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1. Introduction
[aVa Ve Vava'a
Among the correctlons necessary to find accurate structure

factora from the diffraf:cion measgurements, the correction for
thermal diffuse scattering (TDS) pleys an important role. The
diffractometer integrates the inelastic processes. If the result
of this integration IT'( 5,45 4 %) is, in the neighbourhood
of the Bragg peak, a monotonous function of the scan parameters
S; , the inelastic contribution can be substracted as a
backround. .But the backround subtraction eliminates only a
part of the inelastic scattering if IT (S,,%,5;) is peak
shaped, In fig, 1 1s shown a diffraction peak obtained in &
one-dimensional scan over the parameter §, The unhatched peak
( Ig) i3 tne Bragg scattering and the right hatched peak ( 1)
3s the TD scattering. The measured Integrated intensity will
be the areas in the range (-<,, Sg¢ ) (the limits of the Bragg
peak) minus the inelastic backround represented by the left

hatched rectangle:
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Pig. 1. Intensitiea measured in
e a one-dimensional scan in the
-5, ) So S neibourghood of the Bragg peak.




Here fg and ?7— are the Bragg end TDS integral intensities
and © 1is the TDS correction. The index b mea.ns‘ backround.
It is well known that only the one-phonon coherent scat-
tering by low frequency acoustic modes produces a maximum IT(S)
under the Bragg peak (see,esZ¢»{1} ). But taking into account
only these modes it is possible to calculate the TDS correction

without & priori knowledge of the unit cell structure. Only

the elastic constants are necessary to know and these cen be
found by measuring the sound velocities along some directions
in crystal., There are 3 constants for the cubic crystal, but 21
for the triclinie. But even for cubic crystals the exact calcu-
lation of o needs a long computer time because a multiple
integral must be performed. The time is drastically reduced by
using some approximations, the most important being the omission
of the instrumental reselution, the high temperature of the
semple and the mean velocity approximation [2,3] . The price
which must be payed for, evaluated on some compounds by different
authors, is 1% error in & for the first approximation [4] N
0.04% for the second one and £ 5% for the third [5]. In
compensation, the correction ®™ can be expressed by a third
order integral which can be made analytically in a rough appro-
ximation (infinite vertical detector aperture [2] ) or reduces to
8 double integral numericaly solved [3] .
The theory of the TDS correction initialy developed for

X - rays was extended to the nsutron diffraction. Here two
different situations can be distinguished depending on whether
the ratio P between the sound and neutron velocities is smaller
or greater than unity [6,7] » In the first case the TDS correc-
tion is identival to that for the x - ray diffraction, but for
F,> 1 the quantity o decreases drastically with increas-
ing P and could be even zero. The profile I-,—(S) in this



case was written for sll the types of one~dimensional scans

uged in the angulaer dispergive (4AD) method {8] but no quanti-
tative analysis was provided up to now for the neutron time-of-~
-flight (TOF) diffraction on monocrystals. In TOF were conside-~

red valid the conclusions found for the AD method [9] « In fact
this is true only if the ratio ‘g between the flight path

after the sample and the %total flight path is very small. Many
diffractometérs fulfil this condition but there are situations
when 'i is near 1, like it is with the diffractometer for
irrediated samples in Harwell [10] . In the general case TDS
measured by TOF shows some peculiarities lost in the limiting
case 'g—)o + These peculiarities were ignored in the paper of
Cole & Windsor [11] which describes the basis of a program
computing the TD: profile in the TOF diffraction on powders. This
praogram uses less approximations hut is time consuming and ‘does
net work for monocrystals. In the following # TDS correction
formula for the TOF diffraction on monocrysials is found. Working
for any TOF diffractometer this formula contains a function
numericaly computacle in & short time and two paremeters which
can be determined from te elastic constents or alternratively,
in the refinement process togetlier with the structure parameters.
sutese
In the TOP diffraction the following differential cross-

-gection [12] 13 measured: q'
ds S de e

»-- 1 J'(Ec,Ee) (€,,Ep) (2a)
da " Lo pre o2 ()y', ""J’E',vz

2 = 2
?(54:E£)=Lz/(l—£’/ce "'/-4) s (20)
shere B, ,E; are the energies of the reutron before and after
scattering, L4 ,Lz, are the corresponding flight paths, L= Lﬁ' LJ,



and Ea ig the energy of the neutron elasticaly scattered.
[
The factor J'(Eq.Ee) takes into account the energy dependence

. of the incident flux, the absorbtion in sample end air and the
detector efficiency;f;/Eelec): 4 . The one-phonon cross-section

of the acoustic modes which must be replaced in (2a) is [13)

do _@) |Fg|* s < 1eg@P
dode, " il ZZ__ W {g)

[
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where Y. and Mc are the unit cell volume and mass, FQ

is the gtructure factor, ,‘i is the reciprocal vector, K. N Kl are
the wave vectors of the incident and scattered neutron, G_(z) .
W {z\ are the polarization vector and frequency of the mode
(\l , 2 ), and n{w) the Base factor; the number & is +1
and -1 for phonon creation and annihilation, respectively.
Firstly we performe the summation over 1 in the Brilouin
zone {Z.B. in (3a)) and further the integ;r;;ion over Ej
{in practice over «, ); as a result one obtains:

45 _ V‘,@‘zn HZEL K,_‘{,.z (@ G (9))*

34—7_ Jet gt e W (g}

h[wj(_g)]+(s+t)/z )
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where \/ 1g the sample volume, ,(.,, . -('.l are the unit vectors
~ r
along X\} and ’l\(,-,, , reapectively,

11&—1-,:’&1.'!;&‘” (5)

[and Ne lad ~Y
anl K; ars the roots of the following equation:



KE [Pk Ke) =] + 2w W e 26 (gi=0. (&

The sum over € in (4) means the sum over these roots., We are
interested only in small |4} (then ,63, near ﬂ ); in this
case the digpersion relatigfl is l‘?]'(rg)z.cJ g/z)z . < being
the sound velocity in crystal, a quantiiy dependent on the
acoustic wave direction_ and polarization. Now let us uge the

two velooities approximation {67 steting that all the acoustic
waves are pure longitudinal and transversal (valid in fact only
for gome directions in crystal) with phase velocities <, (lon~-
gitudinal) and €, (transversal) ( «£,# <3} independent of
dicection. As s consequence V’E wJ' (z)-*-—f‘,z /z_ s on the
other side the sum over \" = 1,3 in (4) reduces to a sum of
two terms, first being proportionsl to ,gf{; ('g)l'l-,_: HZeos™ ana
the second one to '952)'7—_'_,95(})\1 - Hzﬁ'“lf s where §

is the angle batween @ and ¢ . A more drastic approximation
is £ =k, (full isotr:py) and i: this case the sum over |
disappears. However, following Willis [6 | , a weaker approxi-
mation ie prefered. In this epproximation ¢, #-, but Cas'f
and S{nzj are replaced by their averaged values 1/3 and

2/3, respectively. Other quantities in (4) also can be approxi- ’
mated; thus, by virtue of emall energy transfer K, ~ Ke and
consequently Faca . at last, for high temperature Tw/ we T4
which implies nla):fur(ﬁu/uﬂ)_,]‘ig KeT/HW>1 , then
we can neglect (s +)/2 , In general this is valid for T>T,
(T Debye), but for the low frequency acousiic waves it is valid

also for T<T, . The aifferential cross-section hecomes:

IR TS Sy e
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where we have denoted:



'57- LQ/L~ ) FJ =4 m/h Kea =€/, (8e,b)

Here Kp, is K, which fulfils exactly the Bragg condition
for the mesn Bragg angle ©p , and ¥, is the corresponding
neutron velocity.

For the further calculations, the scattering surface given
by the equations (5) and (6) must be investigated. Convenient
handling can be done with

= (y-Ke)/Ke Y =(ke -Keg) /Keo (Se,b)
in place of ¥y , Kk, « In the neighbourhood of the Bragg peak

A ; % is also small; indeed, with (Be) and (9a),
\*}‘/7— =% /(*‘*’f) and since V=4 , it results ¥/£ &4
and ¥ & {1 . As a consequence kfl_dg(+//L+4)[\PI/Z_4)g_2¥/,£

and the equation (6) becomes:

z:keqzi/pg‘ (10)

Thus for phonon creation #>(0 and conversely, %<0 for
phonon annihilation. fo write down (5), lat us denote by Aq4g ,
i«u) the unit vectors along the mean incident and diffracted
beams, by ,—€1° the unit vector perpendicular to ,:f'zo in the

diffraction plane (see fig., 2) and ezo =£z,,xnz_'za « Neglecting
~

Fig. 2. The diagram of the scat- 9
tering meassured by the TOF dAif- Y
fraction. In a given dirsoiion

()) and at the same TOF can be P
measured (if there are) an elas- ;
tic process and inelestic proces- - f
8es with the wave-vector itrans-
farsggsﬂf,‘. and, respectively, 20

o}
Ed

Q4= M +q “(phonon creation), T
Ky Xy [KoXy 10

(Ql‘:H +. (phonon annihilation).
~re e d Keo Y



the instrumental resolution (what allows us to write £,= <, )
and denoting by ¥ , S the angular divergences of ,;,Zz with

respect to .-{'20 in and perpendicalar to the diffraction plane,
(5) becomea:

9 =Heo[(2+y-2/% )(“i:za +87, +g,£zu ’(***a)rém]. (1)

By equalizing Zz' from (10) and (11) one obtains:

(92 -1/7p )2 252 + 2N -0, (12)
where the following notations are used:
M= 2("]—“‘2933‘3* 35 ¥ (13a)
2 _ 2ok . 2 2
N =by an'a, + (¢ +45n20) + 8 (13)

q:g-zgs&v\leg ;=G @R, , Wan2egh (a0

For a given 3 the equation (12) represents, depending on the
value of F» y & rotational hyperboloid of two sheeis or a rotatio-

nal ellipsoid. The particular P values
F“)= /v, F(l)= 4/|7f ; (4 < I3u)< Fu)) (15a,b)

define three regions for f; « In the first region (0</3 < /s“J )
the equation (12) has cne positive and one negstive root for
any 8' and g e« The scattering surface is a hyperboloid of two
sheets, one inaide the Ewald sphere (%> 0 - phonon creation)
and the second one outside { ¥< O - phonon manihilation). In
the second region (FU)<F < P(z) ) the roots ¥, ¥,0f (12)
exist for any , but omdy for ¥ ¢ 2}4 and &3 Y)_ where

h: ’ BLZ are:

b _y intty (1) 7\ (59 1) [ubin'sy 3 4 G-gp 8T (16,
! A= Pt

For 1< Jl both solutions ¥, , ¥, are positive, and on the




contrary, are negative for K'7/l'" . Like in the first region
the scattering surfece is & hyperboloid of two sheets, inside
and outside the Ewald sphere, out the angle of the asymptotic
cone ia acute and the rotation axis is inclined enough to give
rise to & forbidden region in f, where no TDS occurs, In the
third ragion ( > (z)) the equation (12) has roots only for
BA‘ R R tz and 81 < éﬁul'ee‘az(l‘szr)z—ﬂ . The rootas
have the msign of M; the scattering surface is an ellipsoid
ingide or outside the Ewald sphere. In fig. 3 are displayed the
scattering surfaces for the three regions of )3 and two values
a>o ; for 3 <0 they pass into the configuraiion obtained by
inverting the figure with respect to the origin.

The main difference (concerning TDS) between tha TOF and
AD method is the existence of three @istinct regions ef I‘S
in the former, comparatively with two regions in the letter.
If ‘g is not very amall, the location and extension of these
regiona are eg dependent, Remarkable also is the angle in
the scattering plane ( S = 0) between the rotation axis of the
scattering surface and the normal to the Ewald sphers (epproxi-

mated in fig., 3 by the plane * = 0):
X =05 md;g [-2%% /(92_,5—2_ 4//32)]. (1)

¥ £-0, thny) >4 ,5>0,X>0 and/iuLP“!-»i ;
hence the second region disappears and TDS differential cross-
~gection measured by TOP becomes 1§ent1cal with that measured
by the AD method,

With the roots *4 , %y once found, it is now possible -
to sum over © and £ in (7). As € is just the sign of t,'z R
the sum hes, in fact, only two terms, In the region (1) of F
the result will be propurtionel to N™2. Bat Kg, A/ 1s just the
mpdule of the vector 4  with the end on the Ewald sphere

o~
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(can be seen making x = ¢ in (11)), Thus for ;;(F-M) the TDS

differential cross-section measured by TOF is similar to the
croas-section meaau:red- in AD methed for P( A . The structure
ot N suggeste ua to define the orthogonal coordinates { AL,
&, $H in placo. of (},&‘ ,S ) for to determine a point in the
neighbourhood of a lattice node:

M Ty ST A=t Y 28y {18a,b)



In these new coordinates the TDS differentiml cross-section is:

F'HE w, T & 3~
d_ﬁ: - y_ ‘ nl H Kg | ,;)__7__ 1» [u,’\l‘| S), 19)
d’a N Me ‘!K;’o " C" J
where 3=
SCIAE L (Wt a8t) for p; < pY (oom

FJ 2203y (V)U -T A7)
(W8 gy - ) r-¥2)

The values 4, , V, are obtained by (18b) from ¥, ,?‘L 3

Q)
Fjru.v‘ih for g, > pdl. (200)

the constants 21 N 23 corresponding to the second and the
third region are:
2‘,_:4(’\l’s'\f‘))2z=0('\f4<'\r<1fl)l2-l'=-4(,\r} 4/‘,_) (200)

2y =mgnlpe) (VEVeny 2520 (v wsay ). 200

3. TDS correction for monocrystals .,
P T Ve  a T

For the TOF diffraction on monocrystals the parameter S
of the commonly used one-dimensional scan is the time-of-flight
or the wavelength A/\e » Let us denote by 2 A)q the range of
the Al\& scan and by (Z(:, ,ZSO) the aperture of the detector
with rectangular window. The three-dimensional window
Z{Ib/‘o, )‘-0/80) is teken so large to see wholy tha Bragg peak.
Ignoring the resolution, the TDS profile for thie scan is:

T (ahg)= (€ dedE dTy ¢ gy,
T ® &(B)e,*o,go\ dn © )

where the integration domeain :2 ig the intersection (common

(21)

area) between the detector window and the definition domain of

the integrand, In the region (2) and (3) of }3 the latter

depends on the pcan parameter. Introducing (21) in (16) and

taking account of (9b), (18) and of 98 =y lFH [l)ei /21{:}1';,798 .
~

one ohtaina:

10
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(w)l co —H—C— 3 :,:1 {
Here the following notations wére used:
o= %Yo g—{uzeg = Z&{V\QQA 2o //le,, (23)
u*o
=Zf T dw = 2, T (we) (24)
T(a) = {5 didw " (w, v, 8). (25)
PICTEES)

In the first region of F . n(() is given exclusively by the
detector's window. Using (20a) for F:, the integral over

in (25) can be performed and the result is:

o

o)
WREITH

[M & *“dt’ s ot xto—udgoa] (26)
& Vs T Jaresr A

This integral can be performed only numericaly. For W—>0

I(.zq)—> oo , but this singularity is en integrable one.

In the region (2) and (3) of g the profile Tfw) has
discontinuity poinis for derivatives. They are ihose points
where the geometry of .[a changea, For example, in the region
(2) one or other or the two sheets of the hyperboleid can be
geen by the detector’s window; in the region (3) the ellipsoid
can be seen totally or partielly, Thus, two disgcontinuity
points are obtained equalizing BL and &\ with + t

=g{sr}—4)3‘o/(“f")“tjee+\} 70t~ ) (27a)
ool do /(M- p L elge — Tty 0.

In addition, for the region (3) there is the point

= (F?').z "13 ‘Lo .tae& /|4—P7|’“ (27¢)

(27b)

obtalned by equalizing (#1"'5‘1) /2 with % It, ; elvayu U, <Uy <y, -



The integrel over JV in (25) can also be made anglyticelly
if the integrend (20b) is preliminaery rationalised. The result

of integration can be expressed by mears of the following primitive:

bag,c RS ). 2 [dt(ReSt) /(AL +281+C)

_ 4 RAE-SAE p VEE e -8 T +{T

T2 -8 WE-Gi (egt VT
g/4c ~SAR g VEE-1C

\/ +R tVZ Vi 8

where we denoted:

A:u"l_,_gz.s./\y‘?‘ , B:U1+BZ+V3' ;
(29)
R=qu-gv, | S=Nu-71

(28)

C= u1+31+’V;’U'L )

The TDS profile in the regiona (2) and (3) then is (only forw 270}

e
PDiw =T+ T, () for OSULU,

@) %I‘l“) ‘{' FV]—~{ 20 i for u, <u< oo (30a)
I'es T <} pin-t<o '
I(?u):o ig-]p‘r]—ﬂdaeg < P”o’—4 for g, <ugos
D, 1wy
L=y g ) Jds é(*;‘@)CJ“R,S)t)]T"
04

Toy \JW T G ¢ et (30b)
Erte 0 117 \’?'*ﬂ TR
bz(k) !

T, )= \F‘ﬁ Séxé(c» 8, A,S,~R t)]

- . A . oo g 63-48, . (30c)
V& ot T ey oy
A, 2<~%o

12
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B, [ <min }So '[(W&)jjwj (304)

(0} . 2) .
In contrast with I {w) the profile I‘ fw)y is Tinite
for W=0,

blu} 5
() 2pcige ds B (A n,C Rst)'?
1) :—LMW— g 8 CE( ! " R, ’t),r-n for QU<

-~ 4 it ¥,88 T o= i 7 -4 \(310)
1~ ,‘t-fo + 27 \,3‘;+?Z it docet
é:—fq EE QI DY AR 3:__?1 if #<-%,

£ for
T =0 if - pielle >Vpon 57 tasuce
b(“)zwln(go,u/\}’x’q?d} if osusu,

Dluy= W““; %o (31p)
(§o- uely®y Gpn 'l\l+“1;EL(")‘lf“dtf9g "‘ﬂ“’l\l] m’g
[ B9 -1 .
(.5— w>Jg

Like in the region (1), the integrals over % in (30) and (31)
are computed numericaly.

The typical profiles for the three regions of F are
displayed in fig., 4; they were computed using the same values
for {5 as in fig, 3. Both I(ﬂ , l(}) are zero for W>U,
and Ib) is constant for U<U, . In general IO) is inde~
pendent of U  for uSAu., , where

U, = min (ug, S,\} pPni-a ) (32)

Mathematicaly this can be shown by replacing the integration

I
variable $ 1in (31a) by u} /\f{;ﬁ,u . For WU, the ellipsoid
(scattering surface in reg. (3)) is wholy seen in the detector's

. 3
window. I( ) i1s constant because the ellipsoid volume tend to

13



zero when W20 , but the cross-section tends to infinity
with the same rate. Since the profile Ib) ig constant, it is
evident that the TDS correction is zero if U, SU.—, . For /SZ,,{U
this condition cannot be realized since Ll,‘ is very small;
but U, increases monotonicaly with F , and if

o <y (peood =M tae, ¥, (33)

the function P is zero for /’5 >FB) s where:

(3)_ max —‘—,ih*% ) Vrept x dvtl'*"j'(f‘.ﬂ:ﬂ (34a)
F [\ 3, ’Lf’-

P 71““/““"” d}% rt:‘o/ao“bgq "’793' (34b,0)

If the condition (33) is not fulfilled }g())= >

The function Y from (22) ir computed by numerical
integration; a two-dimensional gaussian grid of 225 points
ensures a good accuracy for any region of , with a small
expediture of time, For illustration, the factor ¥ versus /3
is diasplayed in the fig, 5 <for a given Bragg angle, detector
window and scm‘x range and for different values of g .

The averaged velocities «, , <, from {22) can be calcu-
lated in principle from the elasiic constants. Alternatively,
these velocities can be considered as free parameters in the
structure refinement process. This can be dons only if the factor
¥ is computed a priori as a function of two variables /3 and

W, +» Indeed, for a date set measured at & given Bragg angle,
the detector aperture and the range of scan necessary to see
wholy the Bragg peak are (neglecting the contribution to reso-

lution of the sample dimensions and detector thickness):
- z 2 2 1,9
fo =3 \"ﬂ:. AL/ N Y 5,)6‘5‘_ 4y, i, (358,b)

. 3
Up = béwm eg \f@f‘/‘ru’; +\?: d;leg . {35¢)

14



- Pig. 4. The TDS profile] (w)
sl measured in the one~dimensionel
TOF scan for the detector aper-
ture 7y = 0,035, Bo = 0.060,

a, b, ¢ mean the firat, second
and third region of 8 . The va-
lues of §, fp eud @ are the
same as in fig. 2. The arrows
show the points Léy and U, .,

]
08

i n
@ a0 0.02 ag3 004 Q05

0.
Fige. 5. The factor Y versus B :

for @g = 75°, Up= 0.05, 1, =
= 0,05, ¢y = 0,07 and seven valu~ 04

04

es for ¥ . 02
o

4 0
08
07
(1]
05

Fig. 6. The factor Y versus 3
a4 o

for § = 0.05, By = 50° yp =
a3 = 0.05, 8, = 0.07 and five values
0z for Uy,
0
0 )

S

Here 7‘“ is the mosaic divergence of the sample 6}(.1 ’ G—&.z
are the disperaions of the angular distributions in the incident
beam (in and perpendicular to the diffraction plane)():;l.a the
disperseion of ita time distribution and TLo is the TOF for
the Bragg maximum, If the incident boam is formed by a neutron
guide, E&; . Gg’, have & weak dependence on A but we can
arrange to measure ali the peske (&t a given 93 ) with
constl;nt ro , Xo + In generel U, cannot be teken constant

15



in A (except for G"f~k ), therefore the factor ¥ must be
computed a priori with both /3 and U, variables. Hence it is
obtained & two dimensional table (an exemple is given in fig. 6)
from which the values of Y needed in the minimization process
are extracted by interpolation.

It is a pleasure to acknowledge helpfull discussions with

my collegue A.M.Balagurov,
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Mona H.K. E14-87-180

Nonpabxa Ha Tennosoe anddyanoe paccernne g AudpaKTOMETPHK
110 METORY BPEMeHH NposeTa

C ucnons3obauveM TPARMUMGHHBIX NPUGIOKEHUH BBIYMCTEHE! NOMPRBKH HA TEMTo-
Boe nuppyance paccesmve (TOP) ana enyuan mubparasH HeliTp no Yy Bp
nponera (MBIT) ua moHoxpucTaiax. Bxnag TP B cnyune 3xcnepum -uta no MBIT Gynmer
OTMHYATLCA OT CAYHAA YIAO-AMCTIEPCHBHOIO METONA MIMEDEHHA AHPPAKUHH HERTPOHOB,
YTO MoXer ObITh OGBACHEHO C NOMOLIBIO PACCMOTPEHHA DPIHOCTH P B cay-
uae MBIl niomepXHOCTh pACCEAHHA HMeeT palTUYHbC FeOMETPUH B TpeX oGNacTax oTHO-
eHHit MeXy CKOpOCTBIO 3BYKA B KPHCTANIE H CKODOCTBLI0 HEHTDOHA; B YTHO-RUCMEPCHA-
HOM Me€TOe HMEWTCA TOMBKO aBe Taxue obmactn. Paanudane Mexay ABYMA MeTofaMu
H3MEPeHHA Ou(PaKUMH HEHTPOHOB MHCHE3AeT, KOINAa NpPONETHOE pAcCTOAHHE B ciayyae
MBIT Mexny o6pasuoM M OETEKTOPOM MHOIO MeHblue NOJHOIQ NPONETHOrO PacCTOMHMA.

Pabara seinonHena B Jlaboparopus Heitrponnoit duauxu OUAH.

Mpenpinr O6LERMHN.HOTO HHCTHTYTS ARepHS! € Hctnenopsruf. lybua 1987

Popa N.C. E14-87-180

Correction for Thermal Diffuse Scattering
in the Time of Flight Neutron Diffraction

Using traditionel approxzimations, the correction for thermal diffuse scatiering in the
neutron time-of-flight diffraction on monocrystals is calculated. This scattering measured
by the time-of-flight methed differs from that measured by the angular dispersive diffrac-
tion method and this can be explained with the aid of the scattering surface, In time-of-
" flight the scattering surface has different geometries in three regions of the ratio between
the sound velocity in crystal and the neutron velocity; in the angular dispersive method
there are only two such regions. The difference between the two methods disappears it
the flight path after sample is very small comparatively with the total flight path.

The investigation has been pcrformed at the Laboratory of Neutron Physics, JINR.

Preprint of the Joint Insti for Nuclesr R h. Dubna 1987
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