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1. Introduction 

Among the corrections necessary to find accurate s t ructure 

factors from the di f f ract ion measurements, the correction for 

thermal diffuse sca t te r ing (TDS) plays an important ro le . The 

diffractometer in tegra tes the ine l a s t i c processes* If the r e su l t 

of t h i s integrat ion 1-^' s, , s^ , s 4 ) i s , in the neighbourhood 

of the Bragg peak, a monotonous function of the scan parameters 

Ŝ  , the ine l a s t i c contribution can be substracted as a 

backround. .But the backround subtraction eliminates only a 

part of the ine l a s t i c sca t te r ing i f J T { S, , sg , Sj ) i a peak 

shaped. In f ig . 1 i s shown a diffraction peak obtained in a 

one-dimensional scan over the parameters . The unhatched peak 

(Is 
) is the Bragg scattering and the right hatched peak ( I-j.) 

is the TD scattering. The measured integrated intensity will 
be the area in the range (-s0 , s c ) (the limits of the Sragg 
peak) minus the inelastic backround represented by the left 
hatched rectangle: 

«i - ^ L - j n = L. [ f loods - « 0 1 т (*в\]. (пъ) 

Fig. 1. Intensities measured in 
a one-dimensional scan in the 

S neibourghood ot the Bragg peak. 



Here -Jg and Jy- are the Bragg and TDS integral intensities 
and <X is the TDS correction. The index о means hackround. 

It is «ell known that only the one-phonon coherent scat
tering by low frequency acoustic modes produces a maximum 
under the Bragg peak (see,e.g., ("13 ). But taking into account 
only these modes it is possible to calculate the TDS correction 
without a priori knowledge of the unit cell structure. Only 
the elastic constants are necessary to know and these can be 
found by measuring the sound velocities along some directions 
in crystal. There are 3 constants for the cubic crystal, but 21 
for the triclinic. But even for cubic crystals the exact calcu
lation of o( needs a long computer time because a multiple 
integral must be performed. The time is drastically reduced by 
using some approximations, the most important being the omission 
of the instrumental resolution, the high temperature of the 
sample and the mean velocity approximation ["2,3̂  • The price 
which must be payed for, evaluated on some compounds by different 

authors, is \% error in Ы, for the first approximation [4] , 
0.04% for the second one and £ 5% for the third [5~\ . In 
compensation, the correction bi can be expressed by a third 
order integral which can be made analytically in a rough appro
ximation (infinite vertical detector aperture [2] ) or reduces to 
a double integral numericaly solved £3] . 

The theory of the TDS correction initialy developed for 
X - rays was extended to the neutron diffraction. Here two 

different situations can be distinguished depending on «nether 
the ratio В between the sound and neutron velocities is smaller 
or greater than unity [6,7] • In the first case the TDS correc
tion is identical to that for the x - ray diffraction, but for 
b > 1 the quantity o< decreases drastically with increas
ing В and could be even zero. The profile I-|-fs) in this 
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case was written for all the types of one-dimensional scans 
used in the angular dispersive (AD) method [8j but no quanti
tative analysis was provided up to now for the neutron time-of-
-flight (TOP) diffraction on monocryatals. In TOP were conside
red valid the conclusions found for the AD method [э] • 1° fact 
this Is true only if the ratio ~t between the flight path 
after the sample and the total flight path is very small. Many 
diffractometers fulfil this condition but there are situations 
when if is near 1, like it la with the diffractometer for 
irradiated samples in Harwell po} • In the general case TDS 
measured by TOP shows some peculiarities lost in the limiting 
case ^->0 • These peculiarities were ignored in the paper of 
Cole & Windsor £11] which describes the basis of a program 
computing the TDfc profile in the TOP diffraction on powders. This 
program uses less approximations but is time consuming and does 
net work for monocrystals. In the following я TDS correction 
formula for the TOP diffraction on monocrystals is found. IVorking 
for any TOP diffractometer this formula contains a function 
numericaly computable in a short time and two parameters which 
can be determined from t?ie elastic constants or alternatively, 
in the refinement process together with the structure parameters. 

2. TDS differential pioes-se.ction and the scattering 
surface 

In the TOP diffraction the following differential cross-
-section fl2] is measured: 

where E4 j £д a r e * h e energies of the neutron before and after 
scattering, (_,< , Lg, are the corresponding flight pathB, L=L^+l-2 
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and t ̂  is the energy of the neutron elasticaly scattered. 
The factor J~(£i,cc) takes into account the energy dependence 
of the incident flux, the absorbtion in sample and air and the 
detector efficiency; J-fte Ef)~ 4. • T h e one-phonon cross-section 
of the acoustic modes which must be replaced in (2a) is £13] : 

dv_(^ )Jkj4 г г' ! i s ^ 
dude ~ *k ir>« «< 4—l— о* 11) 

•Z^^^J^^l^-^^^Hffi-JH-i) (за) 
i--M 

g=&-£« Л ^ ^ - ^ . (ЗЬ.с) 
where *̂ c and ГЛ are the unit cell volume and mass, *6I 

is the structure factor, H is the reciprocal vector, K, , K, are 
the wave vectors of the incident and scattered neutron, Дг'С^) • 
W : [£) are the polarization vector and frequency of the node 
(j , £ Jjand M/cJJ, the Bose factor; the number £ is +1 
and -1 for phonon creation and annihilation, respectively. 

Firstly we performe the summation over 9 in the Brilouin 
zone (Z.B. in (3a)) and further the integration over t^ 
(in practice over \CA ); as a result one obtains: 

иГ^ф^-Кя-О/* (4) 
| < + f V\, /L 2 <•* t Д *, • (i4 + П / L , • ii } V f U»j f £) | 

where V is the sample volume, A , t , -ij are the unit vectors 
along K.4 and К-г. , respectively, 

4 - $ - м = *ч -*, - H ( 5 > 

and K4 are the roots of the following equation: 
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к,* [ t l K . , * ^ - * ! + *w-ir« SCJ- ^ ) = o. (6) 
The sum over T in (4) means the sum over these roo t s . We are 

in te res ted only in small l { | (then (3 near H ) ; in t h i s 
/st f\J *V 

case the dispersion relation is ^:(t)=-£ff/f)f i <:• being 
the sound velocity in crystal, a quantity dependent on the 
acoustic wave direction and polarization. Now let us use the 
two velocities approximation f"6"3 stating that all the acoustic 
waves are pure longitudinal and transversal (valid in fact only 
for some directions in crystal) with phase velocities c, (lon
gitudinal) and <£ (transversal) (-CiĴ 'fj) independent of 
direction. As a consequence V» '"'.'«У)--^,'! / l > ° n t n e 

other side the sum over 1 «1,3 in (4) reduces to a sum of 
two terms, first being proportional to | <9 0", (j)| ~ Н г С * ^ and 
the second one to | QOi fJ>|l+IS £»*l)l* = ЦгЪпге , whereof 
is the angle between fi) and g . A more drastic approximation 
is <c =:\c. (full isotropy) and in this case the sum over j 
disappears. However, following Willie £6 ~\ , a weaker approxi
mation is prefered. In this approximation -С^Ф^ but Cail$ 

and frVi $ are replaced by their averaged values 1/3 and 
2/3, respectively. Other quantities in (4) also can be approxi
mated; thus, by virtue of small energy transfer К, ~ K f c and 
consequently J * 4 . At last, for high temperature 
which implies V)(iJ) - fenf ( t u / K e T ) - l ] - 1 ~ K tT/1i«0»i . then 
we can neglect . In general this is valid for ~f >T» 
(T Debye), but for the low frequency acoustic waves it is valid 
also for T < T j . The differential cross-section becomes: 

(?) 
where we have denotedj 
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•% ~- L3/L- , Ji; ^*.;V*/tKe <J /V, (8a,b) J -~i 
Here K̂ o is K e which fulfils exactly the Bragg condition 

for the mean Bragg angle 6g , and ^ is the corresponding 

neutron velocity. 

Рог the further calculations, the scattering surface given 

by the equations (5) and (6) must be investigated. Convenient 

handling can be done with 

- (K,- K e ^ / K b / £ A*t-**u)/*to (9a,b) 

in place of <̂  , к е . In the neighbourhood of the Bragg peak 

"A «. i. i * is also small; indeed, with (8a) and (9a), 

y y A =-£ / 0 + | } and since f * i , i t results * / $ <fc4 

and *-<;<l . As a consequence *P-4 •-(vp' /' i+0/'V /''^-'* \ / "-2*/V 
and the equation (6) becomes: 

^ т keo 1 ъ/р, ^. do) 

Thus for phonon creation 3t>0 and conversely, 5t<0 for 
phonon annihilation. To write down (5). let us denote by X^ 0 , 
Л/г,0 the unit vectors along the mean incident and diffracted 

beams, by T^Q the unit vector perpendicular to Л^о in the 
diffraction plane (see fig. 2) and *£o ~ ял> * ^го • Neglecting 

Pig. 2. The diagram of the scat
tering measured by the IOJ? dif
fraction. In a given direction 
(Jf) and at the same TOP can be 
measured (if there are) an elas--
tic process and inelastic proces
ses with the wave-vector trans
fers (?«=#•<•»» and, respectively, 
Si = й, + <?,/'(phonon creation), 
(2t = И + "къ (phonon annihilation). 
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the Instrumental resolution (what allows us to write £,= L4a ) 
and denoting by • о the angular divergences of /, with 
respect to <lia in and perpendicular to the diffraction plane, 
(5) becomes: 

By equalizing f from (10) and (11) one obtains: 

[^-i/f) -̂Zttl5t + ?^A = 0, (12) 
where the following notations are used; 

M = * f j - c o s 8 e B ^ - f l f (13.) 
,^ = 4^Л в + ( f n t o i ^ + ^ (13b) 
« = < - 2 ^ ^ и г в 8 ; % - "g й'лгб^ -»1 = 0 1 + ̂ ь . (На.Ъ.с) 

Рог a given 4 the equation (12) represents, depending on the 
value of B> , a rotational hyperboloid of two sheets or a rotatio
nal ellipsoid. The particular & values 

В,10- {/* , f K -l/lfl , (4< p U ) < /3 W) <-'*а.Ь> 
define three regions for R . In the f irs t region (0< Й < A ) 
the equation (12) has one positive and one negative root £от 
any a and О . The scattering surface i s a hyperboloid of two 
sheets, one inside the Ewald sphere (3 t>0 - phonon creation) 
and the second one outside ( *-< 0 - phonon annihilation)* In 
the second region ( /b( </* < f-2' ) the roots *t/*2ot (12) 
exist for any о , but only for t £ â  and lt^ У", where 
^ , ^ are: 

- ^пг0 6 «-р г

? ) T \/^0-0Г**Л8 t f iy^ ] (16) 

For «-S °i both solutions £,, , £ г are positive, and on tbe 
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contrary, are negative for t^f^. Like in the first region 
the scattering surface is a hyperboloid of two sheets, inside 
and outside the Ewald sphere, out the angle of the asymptotic 
cone is acute and the rotation axis is inclined enough to give 
rise to a forbidden region in £, where no TDS occurs. In the 
third region С с, ~> р ) the equation (12) has roots only for 

tf, N< «Ч< ^ and S l « 4£n l | e g ! jV |*V - / | ) * ^ r 0 0 t s 

have the sign of Mj the scattering surface is an ellipsoid 
inside or outside the Ewald sphere. In fig. 3 are displayed the 
scattering surfaces for the three regions of R and two values 
!l>0 ; for Jj < 0 they pass into the configuration obtained by 
inverting the figure with respect to the origin. 

The main difference (concerning TDS) between the TOP and 
AD method is the existence of three distinct regions of /3 
in the former, comparatively with two regions in tht latter. 
If "̂  is not very small, the location and extension of these 
regions are Og dependent. Hemarkable also is the angle in 
the scattering plane ( о = 0) between the rotation axis of the 
scattering surface and the normal to the Ewald sphere (approxi
mated in fig. 3 by the plane 9t = 0): 

% =0-5- AAttg [~2%X Л^~ %2-*//I*) J • (17) 
If -£-»0 , then И - ц , -5 -» о , ft-* О andyaPi» cpU 1 ; 
hence the second region disappears and TDS differential cross-
-section measured by TOP becomes Identical with that measured 
by the AD method. 

With the roots Tt^ , jfĉ  once found, It is now possible • 
to sum over Г and I in (7). As E is Just the sign of Hf/l , 
the sum has, in fact, only two terms. In the region (1) of Й 
the result will be proportional to N~ . Bat Keet/ Is Just the 
module of the vector £ with the end on the Ewald sphere 
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Fig. 3. The scattering surface 
(crosa-eection ( T P » 3 £ / Y ) ) for 

» 2), two values for the aoan 
parameter ̂  : (1)U- • 0.0025, 
(2)% - 0.01, and three values 
for J?: (a)j5- 1. (b)j3 - 1.7, 
(c)J3 - 2.4. 

, M (can be seen maKing i = О in (11)) . Thus for ^< ft*" the TDS 
differential cross-section measured by TOP i s similar to the 
сгоав-section measured in AD method for В<\ . The structure 
of fi suggests us to define the orthogonal coordinates { At, 

<\Г , Ь ) In place of ( H j f j O ) for to determine a point in the 
neighbourhood of a la t t i ce node: 

Я= гчь*16г , v ^ ^ + ̂ *i'v»2ea- (18a,b) 
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In these new coordinates the TDS differential cross-section is: 

where J -' 
p. (u,V,I)= .l/ttJ + V + S * - ) for f £ /i^ (20a) 

r r „ „ ft a a » > j ^ I ^ L — for ».>/b«J. (20b) 
The values Л^ , *V̂  are obtained by (18b) from if, , ̂  i 
the constanta 2^ , h% corresponding to the second and the 
third region are: 

i j - ^ K « v * * 0 , г,=о r v < v , / r > V l y (20d) 

3. TDS correction for monocryatals . 

For the TOP diffraction on monoorystals the parameter S 
of the commonly used one-dimensional scan is the tiiae-of-flight 
or the wavelength &A^ . Let us denote by 2 Л Л 0 the range of 
the i A ^ scan and by (zf0 /*"o) t n e aperture of the detector 
with rectangular window. The three-dimensional window 
2( £>fl0/ fa/bo) i s t a l t e n so large to see wholy the Bragg peak. 
Ignoring the resolution, the TDS profile for this scan is: 

where the integration domain oO is the intersection (common 
area) between the detector window and the definition domain of 
the integrand. In the region (2) and (3) of fi the latter 
depends on the scan parameter. Introducing (21) in (16) and 
talcing account of (9b), (18) and of V& = V | F H | * \ i Q /iv/hVft, , 
one obtains: 



W 5 n c

 3 % * i 
Here the following notations were used 

^f - 2. J K"-) « ^ - 2 U 0 I (*«>} (24) 

In the first region of в , ц la given exclusively by the 
detector's window. Using (20a) for F; > the integral over 
in (25) can be performed and the result ie: 

This integral can be performed only numericaly. For U.-">0 
J" (O-* 0° , but this singularity is an integrable one. 

In tho region (2) and (3) of 8 the profile TY") h a s 

discontinuity points for derivatives. They are those points 
where the geometry of *Q changes. For example, in the region 
(2) one or other or the two sheets of the hyperboloid can be 
seen by the detector's window; in the region (3 ) the ellipsoid 
can be seen totally or partially. Thus, two discontinuity 
points are obtained equalizing i . and '^ with X Тд : 

uA = ! fV-< 1 ^ /Г 1 ' - A I *I4 + ff^T ) ( 2 7 a ) 

In addit ion, for the region (3) there i s the point 

obtained by equalizing (Vt+t f i ) / i with i i,j j alwayu U, <tfj<« 



The integral over « V in (,?5) can also be made analytically 
if the integrand (20b) is preliminary rationalised. The result 
of integration can be expressed by means of the following primitive: 

where we denoted: 

(28) 

429) 

The TDS profile in the regions (2) and (3) then ie (only forU. ~?0 ); 

l l ° " " I L W 4 pV<<o J for u, <t* <; 00 (30a) 

ue 

i : 02. - \ ; T , 4 '»<-*•<, ^ 

(30b) 

(30o) 
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In contrast with 1 («.) the profile Г ! ̂ ) ia finite 
for U-0 . 

ЬМ 
1 h 

for 0^U<bO| 

С 0 if V X N <4 С ©о i^<^-ff 0 V(3la) 

'Ц t * 2 i f ^ > < Г 0 ) 2 

w-<f.-c, 
i f jf-,<-A> 

4 < u <»° , 

(31Ъ) 

b («.} - V v u V i f O o / U / ' J B7»]'* - i ) i f O ^ U S U 

b t4^> = ^ ' ^ ) *0 ) 

r(fo- u^s «jp» i V W - f(*) *«^jfo fa> 1̂ -1 V / i ] 

Like in the region (1), the integrals over J^ in (30) and (31) 
are computed numericaly. 

The typical profiles for the three regions of R are 
displayed in fig. 4; they were computed using the same values 
for Л as in fig. 3. Both I W , Г are zero for U >U± 

and J"' is constant for U < U + . Hi general J is inde
pendent of U for ll^Ujj , where 

U,, - V«iv\ («4i Ъ \/ (̂ "j'-l ) • (32) 

Matheraaticaly this can be shown by replacing the integration 
variable e in (31a) by Uo /\|ftV-| • For UfJ^ the ellipsoid 
(scattering surface in reg. (3)) is wholy seen in the detector's 
window. £*• ' is constant because the ellipsoid volume tend to 
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(34a) 

(34b,с) 

zero when (А-э О , but the cross-section tends to infinity 
with the same rate. Since the profile is constant, it is 
evident that the TDS correction is zero if И л $Ц. . Рог & £ Кг' 

this condition cannot be realized since U^ is very small; 
but U^ increases monotonicaly with fi , and if 

the function f is zero for ft •> ft' , where: 

If the condition (33) is not fulfilled fi = *^ • 
?he function f from (22) ±E computed by numerical 

integration; a two-dimensional gaussian grid of 225 points 
ensures a good accuracy for any region of R , with a small 
expediture of time. For illustration, the factor У versus Д 
is displayed in the fig. 5 for a given Bragg angle, detector 
window and scan range and for different values of ~£ . 

The averaged velocities *.f , ̂ c t from (?2) can be calcu
lated in principle from the elastic constants. Alternatively, 
these velocities can be considered as free parameters in the 
structure refinement process. This can be done only if the factor 
Y" is computed a priori as a function of tuo variables & and 
W-0 • Indeed, for a data set measured at a given Bragg angle, 

the detector aperture and the range of scan necessary to see 
wholy the Bragg peak are (neglecting the contribution to reso
lution of the sample dimensions and detector thickness): 

ta -- i \[S>N<"]5 , £ e = Ь ^ * ^ Ч и \ (35a,b) 

u a = ь л . l e e \) e;VT e* + ? ; « ^ . (35c) 
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Pig. 4. The IDS profile J (u.) 
measured in the one-dimensional 
TOF scan for the detector aper
ture fB * 0.035, So " 0.060. 
a, b, с mean the first, second 
and third region of j3 . The va
lues of ̂  , Q. and,© are the 
same as in fig. 2. She arrows 
show the points Ui and Ub. 

Pig. 5. The factor^ versus/; 1 
fortfe =<J5°, "0» 0.05, Го " 
= 0.05, P 0 = 
es for ? . 

0.07 and seven valu-

»/> 

Fig. 6. The factor </> versus yS 
for <f «= 0.05, 6>j» 50°, f e = 
• 0.05, S 0 = 0.07 and five values 
for U0 . 

0 1 

Here Цу^ is the mosaic divergence of the sample ffi. , Gj. 
ai-e the dispersions of the angular distributions in the incident 
beam (in and perpendicular to the diffraction plane)6^is the 
dispersion of its time distribution and TIo i e t h e , Л ) Р t o r 

the Bragg maximum. If the incident beam is formed by a neutron 
guide, "V- , Gc, have a weak dependence on Л but we can 
arrange to measure all the peaks (at a given &g ) with 
constant t D , 0 o .In general U 0 cannot be taken constant 
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in A (except f or G"t~ л ), therefore the factor "f must be 
computed a priori with both В and Ua variables. Hence it is 
obtained a two dimensional table (an exemple is given in fig. 6) 
from which the values of г needed in the minimization process 
are extracted by interpolation. 

It is a pleasure to acknowledge helpfull discussions with 
my collegue A.M.Balagurov. 
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Попа Н.К. Б14-87-180 
Поправка на тепловое диффузное рассеяние в дифрактометрни 
по методу времени пролета 

С использованием традиционных приближений вычислены поправки на тепло
вое диффузное рассеяние (ТДР) для случая дифракции нейтронов по методу времени 
пролета (МВП) на монокристаллах. Вклад ТДР в случае эксперимента по МВП будет 
отличаться от случая угло-дисперсивного метода измерения дифракции нейтронов, 
что может быть объяснено с помощью рассмотрения поверхности рассеяния. В слу-
чае МВП поверхность рассеяния имеет различные геометрии в трех областях отно
шений между скоростью звука в кристалле и скоростью нейтрона; в угло-дисперсив-
ном методе имеются только две такие области. Различие между двумя методами 
измерения дифракции нейтронов исчезает, когда пролетное расстояние в случае 
МВП между образцом и детектором много меньше полного пролетного расстояния. 

Работа выполнена в Лаборатории нейтронной физики ОИЯИ. 

Препринт Объединеиюго института ядерны к исследований. Дубна 1987 

Рора N.C. Е14-87-180 
Correction for Thermal Diffuse Scattering 
in the Time of Flight Neutron Diffraction 

Using traditional approximation», the correction for thermal diffuse scattering in the 
neutron time-of-ffight diffraction on monocrystals is calculated. This scattering measured 
by the time-cf-flight method differs from that measured by the angular dispersive diffrac
tion method and this can be explained with the aid of the scattering surface. In time-of-
flight the scattering surface has different geometries in three regions of the ratio between 
the sound velocity in crystal and the neutron velocity; in the angular dispersive method 
there are only two such regions. The difference between the two methods disappears if 
the flight path after sample is very small comparatively with the total flight path. 

The investigation has been performed at the Laboratory of Neutron Physics, JINR. 

Preprint of the Joint Irutltute for Nuclear Reiearch. Dubna 1987 
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