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ABSTRACT

The recursion method is reviewed and a new terminator for the
continued fraction representation of the Green function is presented.
A comparison with other known terminators is made by reconstructing known
functions. Test calculations of the density of states in bec-Fe is done using
the first principles canonical tight-binding description of 0.K. Andersen
for the construction of the Hamiltonian in a eluster of 400 atoms. The
calculation required a small amount of CPU-time and it was performed on a
personal computer. Compared with more exact k-space methods, the result
reveals that the essential features of the DOS are very well reproduced,

even the saturation magnetization.
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1. Introduction

Normally the calculation of the density of states (DOS) in disordered
systems prevents the use of k-space techniques because of the lack of Bloch’s
thearem, and real space methods have to be used.

The use of supercell calculations, in which one recovers the period-
icity of the system by imposing periodic boundary conditions, is dangerous
when certain "peaks” in the DOS appear due to the periodicity and in prac-
tice, various sizes of the supercell have to be calculated in order to discover
which features in the DOS are caused by the boundary conditions. This is
particularly difficult in systems having delocalized electrons.

The DOS, DX{E), is related to the the number of states (NOS), N(E),
up fo certain energy E, )

E
N(E) =/ dzD(z) . (1)
Moreover, if we know the spectra of eigenvalues { 1}, then
N(E)= ) a®(E-E) , (2)
levels

where the factor g; is the degeneracy of the level |, and 6(z} is the Heaviside
step function (i.e. ©{z) = 1 if x>0 and O(z) = 0 if x<0).
From Equations {1) and (2) we have

D(E) = —-—digg) (3)
and
D(E)= Y abE-RB)= Y §(E- E,). @
levels states

In the last summation we supress the factor g; because we sum over states.
Normally we formulate the physical problem by modelling the Hamiltonian,
H in some basis of functions reasonably complete and orthogonal.

Then Eq.(4) can be written as:

D(E) = Tr§(E — H). (5)

This is of course a rather formal definition of D(E) because the spectrum of
H is unknown, and it is what we want to calculate.
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However this definition is useful for the relation between the DOS and the
Green operator defined as:

Glz) = (- H)™! ()
which can be calculated for each z by knowing the Hamiltonian in some rep-
resentation.

The inverse of the operator (z — H)~? can be found by taking the trace of G

TrG(2) =Y <s|CGla>=3, Gulz), )

£

which is an invariant. In the representation in which# is diagonal we have:

TrG(z) = Z 1 (8)

~ z~E,’
and, using Eq(4) this relation can be written as:
©° D
TrG(z [ bz} (9)
-z

The inversion of th;us relation for a given energy E is achieved by taking the
imaginary part of G(z}inz = E —i¢ :

1 Bl
,rImTrG(E lg)-’rz':(E_E')z_'_g,, (10}

in the limit ¢ — 0% the Lorentz curve of Eq.(10) becomes a Dirac delta func-
tion (in the sense of a distribution), so that we finaily get the relation

.1 A :
fl_l‘ré1+ —ImTrG(E - i) =5.‘_, 5(E - E,) = D(E). (11)

If we want to calculate only the partial density of states associated with some

"orbital” a of the basis functions, in which we have our Hamiltonian matrix
we do not need to calculate the trace of G(z) but just the leading element

Gge in the same representation as the Hamiltonian.

The local DOS associated with the orbital a, D,{E) is g1ven by:

. 1 .
DQ(E) = ;l_l‘l’;l+ ;_- ImG‘,a(E - l{). (12)

The Green function is related with the moments of the partial DOS
n defined as:

oo
pn:f de Do€) " =< a|H" |a > (13)
-0

S <a|H|B><B|H|v> . <e|Hla>,

B4b...€
which s related with closed paths counting in a lattice defined by the sct of
orbitals {a}, beginning from the o orbital hopping around its neighbeuring
orbitals and returning to a. Normally H is given in a tight binding represen-
tation so that the elements < a | # | 8 > in Eq. (13) only connect orbitals
e, 3 if they are neighbours,
The local DOS can be reconstructed from its moments by using a continued
fraction expansion of the integral giving the diagonal element of the Green
function!:

D -
Gaalz) = | dzr 2(2) (14)
—e  2—T
— bt
Ftog— z+a;-a.fg—?{—31‘135—-— ’
1tag—ag—
where the coefficients «; are given by:
(n >0, uo =1 = oy, i.e. the DOS is normalized)
An-y By
Qgp = — 2 p-l 15
v (15)
Anl,
Wnt] =
" Aﬂ—] A;_l 3
where the A's are the following determinants:(A-y, = A_, = 1}
Mo * *  Hn
n=det! , (16)
Ba =+ Hin



H1 o Hntl
Al = det ) |
Hn+l 0 Hintd

This method is known? to be very unstable because the evaluation of the A
determinants with increasing order moments is very difficult. An easy way
understand this point is to analyze a DOS which is normalized
non-zero in the (=,1) interval (by rescaling the energy) then
easy to see that

0 S M—p, - (17)

where M is the maximum of D(E) in the {0,1) interval and therefore py,, — 0
as n — oo, hence A, and A, — 0 for large values of n.
Another way to obtain a continued fraction representation of the elements of
the Green functicn is given by the recursion method.

2. Recursion Method

The origin of the Recursion method is due to Lanczos® and essentially is a
method for transforming a symmetric matrix into a tridiagonal form. The
modern version of the recursion method connecting it with solid state physics
problems was given by R. Haydock®. The recursion method is a real space
methed for the calculation of the Green - function elements and local DOS.
In order to calculate the local DOS associated with some electron orbital a,

Do(E) = % IMGeal(E - i0), (18)

we begin by ’placing’ the electron some particular orbital a, defining an ini-
tial state for the syatem (the initial vector for the tridiagonalization process)
which is:

[1>=(0,0,-,1,0,0,-+ )} (19)

By defining a recurrence relation we generate a new basis {| n >}. In this
new basis the origina) Hamiltonian & has a tridiagonal form.

to
and
it is

a b
by as b
i = b a5 ks (20)

The recurrence relations which define the transformation to the tridiagonal
form are (n = 2,3,---)

b||2>:f1[1>*a1|1>

, {21)

bn]n+1>:f{|n>—an|n>—bn_lln—l:v

The @y, ba_1 are the coefficients to orthogonalize # | n > to the proced ing
vectors, | n > and { n — 1 >, and b, is the coefficient to normalize | n 4 1 >
to unity.

The coeflicients {a,,d.} are given by:

an=<n|H|n> (22)
bn:<ﬂ+1|ﬁ|ﬂ>'

They describe, as we will see, higher order moments of the density of states
and represent the influence of atoms increasingly remote from the chosen or-
bital & on the local DOS.

The new vectors generated by the Lanczos recursion method defined in Eq.(21)
generate an orthonormal set in the Krylov subspace ! {|1 >, H |1 >, A% |

SHYU 1),

The basnc Lanczos procedure can be viewed as a Gram-Schmidt orthogonal-
ization of the set of Krylov vectors {| 1>, H |1 >, A% {1 >,---}

The new basis is therefore generated by repeated operation w1th H, each
operation allowing the electron to hop further from the initial orbital «. This
procedure ia very easy to implement numerically, because we need to perform
only matrix multiplications. However, round off errors due to finite precision

!Given 2 nxn H matrix and a starting vector | v >, the family of Krylov subspaces K™,
£=1,2,---,n is defined as follows:

K== space{llo> Hiv>H |v>, - H*" | u>)
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computers, make possible that the new vectors generated after some itera-
tions are not orthogonal to all the preceding ones.

In practice to improve the numerical stability of the recursion the formulae
given in Eq.{22) are replaced by the following ones:

en=<n|(H|n>-b|n-15) |, (23)
bn:‘ﬁ|n>\an|n>-—bn41|n71>|

From Eq.(19) it is easy to calculate Gaa(E) =<al|(E- h’)_1 | &>
=< 1|(E~ H) 11>, because E — Hls

E - a1 —-b]_ o} 0
. —% E— —
- = L a2 b g (24)

0 —b; E- ay

We denote by Dy the determinant of Eq.(24), by D; the determinant of
Eq.(24) when the first row and column are omitted, by D; the determi-
nant when the first and second rows and columns are omitted, etc., then
<1[{E- H)"'|1>, the leading element of the inverse of this ma.tnx is:

det D, 1
Gae = = .
® " det Dy~ det Dy/det D; (25)

Now, det Dy = {E — a,) det Dy — 8% det Dy, hence

1

Gaa = = . (26)
a1 = TrD; J4 D7)
Similarly:
det Dl b;
detD; 7 det Dy/det Dy’ 7

etc.. This yield the continued fraction representation of Gag:

GaalE) =

1
(28)
E—a — ___b?_‘_r__

E-age—2_

E-az—4] .

The camparison of this espression with Eq.(14) gives the explicit

relation between the moments of the local DOS and the recursion coefficients.

Due to the finite size of the Hamiltonian matrix, which implies that we are
studying a finite cluster, and due to computer time reasons, one is limited to
calculate up to some level in the recursion coefficients. For electronic struc-
ture calculations of bulk properties in transition metals we usually stop after
the 10-th level for the recursion coefficients of the s and p partial DOS, and
after the 20-th level for the d-states.

The reason for this is that the electronic s- and p-states are of long range
order compared with the d-states, so that going beyond the 10-th level in
the calculation of the partial DOS for the most central atoms in clusters of
around 1500 atoms introduces non negligible surface effects, vhich modifies
the shape of the partial DOS.

However, for an accurate recovery of the singularities of the DOS, such as
band edges and van Hove singularities within the bands, it would be neces-
sary to consider too many recurrences. This is done in practice by truncating
the continued fraction with a terminatar T(z} after some level n.

1
Gau(z) = ¥ . (29)
z—a) — Y
t~ag-——2

"t ieman—bZ T{s)
Here T(z) is a terminator applied at the n-th level. Its introduction does not
alter the first 2n-moments of the partial DOS,

3. Terminator

Normally one uses the 'square root terminator’ after the last calcu-
lated level. This terminator assumes that after the n-th level the coefficients
are taken as constants and equal to their asymptotic Limits ag,bo,. These
values are directly related to the band limits Ep, Fr {bottom and top of the
band)?:

(EI' + EB) ] (30)

1
2
_1
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However, the asymptotic limits are generally not known and the square root
terminator gives often spurious oscillations in the DOS curve, specially when
a gap is present, due to the abrupt matching between the known calculated
coefficients and the asymptotic ones.
The most common implementation of this terminator which evaluates the
asymptotic values ay, and by, with the calculated coefficients is due to Beer
and Pettiffor®.
More sophisticated approaches for terminating the continued fraction have
been given by C.Nex®7, '

We now introduce a different type of terminator. To this effect we
note that the recursion method, which transforms the Hamiltonian H to a
tridiagonal form, is equivalent to transform the original problem into a semi-
infinite linear chain and then asking for the Green function matrix element
on the surface atom:

IA{=>Z ]ﬂ>a,,<n|+Zﬂn>b,,<n+l|+]n>b,_1<n—ll)
n=1 n=1
(31}

{8 =0)
L1 .} 53 bl
Q) o (1] —v, (13 e, (L4 it e, L5
| R A= ey Ry P

The physical interpretation of a terminator T which is applied after the n-
level of recursion is to introduce some effective medium around the atom in
which we are interested. Then we expect this medium to be less important
if the terminator is applied as far as possible from the aurface atom, and with
a smooth matching with the calculated coefficients.

The procedure we used for terminating the continued fraction given in Eq.{29)
is baged on the existence of band limits and asymptotic values for the recur-
sion coefficients, which satisfy the relation of Eq.(30).

For the following analysis it is convenient to rewrite the continued fraction
given in Eq.(29) by the following relation:

2
zn=E-a, - b ) (32)
Ta+l
n=1,2,
-G

The assumption of the asymptotic values implies that

62
Too = B ~aep - 2| (31)
Too
By solving this equation for z, one finds?
Too = bos ew, (34)

where ¢ = cos™! (Ez—_b::‘l) , T < gL

We examine the expression given in Eq.(32) in the asymptotic region by defin-
ing

Th = Tn ~ ZTeo (35)
an =dap — 0 ]

by = b — bog

Eq.(32) can now be written as follows:

r (bp + 287 boo + BL.)
" (I:a+1 + Zo)

By keeping only linear terms in b‘n and using Eq.(34) we get the following
recurrence relation for z,,:

z‘,‘+zm=(E—am)—a (36)

L}

a::1 = —a‘n - 25:,‘6_'.‘* + e T - (37)

Now, defining —a,, and -2 b, as the even and odd terms of a single sequence
5’1:

bn = —a, (38)
IE:'.n+l. = -2 b:; ¥
we obtain
z:‘, =&n + b2n41 et + x;..'.] Cﬁz‘ie’, (39)

hence by iterating:

T ’y . .
To = a0+ Sanp1 € F Bpnpa € £ Bppise ¥ 4Ll

-10-



We know that in the limit z, — 0, so that x,, has a form of a Fourier series:
t i ik
T = Y, Banine F? (40)
k=0

- < <,

The coefficients are given by:

1™ 0 itmen
b= [ dpa (g, (a)

From this expression we know the § sequence up to a certain level from the
calculated coefficients. The idea was to extrapolate the § sequence by using
all first known values of &,.
The fitting was done simply by a least square procedure. This is equivalent
to assume that after some level M all terms of the sequence & are a linear
combination of all the preceding ones:

M

b = z Cjak—j k> M. (42)

i=1
In terms of the new vectors which are generated by the recursion procedure
the last relation indicates that for studying those states the first M vectors
alone generate all the space. The relation given in Eq.(42) is equivalent to
assuming that the § sequence can be written as follows:

M
by = Z d,z.“ 1 (43)

i=1

where z; are the roots of the following polynomial:

M
zM - z CJ'ZM_‘T =0 v (44)
i=1
Eq.(43) is the same as the assumption made by Allan? to find the best fit of
the &’s. .
I one uses Eq.(42) sepacately for the a, and b, sequences the problem is
then reduced to the one studied by Trias et al'®.

_11_
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4. Test Calculations

In order to check the quality of the linear terminator we applied it to recon-
struct known functions for whichwe can calculate the moments of the DOS.
Using Eqs.(14}-(16) we find the coefficients {ay,b,} appearing in Eq.(28)

1 (An28,_;  Aacihn_
Gn = — 1501 12as3 ) (45)
Ao An_y An -2
2 = Anlp-2
, Afy
The test functions we used (all normalized) are given by:
1 O0<z<l
D(z) = { 0 elsewhere !
1
_}3vT 0<z<1
D(z) { 4] elsewhere ! (46)

_J 1—cos(4mz) O<z<1
Diz) = { 0 elsewhere !

1 0<z<}
D(z)=3{ 2 $<z<l
0 elsewhere

The present calculations were done on a personal computer with single pre-
cision. For all the above functions we calculated the A determinants and
through Eq.(45) the coefficients ay, b, up to n = 7. The results of applying
the terminator T{z) of the Cambridge Recursion Library of Nex”, the one
of Beer and Pettifor® and the linear terminator after the n=7 level in the
continued fraction of Eq.(29) and then using Eq.(18) for recover the initial
funtion D{x) are shown in Figs.(1-4).

The linear terminator was used by extrapolating up to 500 pairs of coeffi-
cients and then using the asymptotic limits {i.e., asop and bspg) for closing
the continued fraction with the square root.

The main result cbtained by using the linear terminator is the supression of
spurious peaks in the DOS in all functions D{x} which do not have a gap. In

_12_



the D(x) function which has a gap the linear methed produces also spuriocus
peaks which arise principally because the condition given in Eq.(30) is not
satisfied in the case of gaps. In these cases the asymptotic values of a, and
bn show undamped oscillations®!!,

Terminators which can be applied for studying DOS containing a gap (i.e-
for semiconductors) have been studied in Refs.11-12.

5. Application to bee-Fe

As a concrete physical application for studying the electronic structure of met-
als we wanted to test the method with bec-Fe, and with amorphous FeggBag
s:,rsl:ems13

For the construction of the Hamiltonian we used the first principles formula-
tion of a tight binding Hamiltonian based on the Linear Muffin Tin Orbital
Method of Andersen et all415,

The calculation of the local DOS at a Fe-atom in bece-Fe was done using a
finite cluster. The Fe-cluster was built using 400-atoms which were fully coor-
dinated up to the second nearest neighbour shell (in total this makes around
1500 atorns).

The positions of the atoms correspond to those of an ideal Fe becc-crystal,
with the experimental lattice parameter of a = 2. 6814 {ie., a Wigner Seitz
radius of 2.662 a.u.). For the construction of the Hnnultoma.n H, we have
used the non screened potential parameters'® corresponding to the Fe-bec
periodic structure with the same lattice parameter (C,E,, A and Q). We
have transformed these non screened potential parameters to the screened
ones (tight-binding € and A) using the following relations!®

-@-q&=BL (47)
(C-E,)
A% = (C-E) at.

with Q, = 0.03485, Q, = 0.05303 and Q4 = 0.010714.
The tight binding Hamiltonian H is built according to:

H=0C+A843. (48)

~13-

Here S is the screened structure constant matrix'%, (a matrix of range 400x9),
and wag built by inverting 400 times smaller matrices of range 15x9, and keep-
ing each time the first line. 15 is the total number of atoms in a small cluster
with bcc structure including first and second nearest neighbours, and 9 is the
number of orbitals (s-, p- and d-states) per atom considered.

The calculation of the partial DOS was done on the most central Fe-atom in
the cluster, using the recursion method described in the preceding sections
with the linear terminator extrapolating up to the level 500.

The results for the calculated recursion coefficients using Eqs.(21) and (23)
(2n,b4) up to n=30 for the p-electronic states are shown in Fig.{5).

One sees that after the 14** level the coefficients corresponding to the py, Py
and p, states are different. This fact is due to the lack of cubic syminetry
around the central Fe atom in the cluster of 400 particles. This is also re-
flected for the two kinds of d-states (those with E; and Ty, symmetry} bat
in this case the surface effects are not so strong Lefore the 17 level, this
is because the d-states are more localized than the p- and s-states. For the
evaluation of the DOS 7, 9 and 17 pairs of calculated recursion coeflicient for
the s-, p- and d-states respectively were used for the extrapolation procedure.
The results for the partial 5, p and d DOS curves are shown in Fig.{6) to-
gether with the results obtained for the infinite periodic case using more exact
k-space techniques and the same approximation for the Hamiltonian and the
lattice parameter!®

The calculation of the partial NOS gives the following occupation for the s, p
and d states {s=0.83, p=0.85, d=6.32 total 8 electrons} and the Fermi encrgy
at Ep = -0.111 Ry. The corresponding values for the ’exact’ calculation of
paramagnetic bec-Fe, where the f-electronic states were also considered are:
Ep = -0.125 Ry, 5==0.633, p=0.751, d=6.528 and {=0.088.

6. Discussion

Considering that the local DOS at the Fe atom in the bee cluster was per-
formed using a personal computer, and a finite number of recursion coeffi-
cients, the agreement between the ‘exact’ and aproximated DOS curves is
excellent.

From the result shown in Fig.(4) it seems that the linear terminator daes not
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work when a gap is present. However il the gap is sufficiently small compared
with the total band width, the oscillations of the recursion coefficients are
still sinuscidal and a perturbation theory is still valid!!®, However, in or-
der to take into account the oscillations of the coefficients in an efficient way
more than 7 pairs of coefficients are needed in our example. More sofisticated
terminator have been recently developed by R. Haydock and C.Nex!*.
Despite the shortcoming of the linear terminator when there is a gap, it pro-
vides the best way to obtain accurately the band limits and the suppresion
ol spurious oscillations in the DOS curves allow not only to study integrated
quantities also but local quantities,

For testing this_last point we also performed a more detailed study of
the density of states around the Fermi level by calculating the magnetization
of the Fe atom. We used the Stoner model with k-independent exchange
splitting!”. In this model the selfconsistent condition for a ferromagnetic
state is that the integral of the paramagnetic DOS per spin, over an energy
range AE around the Fermi energy equals the magnetization m. In this
model:

AE =ml,

where [ is the Stoner parameter for Fe (I & 70 mRy!®}.
In terms of the function N(m) which is the average DOS per spin around the
Fermi level over a range of m spins selfconsistency requires that.

m _
ag = N
Then by plotting ¥ (m) as a function of m (the number of unpaired electrons)

we see that the Stoner criterium is satisfied when:

N{m) = %

Fig.(7) shows this plot and one can see that the magnetization is 1.99up or
2.10ug depending on which density of states we use for the evaluation of N.
Strictly this Stoner model is valid for localized d-electrons!?, but the influence
of the s-states is negligible as one can see from the Fig.(6). This is because
the s-partial DOS is very small around the Fermi level.

The experimental value for the saturation magnetization of bec Fe is 2.2up

_15
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and a full selfconsistent LMTO tight binding calculation including spin po-
larization gives the vaiue'® m=2.18up .

This result shows that the recursion method allows to studying magnetic
properties. A calculation of the same type for Fe in a cluster with a fcc struc-
ture reveals no magnetic moment {i.e. the N{m) curve lics below /! for all
values of m), so that fcc Fe is a paramagnetic system.
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Figure 1. Reconstruction of the first function of Eq.(46} using the the first 7 : Yg :
pairs {an, bs } of recursion coefficients and 3 terminators, Nex?, Beer-Pettifor® 52
and the one of the present work. I [
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Figure 2. Same as figure 1, but with the second function of Eq.(48). g 1 )
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Figure 4. Sarne as figure 1, but with the fourth function of Eq.(48). 1
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Figure 5. The a,, and b, calculated recursion coefficients for the three p-states o [
(pz—,p,— and p:—symmetry) of the central Fe-atom in the 400-atom cluster. -
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(= 3
Figure 6. The local DOS (3, p, d and total DOS) on the most central Fe-atom )
in the 400-atom cluster with bec structure, the right pannel shows the results
of a LMTO tight binding calculation for the infinite Fe bec lattice!S. - |
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Figure 7. Stoner plot showing the §(m) and 1/I functions as a function of K I o B e o 1w 1o
m (I = 70mRy). The intersection of the N{m) function with 1/ gives the w0-50+9 T ok '
value of the magnetization m. The upper curve is N(m) calenlated with the % e . . ——t -
total DOS, whereas for- the lower curve only the d-partial DOS was used. ~
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