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ABSTRACT

We outiine a many-body description of the photoemission and photoadsorption processes that
ncorporates the muitchannel treatment of the atomic dynamical excitations into the framework of the
muitiple scattering thaory. In this way the interpiay between excitation dynamics and electronic and
geometrical structure of the ground state is etucidated. At the same time this approach provides a
theoratical mode! for the study of the evolution from the adiabatic to the sudden regime. We derive a
new multiple scattering expansion that takes into account interchannel transitions as well. As an
application we discuss the homogeneous and inhomogenous mixed-valent compounds, where the theory
provides a clue at the resolution of the “threshold puzzie” and sheds light onto the relation between

1. INTRODUCTION

The study of the slectronic and structural properties of matter has recaived in the recent past a
great impulse due to the advent of synchrotron radiation. The unique properties of this radiation
source, like its intensity, brilliance, polarization, tunability and collimation, o cite a few, coupled with
sophisticated data acquisition lechniques have made possible the explosive growth of all kinds of
Spectrascopi: research. In particular inner shell photoemission and photoabsomption spectroscopies have

received progressiviiy more and more attention as @ source of informatior about the electronic and
structural proparties of physical systems. Sirangely enough, thess high energy spectroscopiss have
been shown 1o be able to provide useful information on both the excited as well as the ground state of
the systems under investigation.

The realization of these potentialities has stimu'ated a paralie! development of the theoretical
schemes needed to interr.ret and analyss the experimental observations. On the structural side, for
example, the multiple scattering (ils) theory has oftered a unitying scheme of interp-etation that
encompasses a wide variely of physical cases, ranging from molecules in gas phase lo adsorbates,
from extended periodic systems, like crystais, to disordered or amorphous materials, from large
atomic clusters 10 smail ones. The price paid for this generality is the roslviction of the fields of
application of the theory to those cases that are amenable 10 8 description in terms of an effective
one particle scheme. This approach is certainiy viable when both the initial and final states can be
reasonably described in terms of a gingle Slater determinant (or configuration).

However all the phonomo‘na connected to the excitation dynamics, like screening, polarization,
relaxation, autoionization and decay fall outside the reaim of the one electron approach. Configuration
interaction and in general many-body techniques are called for ir this case. As a consaquence the
understanding of those Systems where electronic correlation eHects are important requires a more
elaborate theory than the simpie one particle approach. Such a comprehension is obviously essential if
one wants to understand the electronic properties of these systems, but becomes squally impuntant in
structural studies, since structural information tends to be obscured by electronic correlation effects.

Therefore it would be highly desiradie to develop a theory that incorporates both aspects of the
prablem, i.e. the description of the geomelrical arrangement of the atomic costituents of the gystem
under study and the electronic dynamics of the excitation process. The aim of this paper is to show
that the multichannel generalization of the m.s. theory provides such an interpretative schems. This
generalization is @ most natural one, in that the internal structure of the atomic constituents cf the
physical system is taken into account by the introduction of an interchanne! atomic t-matrix that gives
the probability amplitude of a particular excitation {channel) of the internal degrees of freedom of the
atom by an electron impinging on it. For the rest the m.s. structure of the theory is left unchanged,
provided the propagation vactor of the photosiectron between successive scattering averits is changed
according to the energy loss sutfered.

It wrns out that this mulitichannel m.s. approach is substantially aquivalent o the configuration
interaction method used by FANO, DAVIS and FELDKAMPE [1] to describe the interaction etects cf
bound and continuum configurations in the photoabsorption and photoemission spectra of atomic
systems. The novelty here is that ona can incorporate such a scheme in an extended system, aliowing
at the same time the description of the atomic geometrical arrangement in the real space. This is what



is needed for the realistic treatment of an intermediale valence {I.V.) system where one has two or
more locaiized alomic configurations interacting with conduction states. in the photoabsormption process
of an inner shell slectron one is substantially observing the projection of this complicated many-body
ground state onto the photoabsorbing site. This fact allows one 1 look at the local slectronic structure
of the ground state and to derive informaben about the configurations present in it.

A good understanding of the physics of these systems and a satisfactory description of the
photoemission and photoabsorption spectra has been achieved by KOTANI, GUNNARSON and
SCHONHAMMER [2] on the basis of the Anderson impurity model, using a fitting procedure for the
Hamiltonian parameters.

The theory 1o be presented here will aliow a first principle calculation of the spectra of LV.
systems. At the same time it will elucidate the relation between Structure and electronic dynamics on
one hand and the mechanism of iransition from the adiabatic to the sudden regime on the other. These
problems ask indeed interesting theoretical questions which are not yet we!l understood. It is hoped that
the theoretical framework provided by the multichanne! muitiple scattering theory may help to clarity
these poins.

2 THE MULTICHANNEL MILTIPLE SCATTERING THEORY

The derivation of the multizhannel m.s. equabions follows very closely the analogous method used in the
case of non mytfin-tin potentials by NATOL! et al.[3]. The reader is referred to this paper and to
rel.[4] for further details and for the general treatment.

We begin with the wtal absomtion cross section, given by
N
olo=dxifio 2,1 (¥,Nie 2 = 1¥M28(w-E+E)) 2.1
1=l
where ‘PN, , are the many-body initial and final state wave functions for N electrons in the system and

e sum over the fingl states X is intended also over ail directions of the photoemitted electrons. hw
is the incoming photon energy and € its polanzation.
For wansitions from a core state we assume that, to a good approximation,
¥, R=VNta ¢ (0) T c, O x5, )

= VN1AQ_ ()W xLmy ) 2.2

where A is the usual antisymmetrizing operator: Ax(IN!) I, (-1° P (A%=A) and @, N'(r, .1y, ) are

Slater determinants describing the configurations present in the initial state wave function ‘P,“.
Normalization imposes I, (c,/%s1,il (9,0,)=1.

Similarly we assume thal, by expanding ‘ll,"(r.r,...r,,,‘) in terms of the complete set
W Nr,...0y.). W can wiite
¥ r=VNA L ta(m) W ir ) 2.3)

We take the functions ‘¥ ,N! to be sigenstates of the N-1 electron Hamiltoniar:

22 1S, 1SN 2

N-l N-l P .
H'd-l- -z vi?- I LI ——+ z B e——— (2.4)
’ il tel kel 1T{-R,| <t lTy-%.|
with eigenvalues E N
Hyo, PNt = Egtt W ¥ (2.5

P .
where L Z = N, R denctes the nuciear positions and Z, are the associated charges
kal

We use throughout atomic units of length and Rydberg units cf energy. The factor VN! in Eq (2.3)
again assumes that we can approximate ‘Pu"“ by & linear combination of Slatér determinants,
belonging to a continuum spectrum it ' ! does. In any case we assums for simplicity all continuum
states normalized into a box enclosing the system: one may eventually take the limit of the box linear
dimensiung 1o infinity and transform the sum in Eq. (2.3) into an integral.

The final state wave function ‘¥, is an esigenstate, with energy Eshw+ EN,, of the N-electron
Hamiltonian

N-1 2 P 22,
Hy==V 2+ I -3 + Hy,
=1 i2-® | ket {E=R_{
--Vr2 + Vi, 55, R) + H (2.6)
Theretfore
H WY, =E WY, (2.7)

and we shall henceforth assume that EN=EN_ is the ground state of the system.

The insertion of Eq. (2.3) into Eq. (2.7) gives



=V + vir,zy ,R) + H ) A f ()P M x, ) =

= E ALt ()W N t(r x, ) (2.8)

and by muttiplying on the leh by W _N' and integrating we obtain the set of equations

(VI E-E Y £,(m= E L[V (2, RO+ W, (B, R)]) £, (2) (2.9
where

<
N~1
Voo (K R = fll W ey )

viE, T, R Y.V (pery ) (2.10)

'S @ rect potential term and we have lumped all the exchange terms into the quantities W, .(r.R,)
which are thus compiicat=d, non local, exchange potentials for which a suitablg, local approximation
has to be found. If we impose the condition, as we shall do, that the tunctions 1,,(r) be orthogenal to all
the on9 particle stales present in the conﬁguraﬁons making up the ground state wave function (so as
to ensurs the orthogonality condition (¥ N | ¥ M)-0) as well as 1o those configurations that enter in all
the ¥ N1.then the exchange term is given by

N-1
Woo. (2, R) =1/f (0 [ T Qr W N (x,..x, ) VI(E, £ R))

imt

I (-DPPE rp¥ N ry ) (2.11)

?iwk)

Wa refer to the appropriate literature tor the translormation ot this non local operator into a local
one [5]. Henceforth we shall assume that .uis transformation has been performed and that our problem
is 10 soive the sat of coupled Schridinger equations with local potentale.

Since Eafiars EN; we can write in Eq. (2.9)

E-E,"! = ho+ E' | E,"! = fa+ EN - E VI (EMI-E M)
=hw - 1.~ AE, =k, ? (2.12)
since E;N'-E N I is the ionization potential for the core state and AE, = E,M" - E ™' is the
excitation energy lek behind in the (N-1)-particie system. Theretore k,, is the wave-vecto: of the linal

state photoelectron.

Egs. (2.8] can then be rewritten as

(V2 +ko?) £a(2) = L., Vo (B, R )L, (T) (2.13)
where for sake of brevity we have put v, eV, . + W, ..

The functions 1, (¢) have a simple physical meaning in the case of electron-molecule scattaring.

Through the asymptotic ccnditions
ir,.z n e
f(2) - (e Sog + £ (%, ky) ——— ) N, (2.14)
T - r

where the factor Na-(kaln)ml(du) is necessary 10 ensure normalization to one state par Rydherg,
they describe an electron in the incoming channel g with wave vector Ky which can be scattered in
any oulgoing channgl a, with wave vector k , after lonsing the snergy AE . In the photoemission
process we have to take the time-reversed state of Eq. (2.3) (complex conjugate if spin is neglec'sd)
so that the outgoing channgls become incoming channels which interfere constructively in the wave
packet describing the photoelectron 8o as to give an asymptotic plane wave propagating out to infinity
with wave number k“.

Therefore Eqgs. (2.13) are (o be supplemented with the boundary conditions Eqs. (2.14) written by
replacing 1_(r) with 1,°(). It would be more appropriate to write £ (r) as ! (r ; k o) 10 make explicit
the dependence on the boundary conditions. We shall introduce this more complote expression whera
necessary, otherwise the simpler form will be used.

It is fairty obvious then that in the expansion (2.3) the most important (N-1)-particle states ars
the excited states \P,"" with a core hole corresponding to the photoejected efectron, for which
ENVEN w50 thatk2atio -1, - AE, is small compared to V.. In this sense the ¥ ! are the
relaxed excited states of Hy, ,. The argument runs as follows. It k,2wfico -1, = ko2 and k 2 |V,
{rc)l, where 1, is the radius of the atomic core, then 10 8 first approximation we can neglect the
potentials in the r.h.s. of Egs. (2.13), so that, together with the boundary conditions Eqs. (2.14), wa
obtain

B"
f,ix) - e 8ug - {2.15)

The procedure for solving Eqs. (2.13) with boundary conditions (2.14) (in the end we shall take the
complex conjugate) closely follows Ref. [3). Here wa limit ourselves 1o present the relevant results
deferring the interested reader 1o ref. [4] for a complete derivation. We describe any physical system
as a collection of atoms whose dynamics is described by the potentials V_ . . (r) as defined in Eqs
(2.10) ana (2.11). For semplicity of presentation these latter are assumed to be zero beyond an
eMective mutfin-tin radius, although the presence of intesttial potentials describing the dynamics of the
medium in the region between the mutfin-tin spheres would not modity the physical picture based on the



multiple scattering approach, it would only change the definitions of the propagators and the atomic
T-matrices.

The results are best illustrated by baginning with the case of a single atom. The solution in the
region outside the atom pyre AL2) can be written as

£4(F) =Njeta¥ §
- kgI il nT Y (B) BS (@il Y, (ky) (2.16)
wheraas inside the muffin-tin sphere 2 of radius p(ve Q)
o (m:Xy) =
I Eg I BY il ity (R £,.% ()Y (D) (2.17)

Here the functions 4, -%'(r), for given a* , L', are pavticolar vector solution components of index
oL of the system of radial equations denived from the system of Schradinger equations (2.13) by
writirg

fa(x) =E £% (D) Y, (D) (2.18)

inserting into Eq. (2.13) and projecting onto Y, . One finds

(1/x(d?/ded)r + k2 - 1(1+1)/c?)1£% (1) =

Zo VM) 2, (D) 2.19

wherg it has been assumed that the expansion

Voo (B)=Z, V% ()Y, (F) t2.20)
1S POSSible SO that
v, % (r)=%.C . v () t2.21)

2,1, being the usual Gaunt cosfficient defined as (using rea spherical harmonics)
o=y (Y, (hy (DaQ (2.22)

It & runs trom 1 to n_ and | from 0 1o I, Egs. (2.19) are a set of ny(l,,,+1)? equations and
consequenty one can construct this number of linearly independent solutions f, (1) regular at the

arigin which, for given 'L’ can be interpreted as vector solutions whose components are labelled by

al. To stant the integration one might take, for example, near the origin
£,..9% () =t 5, B, 2.23)

In one introduces the matrix W(j.f), 3" defined as

Wi3,0),,,%" = Wiy, e, 98" (2.24)

" whers W]f.g] is the wronskian of the functions f(r) and g(r) calculated at r=p

W(f,gl=f(r) (d/dr)g(r) - g(r)(a/drn)f(r) |:=P (2.25)

and j{k,r) 18 the usual spherical Besse! function of argument kr, then

£.,.9 () = p2L,, £, % (r) (W3 6)77),...00 {2.26)

Q'L

The general solution I (r) inside the muffin-tin sphere is therefore given by the linear combination

fo(xikg) = ¥ () Igi.s C.%(ky £,,.%9(r) (2.27)
By matching smoothly thig solution with the solution (2.16) in the outer region at the muffin-tin

radius p, one obtains an expression for B ® (g, L), given below, and the refation

c

L

@ (kg) = I B Y@ L) 14y (k) (2.28)

The quantity B,®' (g,L). by definition, is proportional to the atomic scattering ampiitude
(Ta)"m into the angular momentum L and channel state a in response to an excitation with angular
momentum L and channel state g . In terms of the matrix {2.24) and the analogous matrix
W(-ih',f)LL-“' constructed with the Hankei function h* (k. r), one finds

-BY (Q:L) = (kg/m}VI(TOR -
= (kg /BT Ty (W(E, )], 9% (k) T (W(=in®, £)7F) @8 (2,09

This expression is obviously invariant under the transformation {2.26). One has in fact
WD 9% p? Byq. By and

(W(-in*, £) '], 98 = L W(3, £),. u®" (W(-in*, £)73) 0,0 0
a~L"

P’




Remembaring that -ih, = n-ij, where n, is the Neuman function, one derives the relation

-1, aar
(T,

= koZgn~ [W(-ih*. £) ], 997 (W(3.£) 1), @'~
= k“z""-—' ["(n‘f)ll;"m- (w(j'f}-"];",'c“u.'ikqs;;'auu.

= (K7 -ike S, 8y, (2.30)

where K, is the reactance matrix. This relation will be useful in the following. Notice that K, s
nermitan.

The choice (2.26) for the normalization of the regular solutions (2.23) of the system of radial
Schrodinger equations (2.19) has the important consequence thal the guantity controling the amplitude
of the wave function t_(r! inside the muffin-tin sphere Q2 in Eq. (2.17) is the same quantity that
contrals in Eq. {2.16) the amplitudes of the spherical waves in the asymptotic region, i.e. it is the
scatenng amplitude.

This fact will be extremely useful, when calcuiating the absorption ¢ross section, for establishing
the connaction between the wave function approach and Green's function or density of s'ate
approach, through the appication of a generalized optical thearem.

When there are several atoms located at sites R,, the same expressions (2.16) and (2.17) carry
rver to the many centre case, provided ane introduces the quantities 8%, Ig.L) which descrbe the
scavenng amplitudes for spherical waves emanating from the atom located at R,. and sums over ali
sites:

fgtE) =N e-Ra-® §
- kgL, I, 157t BT (ker Y (B0 B%, (@il Y. (kg (2.16a)
wnere r, = r-R,, and ris referred to the origin of the coordinates.
Similarty, inside the muffin-in sphere €, of radius p,. 0ne has
£y’ (r,..-kn) -
LI, L8 ity kg L (Y (T) 2178
wngre now all coordinales are refeired to R,

Tne new scattering amplitudes B, (g.L) are now obtained as soiutions of the muitipie scattenng
equayons

o (T, 700 BY il ¢

+ LI, 6%, . B i) == I L B (17 (kX)) P2 (2.31)
x(ml)
one for each site i, which in tact describe the self-consistency condilions for their simultanaous
existence, since row the scattering amplitude emanating from one site becomes an exciting amplitude
for all other sites. .

In Eqs. (2.31) the quantities G2, , + are the usual spherical waves propagators wilh wave
vectors k,, given by

I, ot o , -
Ge., ... = 4K kg I, UUTIC R L (=1RT L (kg RO YL L (R

Lokl L

= NO - i3 L. (2.32)

PR S A
where R, sR:R,, and N, ..., J%, ..+ have been defined in terms of the decomposition -ih* = Aij;
Moreover (Td)‘“"u- is the atomic T-matrix for the atom located at site i ano o0 denotes the origin of
the coordinates so that R,, = R,

The quantities N and J, when considered as matrices in the site and angular momentum indices,
are real symmetric. Notice the relations

I = kg, (2.33a)

Jak'.-,c'_' kaT% e (2.33b)

Eqs. (2.31) can also be written in compact form

L Is™ BY @b o= -3% By kg t? 12.34)
K oLt theklt kL L0098

and the multiple scartering matrix S92, , . can be cast into the form

Suul;' L .(TAL-X)MI'_L' 8‘.11‘(1- 8::) sm'Gu;L

PR 24 Lol

=K T B 1 8 08 N L - 18, 00

38 aa’ [
= MY - iAW {2.39)

Lol
having used Eq. (2.33a). Here M and A are hermitian matrices; actually A is real symmetric. By

solving Eqgs. (2.34) with respect 10 B%, (g L) and using Eq.(2.33b) one can now derive a generalized
optical theorem, which will be used shortly,



u

L B% L) (B @il )7 =1/% [ (M-1i4)7'A (Mr1A)7)% .
= 1/% Im [(M-14)73]%" .= /K Im T9% .. (2.36)

whare we have put (M-iA)" = §'! = T, which is the scattering path operator in the muitichanne! case.
Taken for the diagonal alements, this equation gives the anticipated relation between the square of the
wave function amplitude and the local projected densily of states.

In order to obtain the tota) photoabsorption cross section, we have to sum over alt possible
photoelectron final states labelled by the index g and integrate over all possible direction of emission
k. If we assume that the intial core state s io” alized at site i, we need fu'(ri.tu) ot Eq.{(2.17a). Since
these wave functions are normalized to one state per Rydberg. we find, using Eqgs. (2.1-3) and the
projection properties AZ a A,

ow) = axlafie I,

> N N .
[ akgl (Zg gt tmx Wil e - x INtag (¥ M0 |

"=y

= oo L[ ak | (I, £, texp lerlotimysel? 237

The last step folows from the fact that we have assumed the orthogonality of the scattering.

states 1,4r, k) to @il the singie particle orbitais aopearing in the W N ''s. We have also introduced the
quantity S, = (W' iW, N1) which represents the projection of W N onto the occupied
conngurations present in the inital ground state.

By introducing the expression (2.17a) into Eq.(2.37) pertorming the angular integration over kg
and definng the atomic malrix slements

MO e (L9 DY (R iexl & (X)) 12.38)
we can rewnte £q.(2.37) as
ol - el I, I I I, S, M® B gL
nevte [
[e%. @ »? s..J (2.39a)

or

(2.39b)
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using the generalized optical theorem Eq.(2.36).

in a similar way, from Eq.(2.17a) it is immediate to write down an expression for the
photoerrission cross section for ejection of an electron into the state k,, with energy "nz . ﬁm-lc-AE“

dO(AEy) dkg dAE, - anafinl (I, (kg [ exlo o)) Sy,l?
- ulaﬁmlgih L I BT, (@il 4 Y, (k) M Sggl? 12.40)

where the guantity AE, represents now the binding energy. Notice that now it is no longer possible to
lake advantage of the generalized optical theorem (2.36). In both cases the sum over L, is over the
final angular momenta aliowed by the dipoie selection rule in Eq.(2.38).

The expressions (2.39) and (2.40) can be used 10 establish in some limiting cases a relation
between photoemission and photoabsorption cross sections.

3. THE GENERALIZED MULTIPLE SCATTERING EXPANSIONS

In the expressions (2.39), (2.40) the structural information is contained in the inverse t =S’ of the
multiple scattering matrix Eq. (2.35) in & rather invoived way that intermingles dynamics as well as
structure, through the presence of the structure matrix elements G2, .. It turns out however that
unaer certain circumsiances, 10 be discussed shortly, one can sxpand the varioue cross sections in a
convergent series the general term of which has a simpie and direct ~hvsical meaning. In fact,
remembering the notation introduced in section 2, we have

TwS* = (T, 4G = (I+TG)7' T,

so that it the spectral radius p (T,G) of the matrix TG is less than one, where p (A) is the
maximum modulus of the eigenvalues of A, then
-
(I+7,G}" = T (-1)" (TG)" 3.1
n=Q
the series on ihe right being absolutely convergent relative to some matrix norm. For short we shall
henceforth define G*, ,.m 0 to account for the factor (1-5,) in Eq. (2.35).

As a consequence the photoabsorption cross section Eq. (2.39b) can be expanded in an absolutely
convergent saries
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-
giw) = I o (3.2)
ne

where
o, () = axahw L,,. Ly, I I (M, 0MP Im(T )PP

et

( Hﬂ:).’: . N (3.3a}

Lhelt

1S @ sSmoothly varying at0mic Cross sechon and

o,(@ = axahw Z E I (M.0P

Sel'y e

Im{ (-1)° (T_G)ﬂ-r‘]u-;__" (1M

i

L b {3.3k)

represents the contnbution to the photoabsomption cross section coming from process where the
photogiectron, before beirg ejected at infinity, lsaves the photoabsorbing atom, located at site |, with
angular momentum L and channel state P. is scattered (n-1) times by the surrounding atoms and
redurns 10 site | with anguiar momentum L' and channel state . All these events are eventually 10 be
muyltpiied by the corresponding efective atomic matrix elements

M0 ® = Z sy, M and 0P S Lsg, Calld (3.4)

and summed together 10 give the n-th order contribution. it is clear that this term bears information on
the n particle correlaton anc therefore is sensitive 10 the geometrical arrangement around the
photoabsorbing atom.

The multipie scattering analysis can in pnnciple proceed in a way Similar to the one channei case
{6] although the situation is now much more compiax due 1o the new feature introduced by the internal
dynamics of the atoms in the system. In fact a. each scattering event the photoelectron can change
its channel state and consequently its propagation vector k. Even assuming a channg! structure only
for the photoabsorbing atom. one is faced with a superposition of diterent oscillating multiple
scattenng signals of the type A{k_) Sin[k R, +e(k )]. sach one with a ditferent threshold energy
corrgsponding o the energy loss AE  sutfered by the photoelectron to excite channel a (remember
that i a{fiw-)-AE, ]2 it might be not at all easy to discriminate between such signals. However the
functonal form suggested by the theory resoives an old ambiguity regarding wether or not to use
dHerent threshold energies in the analysis of mixed valent homogeneous compounds (7] and in 8o doing
heips the expenmental analysis by reducing the numbder of unknowns.

14

in general the existence of an energy range whare the condition p(T,G)<! is satisfied, follows
from the asimptotic behaviour of the scattering amplitudes at high photoslectron energy, since
fim{k, ~e=)|(T,)3% | = 0. Actually in this regime one can write

(T, = 9,8 8, and M®&' - M8 8 5. (3.5)
since the photoslec’son is sensitive only 10 the atomic cores, which are spherically symmetric and only
the “incoming" channel lﬂ(r) in Eq. (2.14) is relevant, following the same argument leading to (2.15).

The tact that in thig limit the m.s. matrix S in €q. (2.35) becomes diagona! in the chaninel indices
(and therefore block diagonal in all the indices) strongly suggests another kind of expansion which
sheds light onto a new aspact of the present theory. From the same Eq. (2.35) and Eq. (2.30) we in
fact observe that the various channels interfere through the ofi-diagonal elements of the inverse of
the reactance matrix (K ) "'u.(ava '). In the high energy limit, these malrix elements go to zero,
due to Eqs. (3.5), s0 that in the expression (2.39) for photoabsomplion the ditferent channels decouple
and one racover the result of the sudden approximalion (B]. In other words the quantities (K, *j2® w
control the cross-over from the adiabatic 1o the sudden regime. By lowering the photoeiectron energy,
of-diagonal terms of the matrix solution 13%' . in Eq. 12.32), and tnerefore of the matrix K, *, come
siowly into piay. Spacifically one expects in this case that the amplitudes (T2, ., dingonal in the
channel indices be substantially bigger than the ofi-diagonal (ama’) amplitudes (T,;)22" . As a
consequence, since from Eq. (2.30) T," = K, '-ik, we have 1+iT = T,K, ", s0 that it (T 12 (aser)
is small, 80 is (T,K,")2%|,.. One can then perform the following nartition of the m.s. matrix $°%, . in
£q.(2.47)

aa - - -1, 00 a - aa'
S L )LL-SH Y6 18gq. * (K.i)u'_(l-ﬁm.)Bu
-..a -1 aa’
=@ Bog: *+ (K ) (1784408, (3.6)

using the relation (2.30) betwecn T; and K, for the oft diagonal elements. Here <. is a block-diagonal
matrix describing the m.s. structure relative to channel a. By assuming that p(tbK"1) < 1 we then
find :

T= ST e (I s gk, = Lotk (3.7
Remembering EQ. (2.390) the photoabsorption cros: section can be written as

ow =amoa T T T 00 ImTO 0 (3.8)

' .
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Then. using Eq. (3.7), we can expand o(w) in an absoiutely convergent series



- ' -
o =X g =exroE T I " o 1% mmE (-nn
n=Q on' LeL'y LL* tebl oft L"L' =l
e X ng )™ (3.9)
b a b L.l

In \his expansion, the n=0 term gives the sudden approximation, Since 1, is diagonal in the
channel indices

o =eafoal I I iM% 0% mr® {3.19)
a Lyil'y W0 Lel el L.

For the first next order term one ObLaINS

o =-asfoal I I T % mit® ) )
* on’ L'L" L bt L'L ISARSA - A 1Lt 4L
L] u.
o oY (3.11)
Lot

and we sxpect this to be the dominant term of the series (3.7).

In this latter expansion we have retained for simplicity the ful expression (3.4) for the effective
atomic matrix slemants, although in the high energy imit some son of complicated expansion of Me® .
should exist in terms of V%', | () and indirectly of (K.")““‘u.. due o EqQs. (2.19) and (3.5). The
axpression (3.9) however encompassas the more general case in which in some energy range the
olf-diagonal elements of the matrix solution (2.26) as~ not small, although the matrix elements
{K )%, {am) are. This is a faity possible sinsation which enlarges the energy range where the
expansion {3.9) is feasable.

In the sudden approximadion hmit a uselul relation can be established between the photoabsomption
and the photosmission cross secoons. From Eq. (2.40) one finds in this kmit

43 (AEy) a N a 2
——— = 4x’afII T B (@,L) iy, (k) (M) " | 13.12)
dAE dk, Lo et it = b

By wntegraling over dk, one has
do(AE))
— e amab0 I E M, 0% MY Imr)®
dAE‘ Loty ML Toled Ll L.t

= I(w;ASy) (3.1
since now Eq. (2.36) reduces 10

) s « 1 s
E B, @LIB G L] - LILS D 3.14)

Comparing Eqgs. (3.10) and (3.13), one sees that the integrated photosmission cross section for
ejection of one electron with binding nergy AE‘ equale the partial contribution to the total
pholoabsorption cross section of channel g, as expecied when the various channelis decouple. This
fact can be used in diferent ways. By taking, i exampie, the high energy limit, using Eqgs. (3.5) and
remembaring that in thig limit t, ® <<1, we can write from Eq. (3.6)

[
b 1 -
¢ ")u..u.-

a.a -l @ a 138 a
= UIee 6T Ty) W T 6._,_.' e sind8 )ik (3.15)

it

neglecting any structural contribution. Then '
do(AEY)

=i T o, 0% 00 atnd 8% ik (3.16
Eq ¢ ¢ ¢ t

= I,,(WAE))

Since in the same limit

e, ° & .

o(w) = 4xchw ‘l‘: {s (M, ) y (M.,,)L' m“")?:,.u, (3.17.
we finally get, assuming predominance of one final L, component and a negligib's dipandence of (M,,)°
on the pholon energy faw,

. K
ow) = atho T (M, 2M,; 0 ® sin28 ® g
Sy e e "t kgain?8A
]

- ng"(m’“fl’lnt((”'xc'“ﬂ’ (3.18)

where , (w) embodies all structural information. This is the relation used by Chou et al. [8) to discuss
the role of multielectron excitation in the EXAFS structure of the Br, molecule in the framework of the
sudden approximation and by Hammond et al. [9) to discuss XAS specira in mixed-valent systeme. On
the other hand Eq. (3.13) has provided the rationale for determining the f-electron occupancy w
homogenesous mixed-vaient rare earth (R.E.) compounds, by measunng the integratec ‘ntensities of tha
various photosmission lines in L,, pholoemission spectra corresponding to the different fina! stat:
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channets. The relation be.ween peak intensity and f-count can be more complicated then a simple 1.1
ratio and depends cbviausly on the structure of \¥N1. and WM which intarvene in the definitions of
Sqo = (P PN1) and M, Eg. (3.4). Wa reler 1o Rel. [10] and citabions therein for a full discussion
of this ooint in the case of Ce compounds. See also the discussion in the next section.

The expansion (3.9) shows cigarly the interchannel structure of the theory. Although we have
justified its denvation starting from the high energy hmit, its validity is not restrained to this energy
ragime, as already antcipated above. Even in the near edge region the interchannel atomic matr.x
e'ements {T,)2%| | (amar) might happen to be negligible compared to the diagona! ones. This situation
paraliels that ~countered in the case of Cu and in general free electron metals, where the diagonai
matnx glements (TJ22 . are themselves small at low (< 40 eV) photoslectron kinetic energy, so
that a single scattering EXAFS approximation is sufficient to describe the near edge structure [6]. In
such cases the sudden approximation would be valid nght at the near edge region, obviously only for
trose channels which are open at that particular energy.

It woula be extremely interesbng to expiore experimentally the validity of these speculations. in
the naxt section we shall show an application of these considerabons to mixed valent compounds.

1 APPLICATIONS CF THE THEORY AND CONCLUSIONS

The theory set forth above makes dfinite predictions about the role of the various channels present in
a photoabsorption spectrum. In the sudden approximation limit all channels are decoupled (they do not
intarfarg) and have identical or reasonabily similar multiple scatering structure, depending on the slight
di'terence of the atomic t2-matrix among the various channel states. Experimental evidence for such
m.S. structure assoc:ated with double electron excitations would provide more corvincing support to the

theory (11].

Another aspect worth persuing is the Study of the absolute ampiitude of the signal coming from
e elastic channel (AE_=0). A success in this field would give more interpretative power to m.s. (in
particular EXAFS) structural analysis (8].

In the case of mixed-valent compounds the theory provides a clue to the resolution of the
threshold puzzie and to the discnminabon between homogenaous and Inhomogeneous Systems. In factin
the case of inhomogeneous R.E. compounds (static admixture of 2* and 3* ions). the total absorption
coethcient is given by an incoherent sum of two absorption spectra with weight C,2 and C,2. the
r@lative concentration of the two types of ions:

atw = o ety (kv S @ oy (k) (4.1

whare o,(w) is the atomic absorption coetficient of the 2* ion and o, (w) that of the 3* ion. As a
good approximation ct{w)s | S,olzl (ol 171 0(1) 12/ ky (p=0,1). For simplicity we assume a single !
linal state and average over sampie orientations. The wave veclors k, and k, are given by k, = (-
Ip)"? (p=0.1) where i is the ionization threshold for the two types of ions, and xP, (k) = K, I Im
{Ty) Py iim 0SC1iDES the m.s. structure. We assume that only the elastic channe! o s predominant,
raving taken account of the remaining channeis through an appropriate optical potential.

Quite ditferent is the case of the homogeneous compounds. He:e at least two conligurations are
mixed in10 the ground state, so that

¥ = QN!AQL_tﬂ {aW, [4£°7 (54€5)7 ") +bW. (4£7(5 (63)7)) 4.2)
whereas for the excited final state we can cnproximately write
W, = VNIALE (Y Y (4.3

where \P'p (p=0,1) indicates the relaxed conligurations corresponding to ¥, . As a mater of fast,
since the states 5d6s are spread into @ band, we should write @.9. L a, ¥, k indexing the electron
promoted from the t state to the band. For simplicity, we neglect this futher complication, although the
generalization of the following argument is immediate. See re!. (10} for a complete treatment of this
point.

In order to write the photoabsorption cross section we need (M.,,)’L;. =Z. S5 M,“’ of Eq. (3.4).
By putting Po, = (\l"ol\l‘P) and similarly Pw.(w'pwo) for p=0,1, we easily fing
Ls, -

a=C

: !
(aP,, + bP:‘.bM,_? + (aP.. + bP,.:)MLp’

neglectng the off-diagonal overlap ‘actor P, with respect to Py, and P,.

To the zero the order of the expansion (3.9) and ..i the high energy limit, using Eqs. (3.5) and
{3.18), we easily ind for the absorption coefficient c,'®'{cw). wrting | for i,

QW = atdl (Y (k) ¢ bY A (wy ik (4.5;



where o {a) = [P M2 5in2D, / K, is the atomic absorption coefficient for the configuration p, k3,
fioo -1, where | = EN; - ENY; is the photosmission binding energy of the initial core state, and k?; =
fa - - AE,, where AE, is the energy splitting of the two 4t configurations in the final state. This
setties down the question of the “thrashold puzzie” [7], since two threshold energies must be used to
analyze X-ray spectra in thess compounds. Notice that in this limit the ratio a?ay(w)dPa,(w! and the
splittng  AE, can be obtained from XPS core spectra.

Therefore at this ievel of approximation, by identitying C,2sa? and C,2 b2 as the 4f occupancy
in the ground state. one can use the same formula to analyse homogeneous as weil as inhomogengous
systems. Moreover, by taking advantage of the rescaling properties ot the photoabsorption spectra
with respect to change in coondination bond length. it should be pussible 1o analyse lattice relaxation
efects in o hnal state of homogeneous compounds using inhomogeneous systems of similar
compositon and structure as slandards. In other words, by combining XPS and EXAFS anatysis one
shouid be abla to measure the t occupancy in the ground state, the splitting of the f configuration AE,
n the final state and lattice relaxation effects, if present, in homogeneous mixed-valent compounds.
This analysis is currently being done by some experimental groups {12]. although uncentainties in the
Debye-Waller factor and a lack of a clear theoretical background have complicated and made
ambiguous the interpretation of the results. Eq. (4.5) sats now the correct theozetical framework and it
is hoped it will facilitate this type of analysis.

The same Eq. (4.5) has been extended 10 the low energy XANES region and applied to the
analysis of homogeneous SmS, 4¢AS, , and inhomogeneous SmS, o As, ., cOmpounds with
satisfactory resulis [13,14]. The probiem in such extension is that, even if the sudden approximation is
valid in the low energy regime, Eqs. (3.5) are not. Consequently the effective atomic matrix elements
(M), are different in the low and high ¢nergy lir.iit and we cannat use XPS results {usually at high
phatoelectron kinetic energy) 1o fix the relative weight of the two channels in the final siate. One can
stil use Eq. (4.5), but in this ~ase the relation of the weights to the f-counts is more involved and the
separation between atomic and structural contribution not $0 clear-cut, as seen from Egs. (4.4) and
(3.10). To ade more complicalion, one expects the sudden approximation not to be valid in general in
the low energy regime. It certainly does not hold for Ce metal in the y-phase and intermetallic
compounds, CeO, eic., where the 41, 41" and 4R configurations interact very strongly both in the
initial and in the final state [10,14].

The investigation of all these guestions constitutes a field of sill active research and can
potentially provide a deeper understanding of two main problems facing today core level X-ray
spectrascopy: the evolution from the adiabatric to the sudden regime and the interplay between
excitation dvnamics and structure.
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