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ABSTRACT 

We outline a many-body description of the photoemission and photo«bsorption processes that 

irscorporates the multichannel treatment of the atomic dynamical excitations into the framework of the 

multiple scattering theory, in this way the interplay between excitation dynamics and electronic and 

geometrical structure of the ground state is elucidated. At the same time this approach provides a 

theoretical model for the study of the evolution from the adiababc to the sudden regime. We derive a 

new multiple scattering expansion that takes into account interchannel transitions as well. As an 

application we discuss the homogeneous and inhomogenous mixed-valent compounds, where the theory 

provides a due at the resolution of the threshold puzzle* and sheds light onto the relation between 

photoernision and photoabsorption spectroscopy. 

1. INTRODUCTION 

The study of the electronic and structural properties of matter has received in the recent past a 

great impulse due to the advent of synchrotron radiation. The unique properties of this radiation 

source, like its intensity, brilliance, polarization, tunability and collimabon, to cite a few, coupled with 

sophisticated data acquisition techniques have made possible the explosive growth of all kinds of 

spectroscopic research. In particular inner shell photoemission and photoabsorption spectroscopies have 
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received progressively more and more attention at a source of information about the electronic and 

structural properties of physical systems. Strangely enough, these high energy spectroscopies have 

been shown to be able to provide useful information on both the excited as well as the ground state of 

the systems under investigation. 

The realization of these potentialities has stimulated a parallel development of the theoretical 

schemes needed to interpret and analyse the experimental observations. On the structural side, for 

example, the multiple scattering (rrl.s.) theory has offered a unifying scheme of interpretation thai 

encompasses a wide variety of physical cases, ranging from molecules in gas phase lo adsorbates, 

from extended periodic systems, like crystals, to disordered or amorphous materials, from large 

atomic clusters to small ones. The price paid for this generality is the restriction of the fields of 

application of the theory to those cases that are amenable to a description in terms of an effective 

one particle scheme. This approach is certainly viable when both the initial and final states can De 

reasonably described in terms ol a single Slater determinant (or configuration). 

However all the phenomena connected to the excitation dynamics, like screening, polarization, 

relaxation, eutoionization and decay fall outside the realm of the one electron approach. Configuration 

interaction and in general many-body techniques are called for in this case. As a consequence the 

understanding of those systems where electronic correlation effects are important requires a more 

elaborate theory than the simple one particle approach Such a comprehension is obviously essential if 

one wants to understand the electronic properties of these systems, out becomes equally important m 

structural studies, since structural information tends to be obscured by electronic correlation effects. 

Therefore it would be highly desirable to develop a theory that incorporates both aspects of the 

problem, i.e. the description of the geometrical arrangement of the atomic costituente of the system 

under study and the electronic dynamics of the excitation process. The aim of this paper is to show 

that the multichannel generalization of the m.s. theory provides such un interpretative scheme. This 

generalization is a most natural one, in that the internal structure ol the atomic constituents rf the 

physical system is taken into account by the introduction of an interchannel atomic t-matrix that gives 

the probability amplitude of a particular excitation (channel) of the internal degrees ol freedom of the 

atom by an electron impinging on it. For the rest the m.s. structure of ir« theory is left unchanged, 

provided the propagation vector of the photoelectron between successive scattering events is changed 

according to the energy loss suffered. 

It turns out that this multichannel m.s. approach is substantially equivalent to the configuration 

interaction method used by FANO, DAVIS and FELDKAMPS (1) to describe the interaction effects of 

bound and continuum configurations in the photoabsorption and photoemission spectra of atomic 

systems. The novelty here is that one can incorporate such a scheme in an extended system, allowing 

at the same time the description of the atomic geometrical arrangement m the real space. This is what 
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is needed for ina raatsbc treatment of an intermediate valence (I.V.) system where one has two or 
more localized atomic configurations interacting with conduction states. In the photoabsorption process 
of an inner she* electron one is substantially observing the projection of this complicated many body 
ground state onto the photoabsorbing site. This tact allows one to took at the local electronic structure 
of tha ground state and to derive information about the configurations present in it. 

A good understanding of the physics of these systems and a satisfactory description of the 
photoemission and photoabsorption spectra has been achieved by KOTANI, GUNNARSON and 
SCHONHAMMER 12] on the basis of the Anderson impurity model, using a fitting procedure for the 
Hamiltonian parameters. 

The theory to be presented here will allow a first principle calculation of the spectra of I.V. 
systems. At tha same time it will elucidate the relation between structure and electronic dynamics on 
one hand and the mechanism of transition from the adiabatjc to the sudden regime on the other. These 
problems ask indeed interesting theoretical questions which are not yet well understood. It is hoped that 
the theoretical framework provided by the multichannel multiple scattering theory may help to clarify 
these points. 

Z THE MULTICHANNEL MULTIPLE SCATTERING THEORY 

The derivation of tha multichannel m,s. equations follows very closely the analogous method used in the 
case of non muffin-tin potentials by NATOLI at al.[3]. The reader is referred to this paper and to 
ref.[4] for further details and for the general treatment 

We begin with tha total absorption cross section, given by 

cKuMx^cAa Zt I ( * t
N i e I r j f ^ i ' S t t k e - E j + E i ) (2 .D 

i - i 

where Y ^ a r a the many-body initial and final state wave functions for N electrons in the system and 
She sum over tha final states I is intended also over all directions of the photoemitted electrons, hoi 
is the incoming photon energy and e te polarization. 

For transitions from a core state we assume that, to a good approximation, 

T l " - V K ! A * e < r > X B c , # . - » < r 1 - r I I _ l > 

= -to !,*•<. tr)¥G
H~ : (r^.r , , . . ) (2 .2 ) 

where A is tha usual a/rtsymmetrisng operator: A-(1/N!) Ip(-1)P P (A2-A) and <*>„*>,...r^.,) are 
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Slater determinants describing the configurations present m the initial state wave function 4 ,
i
N . 

Normalization imposes I „ | C / - 1 , if (6C|$C)>1. 

Similarly we assume that, by expanding 4 /
l
N ( r , r , . . . r N . , ) in terms ol the complete set 

H ^ ' f r , . r N . , ) . we can write 

¥ f
K » V N ! A I £ „ ( r ) y a

N - : ( r , . . . r N . , ) ( 2 . 3 ) 

We take the functions ¥ „ " " ' to be eigenstates ol the N-1 electron Hamiltoniar, 

N - I N-i p 2Z : s . . : i N - ; 2 
HN . j - - I Vt

J - I X + I (2 .4 ) 
i-i t-i k-: i r^-R,, I .<- l r ^ - r , l 

with eigenvalues Ea
N ' ': 

H„-I V 1 " V"1 V 1 (2-5> 

p 
where I Z k > N , R,, denotes the nuclear positions and Z^ are the associated charges 

We use throughout atomic units ol length and Rydberg units of energy. The factor VN! in Eq (2.3) 
again assumes that we can approximate ¥ „ " " ' by a linear combination ol Slater determinants, 
belonging to a continuum spectrum if ¥ a

N ° ' does. In any case we assume for simplicity all continuum 
states normalized into a box enclosing the system: one may eventually take the limit of the box linear 
dimensions to infinity and transform the sum in Eq. (2.3) into an integral. 

The final state wave function Y , is an eigenstate, with energy E«hco+ EN
r ol the N-electron 

Hamiltonian 

N-I 2 p 2zk 
H „ - - V r * + I L +H N . , 

i-i i r - r t i k-i ir-R^l 

- - V r
J + v o : , ^ , * , , ) + HN_, (2 .6 ) 

Thereloie 

H ^ " , =E * N
f (2 .7) 

and we shall henceforth assume that EN,»EN, is the ground state of the system. 

The insertion of Eq. (2.3) into Eq. (2.7) gives 



s 

- E A ? a f 0 ( r ) * a
! , - l ( r I . . . r N . l ) (2.8) 

and by multiplying on the left by H * , * 1 and integrating we obtain the set of equations 

< V ' + E - V l > *„<*>= I t t . [ v o a . ( r , R k ) + wa < 1 , (r.R ) <)]f ( , . (r) (2 .9) 
where 

« 
Va«. < r . » V - f ri d 3 r i «ty-> <«•,.-*„-!> 

i - i 

V t r . r ^ V 4",."-1 (^...r,,.,) (2.10) 

s a direct potential term and we have lumped all the exchange terms into the quantities Wa a . ( r ,Rh ) 
which are thus complicated, non local, exchange potentials for which a suitable, local approximation 
has to be found. If we impose the condition, as we shall do. that the functions t0(r) be orthogonal to all 
the one particle states present in the configurations making up the ground state wave function (so as 
to ensure the orthogonality condition ( ¥ r

N I ¥,")•<)) as well as to those configurations that enter in all 
the y ^ ' . t h e n the exchange term is given by 

M - l 

«*„„. (r.K,,) - l / f „ < r ) J n d3r1S'B"-1 (r . . . .rN . , )V(r , r^.R,,) 

2 ( - l ) P P f a . ( r i ) 1 ' 0 . * " : ( t . . . . r . . . r s . I ) (2 .11) 

We refer to the appropriate literature for the transformation of this non local operator into a local 
one [5] Henceforth we shall assume that .lis transformation has been performed and that our problem 
is to solve the set of coupled Schrddinger equations with local potentials. 

Since EafioHE", we can write in Eq. (2.9) 

E-Ea»-1 - "fi©* E \ E,,"-1 - flO>+ E»,- E, ,'-1-(E0
, ,- l-E l l

! ,- l> 

-•fw- Ie -A^,- ) t l l
I (2.12) 

since E "-'-E N » lc is the ionization potential for the core state and A E a = Ea
N"' • Eg

N-' is the 
excitation energy left behind in the (N-l)-parbcle system. Therefore k a is the wave-vectoi of the linai 
state photoelectron. 

Eqs. (2 S) can then be rewritten as 

e 

( V +k a
i ) f B (D - I„, V ^ l t . ^ l f ^ l t l (2.13) 

where for sake of brevity we have put V a o . • V 0 O , • W a a , . 

The functions f„(r) have a simple physical meaning in the case of electron-molecule scattering. 
Through the asymptotic conditions 

ikQr 
i»„.X e 

where the factor Na»(ka/?t)"?/(4ji) is necessary to ensure normalization to one state per flydberj, 
they describe an electron in the incoming channel a with wave vector k which can be scattered in 
any outgoing channel a , with wave vector ka, after loosing the energy A E a . In the photoemission 
process we have to take toe time-reversed state of Eq. (2.3) (complex conjugate it spin is negjec'erj) 
so that the outgoing channels become incoming channels which interfere constructively in the wave 
packet describing the photoelectron so as to give an asymptotic plane wave propagating out to infinity 
with wave number kg. 

Therefore Eqs. (2.13) are to be supplemented with the boundary conditions Eqs. (2.14) written by 
replacing fa(r) with »n*(r). It would be more appropriate to write fa(r) as 'a(r ; ka) to make explicit 
the dependence on the boundary conditions. We shall introduce this more complete expression where 
necessary, otherwise the simpler form will be used. 

It is fairly obvious then that in the expansion (2.3) the most important (N-l)-particle states are 
the excited states f a

N 1 with a core hole corresponding to the photoejected electron, for which 
E8

N'' -E , N • le, so that k„2 • fm • le • A E a is small compared to V,,,,,. In this sense the * „ ' ' ' ' are the 
relaxed excited states of HN , , . The argument runs as follows. If ka

2»«ci> • ic • k0
2 and ka

2» |V a o , 
(r ()|, where re is the radius of the atomic core, then to a first approximation we can neglect the 
potentials in the r.h.s. of Eqs. (2.13), so that, together with the boundary conditions Eqs. (2.14), ws 
obtain 

l k a * . 
f a ( r ) - e fc^ . (2 .15) 

The procedure for solving Eqs. (2.13) with boundary conditions (2.14) (in the end we shall take the 
complex conjugate) closely follows Ref. [3). Here we limit ourselves to present the relevant results 
deterring the interested reader to ret. (4J for a complete derivation. We describe any physical system 
as a collection of atoms whose dynamics is described by the potentials V a a , (r) as defined in Eqs 
(2.10) and (2.11). For semplicity of presentation these latter are assumed to be zero beyond an 
effective mutfin-tin radius, although the presence of intestinal potentials describing the dynamics of the 
medium in the region between the muffin-tin spheres would not modify the physical picture based on the 



multiple scattering approach, it would only change the definitions of the propagators and the atomic 

T-matrices. 

The results are best illustrated by beginning with the case of a single atom. The solution in the 

region outside the atom ptfe AQ) can be written as 

f a l r ) = N a e i V « 6 a a 

- k , , !^ i - > l h*x (.*„*> V * ' B°L(fl;l> ^ ( k a ) (2 .16) 

whereas inside the muffin-tin sphere ft of radius p(re Q) 

f„(r ;ka) -
Zi V L - ^ ^ ' L - ( 0 ; t ) i"1 *j, i \ ) ^ . " ' ( r l Y . l t l (2.17) 

Here the (unctions fu. ,aa'(r). for given a • , L'. e/e particola/ vector solution components of index 
ce.l of the system of radial equations derived from the system of Schrfidinger equations (2.13) by 
writir.g 

f 0 ( r ) -S._ f"V (r) Y\ (r) (2 .18) 

inserting into Eq. (2.13) and projecting onto \ . One finds 

[ l / r ( d 2 / d r 2 ) r + k0
2 - 1 (1 + 1 ) / r J ] f a

t (r) -

V L ' v u . - a " ' < r ) f a ' - l r l (2.19) 

where it ras been assumed that the expansion 

V ^ . t t t ' S , ^ " " ' ( D Y j i ) (2.20) 

is possible so that 

VL..aa'ii)'-ZL. C.J-'.^. V.J^'d) ( 2 . 2 1 ) 

"\'-'L. being the usual Gaunt coefficient defined as (using real spherical harmonics) 

C.j'._. - {Yjf l )Y^. (Q) fL. (Q)dft (2 .22) 

If a runs from 1 to n a and I from 0 to imtt. Eqs. (2.19) are a set of n a ( l m M +l ) ! equations and 
consequently one can construct this number of linearly independent solutions fU 'a a (r) regular at the 
origin which, for given a t ' can be interpreted as vector solutions whose components are labelled by 
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oL To start the integration one might take, lor example, near the origin 

f ^ . 0 0 ' ( r ) - r 1 8 l L . S^,. ( 2 . 2 3 1 

In one introduces the matrix Wlj.fly;00' defined as 

W f j . f ) ^ , 0 0 ' - »lii,fLl,
aa'] (2 .24) 

where W[f,g] is the wronskian of the functions f(r) and g(r) calculated at r>p 

W [ f , g ] - f ( r ) <d/dr>9(r> - g (r) (d/dr) f (r) I r=p (2 .25) 

and j,(kar) is the usual spherical Btssel function of argument kar, then 

i^ . , 0 0 "(r ) - p - 2 I 0 . 1 _ , f u _ . a a , (r ) |W(j,f)- ;) , . ._ . ,a '°" (2 .26) 

The general solution fa(r) inside the muffin-tin sphere is therefore given by the linear combination 

f a ( r , k a ) - SLYL(r) I a . L , CL,°'<ktt) £ M . o a ' ( r ) (2 .27) 

By matching smoothly this solution with the solution (2.16) in the outer region al the muffin-tin 

radius p, one obtains an expression for \ a <a> L). fliv«n below, and the relation 

C L . 0 ' (ka) - I t B L , a ' ( a . i ) i1*1 Y1(kfl) (2 .28) 

The quantity B^" ' (a.L). bv definition, is proportional to the atomic scattering amplitude 
(Ta)a t \L into the angular momentum L and channel state a in response to an excitation with angular 
momentum L and channel state a.- In terms of the matrix (2.24) and the analogous matrix 
W(- ih \ f ) u . a a ' constructed with the Hankei function h*,(kar), one finds 

-B°L<a;L> - ( k a / K ) 1 / 2 ( T < ) a « , i -

- ( k a / H ) ' / J Za.vl*Ui,t)]ll,
aa,i)ia)-- [ W ( - i h * , f ) ' ; ) . . . a ' a I 2 . ; 9 ) 

This expression is obviously invariant under the transformation (2.26). One has in fact 

W(j.fJLl/
aa '. P ' 2 6 a a . 8 a . and 

[ w < - i h \ £ r M L L . a a ' - I w( j , f ) . . „ a o "(w<- ih* , f> - : ) ." . , a " ° y . 
a"L" 
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Remembering that -ih, » n,-ij,, where n, is the Neuman function, one derives the relation 

( V ; > o a ' u L ' " * ( A r L - < w , - i h * - f > J - . ^ ' t w i J . * ) " 1 ) , . . . ^ a ' a -

" kaZa-„- [ « ( n . f ) ! , . . 0 0 " [W ( j . t ) "M ....*""' - i k a 8 . ^ . S a a . 

wrier* Ka is the reactance matrix. This relation will be useful in the following. Notice that Ka is 

hermirjan. 

The choice (226) for the normalization ol the regular solutions (2.23) o' the system of radial 

Schrodinger equations (2.19) has the important consequence that the quantity controlling the amplitude 

of the wave function fQ(r> inside the muffin-tin sphere l i in Eq. (2.17) is the same quantity that 

controls in Eq. (2.16) the amplitudes of the spherical waves in the asymptotic region, i.e. it is the 

scattering amplitude. 

This fact will be extremely useful, when calculating the absorption cross section, for establishing 

the connection between the wave function approach and Green's function or density ot state 

approach, through the application of a generalized optical theorem. 

When there are several atoms located at sites Rk, the same expressions (216) and (2.17) carry 

i ver to the many centre case, provided one introduces the quantities Ba
kL'a.U which describe the 

scattering amplitudes for spherical waves emanating from the atom located at Rk. and sums over all 

stes: 

:"„in =N ae-"o« 8,^ 

- K,,^ L.^ i - - ; ft'. <*„£•„> X M r ^ B ^ i a . i , ) * ; .<* a ' (2.16a) 

wnare rk » r -Rj. and r is referred to the origin of the coordinates. 

Similarly, inside the muffin-tin sphere ft, of radius p-,. one has 

I . I a . L . I _ 3 a ' _ 1 . ( a ; - , ) i - V V - ^ . - - ' 0 0 ( r - ) Y - ( * - ) (2.17a> 

wnere now all coordinates are referred to R,. 

The new scattering amplitudes B^taD * • now obtained as solutions ot the multiple scattering 

equaaorts 
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V L . ^ - ' - ' ™ ' ^ B«' ,L , (a;D + 

+ Z IL . G^,, , , , B«kL.( f l;l) - - J V c i 8 ^ 1 ' ' ' " , , * » » ' - ' ' <2.31) 
. i . l i 

one for each site i. which in fact describe the self-consistency conditions for their simultaneous 

existence, since now the scattering amplitude emanating from one site becomes an exciting amplitude 

for all other sites. . 

In Eqs. (2.31) the quantities Ga
iUL< are the usual spherical waves propagators with wave 

vectors ka, given by 

G < 1 . L . < L ' " 4 n k a £ : . - I - 1 " ' 1 " 1 ' ^ 1 ' : . . . 1 - i h V . . < k a R „ ) ] Y . . . (R_J 

" N< , iL.»L' " * A ' . , * - ( 2 . 3 2 ) 

where R,k»R,-R|,, and Na
ilkL., J » , ^ have been defined in terms of the decomposition -ih,* « n,-ij,. 

Moreover (T^)aa'LL' is the atomic T-matrix for the atom located at site i ano o denotes the origin of 

the coordinates so that R^ « Rk. 

The quantities N and J, when considered as matrices in the site and angular momentum indices, 

are real symmetric. Notice the relations 

J a . L i L , - ka6;_L, (2 .33a) 

? A i . = i A i . . . : " >« .J"J I .»L- (2 .33b) 

Eqs. (2.31) can also be written in compact form 

B ° ' (U. i . ) - - J ° 8 / ( k a n > - / 2 ( 2 . 3 4 ) 

and the multiple scattering matrix S M
l l 4 . can be cast into the form 

- (K, . - - ) « " ' , . . 8,.,+ d - 8 u )8 a o .N Q . L . < L . - i S a a . J < \ , , , , , 

" vfia':i.Ai'- i*aa\;.,.f ( 2 . 3 5 ) 

having used Eq. (2.33a). Here M and A are hermitian matrices; actually A is real symmetric. By 

solving Eqs. (2.34) with respect to Ba
kL(a.U and using Eq.(2.33b) one can now derive a generalized 

optical theorem, which will be used shortly, 



u 

2 ^ B ^ j a - W [B a ^. ( f l ; i »J" - 1 / x [(M-iA)-4A ( M + i A ) - 1 ] 0 0 ' i l i k l . 

- 1/n Im [ ( M - i A ) - l ] a o ' u , k L . - 1/X Im t " ' , L kL, (2 .36) 

where we hava put (M-iA)'1 • S"1 • t , which is tha scattaring path operator in the multichannel case. 

Taken for th* diagonal elements, this equation gives the anticipated relation between the square of the 

wave function amplitude and tha local projected density of states. 

In order to obtain the total photoabsorption cross section, we have to sum over all possible 
photoelectron final states labelled by the index a and integrate over all possible direction of emission 
k^ If we assume that the initial core state is krataed at site i. we need ra'(r,.ka) of Eq.(2.l 7a). Since 
these wave functions are normalized to one state per Rydberg. we find, using Eqs. (2.1-3) and the 
projection properties A2 • A. 

o(ci» - 4*Jaho> J^ 

- 4x*offio>Zaf d i j i I ^ M r . - k , ) I e - r l* e
1 c . r ) )S a 0 l> (2.3"?) 

The last step fotows from the tact that we hava assumed the orthogonality ol the scattering 
states y r . A J to ail the single particle orbitate appearing in the H ^ ' s . We have also introduced the 
quantity s a a « ( I V " 1 1 *¥c

H~l ) which represents the projection of H ,
a

N " ' onto the occupied 
configurations present in the initial ground state. 

By introducing the expression (2.17a) into Eq.(2.37) performing the angular integration over kB 

and defining th* atomic matrix elements 

M a o"L L . - ( i o a 'L L . (r^K. <r,) learl e c M r , ) ) ( 2 .38 ) 

we can rewrite Eq.(2.37) as 

<Ko» - « 'o ( f t< i>I ( U I 0 . 0 Sp. B I X . , . s a 0 M«*L B»lL ( a ; i ) 

l**\;- <0.;i> M"/', S e . , ]" ( 2 .39a ) 

or 

O(0» - «crfKtìZ^.lBB. I X,,. S„0 H«* 

(im X**\.__1L. ) [ M°'P; S„,0 ]" (2 .39b) 
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using the generalized optical theorem Eq.(2.36). 

In a similar way, from Eq.(2.l7a) it is immediate to write down an expression for the 

photoerrission cross section for ejection of an electron into the state k^ with energy kft
J • tiu-le-AEa 

do(AE a ) /dk f l dAE a ' 4nJafuol <Ia fa' (r .k a ) I e - r l ^ 1 (r) ) S a 0 l J 

- U l 'a f iw l l Za.fZ^ B a ' i L . ( a ;L) i1 V V **"!'. S a 0 1 2 (2 .10) 

where the Quantity A E a represents now the binding energy. Notice that now it is no longer possible to 
take advantage of the generalized optical theorem (2.36). In both cases the sum over L, is over the 
final angular momenta allowed by the dipolo selection rule in Eq.(2.38). 

The expressions (2.39) and (2.40) can be used to establish in some limiting cases a relation 

between photoemission and photoabsorption cross sections. 

3. THE GENERALIZED MULTIPLE SCATTERING EXPANSIONS 

In the expressions (2.39), (2.40) the structural information is contained in the inverse T «S'1 of the 
multiple scattering matrix Eq. (2.35) in a lather involved way that intermingles dynamics as well as 
structure, through the presence of the structure matrix elements Qa

llkl It turns out however that 
unoer certain circumstances, to be discussed shortly, one can expand the various cross sections in a 
convergent series the general term of which has a simple and direct Physical meaning. In fact, 
remembering the notation introduced in section 2, we have 

T - S"1 - ( T / ' + G ) " 1 - (I + T,G)"1 T4 

so that if the spectral radius p (T,G) of the matrix T,G is less than one, where p (A) is the 

maximum modulus of the eigenvalues of A, then 

( I + T . G r 1 - I ( - 1 ) " <T4G)" (3 .1 ) 

the series on the right being absolutely convergent relative to some matrix norm. For short we shall 
henceforth define G\x • 0 to account for the factor ( 1 - 5J in Eq. (2.35). 

As a consequence the photoabsorption cross section Eq. (2.39b) can be expanded in an absolutely 

convergent series 
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CMGJ) - I O„t0M (3 .2 ) 

where 

O.ftì») - 4XahO) 1 ^ . Ipp. I S^.IM,.,)M? , I m ( T è , ) W ' i L .L. 

[( M.. . ) 8 ' J* (3 .3a) 

is a smoothly varying atomic cross section and 

0,(0») - 4KOhb> Ijp. £ I.._, (M.. . )8 

'-;'-'; " " - « -

Imtl-l)-1 (TàG)n T j 8 8 " , . . , U . ( < M . . . ) B ; ]" (3 .3b) 

represents tha contnbution to tha photoabsorption cross section coming from process where the 

pnotoeiectron. before beirj ejected at infinity, leaves the photoabsorbing atom, located at site i, with 

angular momantum L and channel state B. is scattered (n-1) times by the surrounding atoms and 

returns to sita i with angular momentum L' and channel stata p ' . All these events are eventually to be 

multiplied by the corresponding effective atomic matrix elements 

(M. . . ) B - S S„, M°8 and <M...)8 =' E S Q . , M"'8' 13.4) 

and summed together to give the n-th orde' contribution. It is clear that this term Dears information on 

tha n particle correlation and therefore is sensitive to the geometrical arrangement around the 

pnotoateorbing atom 

The multipla scattering analysis can in pnnbpie proceed in a way similar to the one channel case 

(6j although tha situation is now much more compio* due to the new feature introduced by the internal 

dynamics of tha atoms m the systam. In fact a> each scattering event the photoelectron can change 

its channel stata and consequently its propagation vector k,,. Even assuming a channel structure only 

for the photoabsorbing atom, one is faced with a superposition of different oscillating multiple 

scattenng signals of tha type A l k j Sinp^R^+elk,,)]. each one with a different threshold energy 

corresponding to the energy loss AEa suffered by the photoelectron to excite channel a (remember 

that k„«(no>lc-AE J 1 * It might be not at all easy to discriminate between such signals. However the 

functional form suggested by the theory resolves an old ambiguity regarding wether or not to use 

different threshold energies m the analysis of mixed valent homogeneous compounds [7] and m so doing 

helps tha experimental analysis by reducing the number of unknowns. 
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In general tha existence of an energy range where the condition p(TaG)<l is satisfied, follows 

Iron tha asimptotic behaviour of tha scattering amplitudes at high photoelectron energy, since 
l im lko~* ,")l(T i)

00 'u . | • 0. Actually in this regime one can write 

(Ta)°»',L . - t ^ A i - S o a i ' a n d #*\:- - * \ *:.i..*aa' 0.5) 

since the photoeleCron is sensitive only to the atomic cores, which are spherically symmetric and only 

the "incoming" channel (a(r) in Eq. (2.14) is relevant, following the same argument leading to (2.15). 

The fact that in this limit the m.s. matrix S in Eq. (2.35) becomes diagonal in the channel indices 

(and therefore block diagonal in all the indices) strongly suggests another kind of expansion which 

sheds light onto a new aspect of the present theory. From the same Eq. (2.35) and Eq. (2.30) we in 

(act observe that tha various channels interfere through the off-diagonal elements of the inverse ol 

the reactance matrix (K, •') a a
u . (a»»a • ). In the high energy limit, these matrix elements go to zero, 

due to Eqs. (3.5). so that in the expression (2.39) tor photoabsorption the different channels decouple 

and one recovar tha result o) the sudden approximation [Bj. In other words the quantities ( K , ' 1 ) 0 0 ^ 

control the cross-over from the adiabatic to the sudden regime. By lowering the photoelectron energy, 

off-diagonal terms of tha matrix solution f ° a
u , in Eq. (2.32), and tnerelore of the matrix K,', come 

slowly into play. Specifically one expects in this case that the amplitudes (T„) a a
L L . diagonal in trie 

channel indices be substantially bigger th»i the off-diagonal (ana') amplitudes (Ta i)
0 0 'L l . . As a 

consequence, since from Eq. (2.30) T, -' • K,-'-ik„ we have l*iT,h • T / , ' , so that it (T,)a<,
u.(ai»a') 

is small, so is (TjK,"1)""^.. One can then perform the following nartition of the m.s. matrix S""^ w in 

Eq. (247) 

cut * act - a _ - aa ' 
S , , . K , . - " T . :" l » l t .

8 u * < W . !8««' + ( K . i C ( 1 - 8 - , S : « 

- « V 1 " 8aa' + <><" ! > a a U - S a c r > * . « ( 3 . 6 ) 

using the relation (2.30) between T„ and Ka for the off diagonal elements. Here ^ is a block-diagonal 

matrix describing the m.s. structure relative to channel a. By assuming that p(tbKl'
1) < 1 we then 

find 
• 4 » 

T - S"1 - (I + V r V - T , , - I (t tK-') r Xb (3 .7) 

Remembering Eq. (2.39b) the photoabsorption erosi iaction can be written as 

CHCi» - 4Uno» I I I (M., ,)° Iir, T ° a (M'. . , )a (3 .8) 

Than, using Eq. (37), we can e xpand O(OJ) m an absolutely convergent stnes 



IS 

• a a' " 
a i o » - £ 0 1 » ) - ««ft» £ £ £ (M..,> (K* ) im £ ( -1 )" 

n-0 " aa' L ( f ( L f * " !.jl «ft L ' j f n-3 

t ( t K"1 ) n t l""' (3 .9 ) 
6 * b IL. i f 

In «his expansion, tha n-0 tarm givas tha suddan approximation, sines t b is diagonal in ih# 
tat Micas 

0,(0») - «Kite» E £ £ (M., , )" (M* , ) " Im(TJ " ( 3 . 1 ! 10) 

For iha first naxt ordar tarm ona obtains 

o,(w> —4xflua £ £ £ £ (M...)" I m K t , , ) * (K_l ) 0 0 ( T l s ) a ' ) 
OB' l , f f I f i f • " L,L ' U . U «l i l ' D i i ' . i f 

<M' )* (3 .11 ) 
•et f f f 

and we axpact ttm to ba tha dominant tarm of tha sana» (3.7). 

In this lattar axpansion we hava retained for simplicity tho fuN axprassion (3.4) for tha affsctiva 
atomic matrix alamants, although in tha high anargy limit soma sort of complicated axpansion of 1 * % , 
should axist in (arms of V»"'Ll.(r) and indiractly of ( K 1 ' ) ° « ,

u . . duo to Eqs. (2.19) and (3.5). Tha 
expression (3.9) howavar encompasses tha mora ganaral casa in which in soma anargy ranga ths 
off-diagonal alamants of tha matrix solution (2.26) ar ' not small, although tha matrix slamsnts 
(K4

 , ) a a
u ( o * a " ) ara. This is a fairly possible situation which enlarges tha anargy range whara tha 

expansion (3.9) is faasabie. 

In tha suddan approximation limit a usaful relation can ba established batwaan tha photoabscption 
and ina photoamission cross sections From Eq. (2.40) ona linos in this limit 

da(AE„) „ a 2 

dAEad: 
£- - 4K2CdWi>l£ £ B * (a .D iJ -y . (ka) (M. . . )* I (3 .12) 
| k a u i,;> i f - » L , I -

By mtagrabng ovar dk^ ora has 

d o ( A E ) 
- = - - 4XC(n» I I (M.,,) <M„„> ImCt,) 

dAEa 

I ( » ; a S a ) (3 .13 ) 

sinca now Eq. (236) raducas to 
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£ e* (a.i) [»B <a»i)]* - - ii«<v* (3.i4) 
m 

Comparing Eqs. (3.10) and (3.13), ona taat that tha intagratad photoamission erosi saetion for 
ajaction of ona alactron with binding inergy A E f t aquals tha partial contribution to tht total 
photoabsorptjon cross saction of ehannal & as expected whan tho various channels decouple. This 
fact can ba usad in different ways. By taking, i<r example, the high energy limit, using Eqs. (3.5) and 
remembering that in Ms limit t,, • « 1 , we can write from Eq. (3.6) 

<va -
* u . i f 

- < ( I* t* Ga) "' t * ) * ( t f . ) 8 - e1 >• s i n ( 6 f ) / k a ( 3 .15 ) 
* * i i . i l ' * l l Li- » a 

neglecting any structural contribution. Than 

d O l A E . ) 

dAEa 

— - 4Rc4fu Z (M., , )* (M* , ) * s i n ' <8a) Ik. (3 .16) 
;. Lr " W '• Lr if a 

- I. ,«i);AEa) 

Since in the same limit 

o « i » - 4xan<o I I (M „ ) a <M*t()
a I m l t * o . i v , 

a L. Lf lg i - , . lL e 

we finally get, assuming predominance of one final L, component and a negligee dependence of (M^,)" 
on the photon onorgyfto, 

k" o«o) - 4«fa> £ (M...)a<M *,) * s i n 2 8 a lm(T, 
*Lr li lt li ^ a i n ' S " 

- £ I.,(0);AE_)X (W-Ic-AEa> (3 .18) 
a. *"£ 

where xjco) embodies all structural information. This is the relation used by Chou et al. [S] to discuss 
the role ot multielectron excitation in the EXAFS structure of the Br2 molecule in the framework ol me 
sudden approximation and by Hammond et al. [9] to discuss XAS spectra in mixsd-valent systems On 
the other hand Eq. (3.13) has provided the rationale for determining the (-electron occupancy in 
homogeneous mixed-valent rare earth (RE.) compounds, by measuring the integrated 'mensilità of Cm 
various photoemission lines in Lni pholoemission spectra corresponding to the different final stati 

http://ii.il'
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channels. The relation between peak intensity and (-count can be more complicated then a simplt 11 

ratio and depends obviously on Vie structure ol ¥ * ' < . and ¥*" ' „ which intervene in the definitions ot 
soo • P * * ' J ^ ' G ) * * ) M ,a Eq (34) We refer to Rei. (10] and citations therein lor a lull discussion 

or this point in the case ol Ce compounds. See also the discussion in the next section. 

The expansion (3 9) shows clea'ly the inierchannel structure ol the theory. Although we have 

jusbfied its derivation starting Irom the high anergy hmit, its validity is not restrained to this energy 

regime, as already anticipated above. Even in the near edge region the interchannel atomic matr.x 

e'emems ( T j a a ' u (a*a') might happen to be negligible compared to the diagonal one;. This situation 

saralleis that '-«countered in the case of Cu and in general free electron metals, where the diagonal 

matrix elements |TJ a a
L L . are themselves small at low (£ 40 eV) photoelectron kinetic energy, so 

Sat a single scattering EXAFS approximation is sufficient to describe the near edge structure (6]. In 

such cases the sudden approximation would be valid right at the near edge region, obviously only lor 

nose channels which are open at that particular energy. 

It would be extremely interesting to explore experimentally the validity ol these speculations. In 
the next section we shall snow an application of these considerations to mixed valent compounds. 

1 APPLICATIONS OF THE THEORY AND CONCLUSIONS 

The theory sat forth above makes d>finite predictions about the role ol the various channels present in 

a photoabsorpbon spectrum. In the sudden approximation limit all channels are decoupled (they do not 

interfere) and have identical or reasonably similar multiple severing structure, depending on the slight 

difference of the atomic P-matnx among the various channel states. Experimental evidence tor such 

m.s. structure associated with double electron excitations would provide more convincing support to the 

theory [111. 

Another aspect worth persuing is the study of the absolute amplitude ol the signal coming from 

the elastic channel (AE„»0). A success in this field would give more interpretative power to m.s. (in 

particular EXAFS) structural analysis [8]. 

In the case of mixed-valent compounds the theory provides a clue to the resolution ol trie 

threshold puzzle and to the discrimination between homogeneous and inhomogeneous systems In fact m 

the case of inhomogeneous RE. compounds (static admixture of 2* and 3* ions), the total absorption 

coefficient is given by an incoherent sum of two absorption spectra with weight C0
J and C,2. the 

relative concentration of the two types of ions: 

IS 

o ( o » - c ' et0 <o»x J ( k . ) + c ' a . <o>)x" " O ( 4 . 1 ) 

where a0(a>) is the atomic absorption coefficient of the 2* ion and a , (co) that ol the 3* ion. As a 

good approximation ap(co)« | Spg|2| (fp(r) | r | $e(r)) |2 / kp (p«0,1). For simplicity we assume a single i 

final state and average over sample orientations. The wave vectors kg and k, are given by kp • [fi-i>-

LJ''2 (P»0.1) where lp is Ihe ionization threshold for the two types of ions, and xpiC<) » kp I m i.*' 

(Tb)UpJmiim describes the m.s. structure. We assume that only the elastic channel ocp is predominant, 

having taken account of the remaining channels through an appropriate optical potential. 

Quite different is the case of the homogeneous compounds. Here at least two configurations are 

mixed into the ground state, so that 

4*;- - ^ N ! A 0 = ( r ) f a ¥ , [ 4 f r _ : ( 5 d 6 s ) " - : ] + b H ' : ( 4 f (5 . 6 s ) T J ) ( 4 . 2 ) 

whereas for the excited final state we can «.'̂ proximately write 

y , - •VN.'Aff^lrl'J'Vf, ;(r)T". ) ( 4 .3 ) 

where f p (p»0,i) indicates the relaxed conizations corresponding to ¥ p . As a matter of fact, 

since the states 5d6s are spread into a band, we should write e.g. 2va«^kr k indexing the electron 

promoted from the f state to the band. For simplicity, we neglect this further complication, although the 

generalization ot the following argument is immediate. See ref. [10] for a complete treatment of this 

point 

In order to write the photoabsorption cross section we need (Mj'1,1, » I a S o 0 M,uS of Eq. (3.«). 

By putting P^ . (¥",,1^) and similarly Pp0"(4,"p|H'0) for p.0,1, we easily find 

Ì- oB :B IB 
i S , , H - ( aP n o • bP„,)M. + («P . . + bP. . )M. 

-B :B 
« a P . ; M. _ + bP.._ M. ; 4 . *) 

neglecting the off-diagonal overlap factor P0, with respect to PM and P,, 

To the zero the order of the expansion (3.9) and '..•> the high energy limit, using Eqs. (3.5) and 

(3.18). we easily ilnd for the absorption coefficient a0""(u). writing I lor l(1 

a.'--'-(coi - a;' a* fco)jr. <k-> * b ; a (u»x <k. ) ( 4 . 5 ; 



I l 

where afri « | P p / l f l * » » * » , / s , is the atomic absorption ccafficient tor the configuration p, k1, « 
Ito» - L where I, • E"a - E * ' 0 is the phoesermssion binding energy of the initial core state, and k4, • 
-ho) • lc • AE, . where AE, is the energy splitting of the two 4t configurations in the final state. This 
settles down the question or the threshold puzzle' [7], since two threshold energies musi be used to 
analyze X-ray spectra in these compounds. Notice that in this limit the rat» a,a0(ti>)/bJa1(a>) and the 
splitting AE, can be obtained from XPS core spectra. 

Therefore at this level of approximation, by identifying C^aa 1 and C,J« b2 as the 41 occupancy 
m the ground state, one can use the same formula to analyse homogeneous as well as inhomogeneous 
systems. Moreover, by taking advantage of the reseating properties of the photoabsorption spectra 
with respect to change in coordination bond length, it should be possible to analyse lattice relaxation 
effects in t» final state of homogeneous compounds using inhomogeneous systems of similar 
composition and structure as standards. In other words, by combining XPS and EXAFS analysis one 
should be able to measure the f occupancy in the ground state, the splitting ol the f configuration AE, 
m the final state and lattice relaxation effects, if present, in homogeneous mixed-valent compounds. 
This analysis is currently being done by some experimental groups [12], although uncertainties in the 
Debye-Waller factor and a lack of a clear theoretical background have complicated and made 
ambiguous the interpretation of the results. Eq. (4.5) sets now the correct theoretical framework and it 
is hoped it will facilitate this type of analysis. 

The same Eq. (4.5) has been extended to the low energy XANES region and applied to the 
analysis of homogeneous S m S 0 M A s 0 1 5 and inhomogeneous S m S 0 9 t A s 0 M compounds with 
satisfactory results [13.14]. The problem in such extension is that even if the sudden approximation is 
valid in the low energy regime. Eqs. (3.5) are not. Consequently the effective atomic matrix elements 
(M*n)au- * • different in the low and high energy lie ut and we cannot use XPS results (usually at high 
photoeiectron kinetic energy) to fix the relative weight of the two channels in the final state. One can 
still use Eq. (4.5). but in this '-ase the relation of the weights to the f-counts is more involved and the 
separation between atomic a id structural contribution not so clear-cut, as seen from Eqs. (4.4) and 
(3.10). To ado more complication, one expects the sudden approximation not to be valid in general in 
the low energy regime. It certainly does not hold for Ce metal in the -y-phase and intermetallic 
compounds, Ce0 2 etc., where the 4f°. 4 f and 4f* configurations interact very strongly both in the 
initial and in the final state [10,14]. 

The investigation of all these questions constitutes a field of still active research and can 
potentially provide a deeper understanding of two main problems facing today core level X-ray 
spectroscopy: the evolution from the adiabatrk- to the sudden regime and the interplay between 
excitation dynamics and structure. 
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