J-c. Note that lemma 1 has
M ' M H " "

been used twice. m

Since we always have I cstt 4 c and I c el I c, what remains
M V M H V K

to be shown is i I c£l c and ( ̂  csf c. On account of lemmas 2 and 3

as well as the causal continuity of (M,T>) , it cc.i c is true for

oses (1) and (3), while |_I csl c is true for cases (1) and (2).

Therefore the essential issue is to prove f i cal c for case (2)
r< M M

sjnce | I c£X c for case (3) will then follow dually.
H t-l M

Le t c = ( t ,xl x n ) , t h e n I~cnlUf> i m p l i e s t < 0 . D e f i n e
c c c H ^ e

S i t 1 c n l f t . x 1 x n ) : t £ 0 | ,

? E U ^ c n l ( t , x L x") : t , O t = i ^ c . , U t , x1 x " ) : t 0 ) ,
1 n M H

S ef ? c n l l t . x 1 x n ) : t>Of ,

S = t t ~ c n ! ( t , x l ,". . . ,xn) : t>0 l=I~cnl ( t , x l x n > : t > 0 l ,

then f T c=S oS , S sS -R, S c s -R. We want t o show s s i c and

S £l c .
i M

Let peS =S -R, then pel~c. The timelike curve connecting c to
1 i M

p must not intersect R or there would be qsRn$~p which implies

peI~anMt,x1 x^lit 'OlcR. thus pel c.
H H

Let p=(t , x l , . . . , x ' ) E S , then pe in ter io j" |y£M:y»t cl and one
p p p 4 M H

can choose a<t such that p' = (t -a.x1 xn |«ijiterior
p p p p

| y e M : y » ^ c \ , i . e . , p ' » l c . L e t v = ( t - 1 / i . x 1 , . . . , x " ) , t h e n
MM H i t i c c c

| v | c i c a n d I v I c o n v e r g e s t o c . By l e m m a 1 we h a v e p ' » [ v I ,
1 H 1 h i

hence there exists timelike curves y in M connecting v to p".

Since t -a>0 and t -l/i<0, each r much intersect the plane
p c t

- 7-

E.||0,x' xn>I at some point

y gives

<t -l/i).1>(x1 -x1 ) 4 + .

. The timelike property of

) * • .

while q ey nE and r nR=0 yield

On the other hand, lim(t -l/i)=t implies that all q 's with
c t L

sufficiently large i are within a compact region of the

n-dimensional Euclidean space E, hence there exists a subsequence

Iq11 of !q ! such that Iq'I converges to a point q=(0,x1 X " ) E E
i i i <t q

satisfying

t li{x1-xl)1+(xn - x " ) 1 ,
q c q. *

(l)

(2)

And q'eT. p'ci-p' implies qeclosure (i-p* )ct~p.
4 M W MM

LEMMA 4. If there exists rcE satisfying

(a) r is sufficiently close to q so that ret~p,

<b) r<E(I~c-R)nE=(I~cnE)-(RnE) ,
H ft

then pfil c.
M

PROOF. Since (M,i))is a Minkowski spacetime, rel~p implies that

there exists a timelike geodesic y connecting r to p. But reE-R

implies JTIR=0, hence pel r . On the other hand, requirement {b>

leads to reS -R=S £1 c, therefore pel c. B

Let Bo, BcCE be open balls centered at (0,0 0) and

{0.x1,...,x") with radii 1 and It I respectively, then the
b c ' c '

requirement re(I~c-R)nE and inequalities (1), (2) are equivalently
M

to rsBc-cJosurelBo) and qtclosure(Be)-Bo respectively. Since Bc£Bu

or c would be in R, it is clear that one can always find such an r

for any q unless qcdBcndBo and n=l. Therefore we conclude that the

spacetime (M,»j) with n>l is causally continuous.
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