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ABSTRACT

The mechanieal Lehaviour of a material manifold with dislocations

and dicelinations Is explored by applying nonriemannian geometry and gauge
Tield theory. A geometric gauge theory of metric defects is introduced by
lovet L Lt dnvariance. As a result, we give the connection coefficients
with Llie afline unl the gauge connection. Taking the displacement field,

e Prame fieid and vhe gauge field an bhasice parameters, we abtain the
conctitulive egquations and the governing eguations based on a variational
rrinciple with respeel to the groups of a coordinate transformetion and &

gauge Lrancformation.
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INTRODUCTICHN

Generalized continuum mechanics is an important phase of current develop-
ment in modern continuum mechanics. This field, initially studied by K. Kondo
1'2. E. Kroner' ' and B. K. Bilby et al.s's, is closely related to the theory
of nonriemannian geometty. In continuous distribution theory of defects, it
has been discovered that the reference configuration, in the constructs of
nonriemannian space, such as smetric, torsion and curvature tensors, is an
Euclidean space with Euclidean metric structure and topological structure.
According to the breaking of different structures of Euclidean space, defects
are called metric or topological defects, respectively.

Since 1954 when the Yang-Mills theory7 was established, one recognized
that Riemannian geometry itself essentially belongs to a kind of gauge field
theorya's. Furthermore, recently it was learmed from the study of supergravity
that the geometry of nonriemannian space with nonvanishing torsion alsc belongs
to a kind of non-Abelian gauge theory.

It is known that non-Abelian gauge theoty can be naturally applied to any
field in theoretical physics, provided that the field is related to Riemannian
oI nonriemannian geometry. Based on this point of view, some work has been

done in using the gauge theory to study generalized continuum. A4,G. Herrmann 109

11}

and A.G, Herrmann eand D.G.B, Edelen first used Abelian gauge theory to
discuss the gauge invarience of the governing eguations with electro-magnetic
field theory. Her works lead to further study by D.G.B, Edelen 12) and

A. Kadic and D.G.B, Edelen 13) in the Yang-Mills minimal coupling theory for

materials with dislocations and disclinations. In the field of geometric
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gauge theory, Y.3, Duan and Z,P, Duan and Z.P, Duan discussed the

geometric representation of the gauge theory of defects.

For a complete theory of generalized conpinuuu mechanics, we have to deal
with not only the geometric aspects of the material manifold but some process
of physics. In this paper, ﬁe establish a geometric gauge theory of metric
defects based on Lorentz invariance and continuous distribution theory of

defects.

I. THE GAUGE POTENTIALS

The mathematical theory of non-Abelian gauge theory, which is introduced by

C. N. Yang and R. L. MiilsT, takes the transformation of gauge potentials as

B'=s'Bs+ 4 35'as (1.1)
u ¥ 3 p

where S 15 the spin gauge transformation.

17}

16
E. Bortorotti s, ¥. Kondo and Ishizuka gave the transformation of the

conmection as follows:

re o= a"plef et 4 A:‘a

i
BA i BA gk BA . (1.2)

A

which is symmetric15 or non—symmetric‘r Wwith respect to indices B and h under

the coordinrate transformation

8 = ax! , B! o= (A%, (1.3)

From the expressions (1.1) and (1.2), we obtain some information as follows:

: b -1
(1) These transformations have non-homcgeneous terms —%— S aus and

a
i

A aaa; under corresponding transformation. Therefore, (1.1) and (1.2) mean

that the symmetry is broken.

i

]

It is well known that the transformation operator B, wmay be written as

3o_ gt i
By = by + V¥ (1.4}

where

J - i § gk i
Vai = Baﬂ + Fk‘ﬂ BBW (1.9)

are covariant derivatives with respect to the connections F:j. Under the first
order approximation, covariant derivatives VBWj may he rewritten as

iOLBL ,
VBW BBW (1.6)

then we have

go= gl W oo pl g
8 8 + BB OB + L (1.7}

where w; are called differential extensions.
]
P
and it is Wwritten as the sum of a gradient and a rotation

For fixed index j, = are covariant components of a vector in (p) system

based on the principle of decomposition, where

al = (grad.¢l}

| i
8 ci = (rot.d’),,

' B B



Let

Therefore
. ; . L a (.1
LPOS B i i . = -
A,8, = AT (3ga) + 3,c)) (1.8) Sex = Bran T % (1.12)
then
In a vector field, rot.grad = O, the Ricci coefficients, g ¥ L glpigc. i
BA PP ATk (1.13)
a _ ., i where
QBA = 2Aia[BcAl. (1.9) .
S"' - gt i .
ik i 20 (1.14)

It means that antisymmetric field cg plays a leading role and symmetric field

The expression (1.13) means that gau i a

| o . . . ge potentials B - i

aé plays an indirect role. The non-symmetry of the connection gilves an ? BA are gauge-invariant
and the role of an antisymmetric field is determined by both the antisymmetric

antisymmetric field which is not only inducted by a stress field, but alsc can a
part BIBAI of gauge potentials and Ricci coefficients g%

be generalized to be inducted by other physical effects. Therefore, a symmetry BA
{3} In the mathematical theory of a i ;
. . ; . gauge field
breaking will act as a role of an antisymmetric field. a v + We choose a torsion tensor
Sb; and a spin
(2) Since Lorentz group K 1is a linear transformation group depending on
‘ ) ] T _ c..w _ @ o .
some parameters, the gauge symmetry of a rotation field will be broken under a SBA SpA SB.A - SA_E (1.15}

local Lorentz transformation group and the role of a rotation field may be
as a gauge-invariant physical variable which is independent on the choice of a

determined by physical effect of a gauge field. Therefore, gauge potentials
coordinate system, where

BL b’ pust be antisymmetric for contravariant indices a’ and b", i.e.
. a _ Moo o
gt Vo 5 = B S
B, by B: =0, (1.10) .0 " W0um T 0
. a'h’ . . (1.16)
It means that gauge potentials B take values in Lie algebra of Lorentz . s = g¥p% + g¥p®
¥ hp B A 8 Ap”

. . a . .
groupd. . The coordinate components of gauge potentials are B, which satisty the L
B From {1.13) and {1.15), it is obvious that we must choose gauge potentiais B"

following transformation laws: as basic variables of a field

u=ujki [« P
BBA AiBBBAth + AiaBBA (1.11)

and their antisymmetric parts are

a o aOnigknl @ II. THE PHYSICAL MODEL
= +
Bran = M BBaBu * e

or
‘ ‘ In the classica i i
B?BA] ] Q;A _ A? B% B;B:ji,. 1l theory of a continuum with defects, the dynamics of
dislocations satisfied global Lorentz invariance‘a"s. and defects in

generalized sclids satisfied only local Lorentz invariance in coupled physical




fields. From the viewpoint of fields, just as the physical substance of
topological detect intreduced an antisymmetric field, there are other physical
fields having antisymmetry. Therefore, we  treat it with the role of
antisymmetric fields by gauge potentials having antisymmetry.

To yive the physical model of this paper, we introduce two basic
assumpticns as followsrg:

(1) The dynamics of continuum dislocations satisfies a local Lorent:z
invarjance in generalized solids;

(2) “'ne first set of integrable conditions of a frame Tield is broken.

Thus, from the assemption (1), there exists a local Lorentz frame field
le;'(x]] which transforms on every spacetime point, where a' =0, 1, 2, 3 is
the index of the frame and a = 0, 1, 2, 3 .is the index of the coordinate. For

. a’

a, e {x) are contravariant components of the local Lorentz frame and for a,

are covariant components of the local coerdinate system, and they satisfy

a, A =0,1, 2,3 a', b =0,1, 2, 3.

The Lorentz frame field determines the metric of spacetime

2 L - a' b’
as)’ = ; =
(ds}) quadx dax”; 9a8 = "u % %
where Ny = diag(1,-1,-1,-1) is local Minkowski value of the metric and
ef . o B _ &« B _ o f _ a P
qg e 'en e'.e_-1 le_".e2 e].ea.

The matrix cof the metric may be written as

_ _ a’ b
O = 90t 0cq par = (&g 108G )

where J = (ni>b.). Therefore, the local transformation group of the frame is

a Lorentz group . .

From the assumption (2}, there are

Q.' =3 2! at b’ c’

= . . =0,
gr = Yptn T e Sip S

where 1:: , is a connection of the frame field e; (x), and
L4

. o 8 At a a , k4 B !
*:':' = eh'%ﬂ' e:" s ° [aﬂeh' * ‘9 A’eb‘]e"‘ e“ * o
where as = as
ax

B B _x ef=c e
lec'eh'l xc'eb' b’ et ‘!
where
. o e —_
Corer = Yyreo Toiye Ttw'e'l
and
2! a! a'
=X A TI AP
e Miprian e Th' g ¢ Th'e
_o.a’ f' _ Cf' R a’
Yo Tiererr T e e e blc'd"
where R’ ' ; s is the frame components of a curvature tensor.
e d

I1I1. THE EUCLIDEAN CONNECTION

Let (e'.(x)l be a Lorentz frame field in spacetime of four dimensions
a
and VB'. V;'+ dval be two vectors at peint P(xa) and its adjacent point

. . A '
Q(xﬂ+ dxﬁ). respactively. The Lorentz frame field introduces a change 1ln VB



as

a' at ol
6VB = dvs dVB (3.1)

where dVL' is the change introduced by vector v;

change introduced by Lorentz frame field at points P and Q.

itself, and av;' is the

A matrix element of Lorentz group J. is L: at point P and L: + dL: at

point Q, then

a' ' LR} 3w
vp ot dvB = v; +L, Qv + deL_
and
a’ 2l ¢ a'y,h LI
VB + awB = v; + 1, ava + VadL..

Substituting (3.1} into the above two equations and substracting them, we obtain

v o=t eVt 3.2
8 L 8 { ]
It means that 6V§' is a vector and it is independent on the choice of the
Lorentz frame.
For every vector V;' , if
- qt =t =0 (3.3)
# B

holds, we say that the Lorentz frames at points P and Q are guasi-parallel.

Let r2, be the spacetime connection of the local coordinate system. For
[:EY

contravariant and covariant vectors Hf, and V* , there are

B
s = aw® o+ P Wt ot
. a Ad 2
2l VI' = uvn‘ A
6VB d 8 rAB o dx

then their covariant derivatives are

B . 4P _ B [
VAH‘ s w! LA wl LA * r)\tlwa *

. . . oo (3.4)
VAVB = VBIA = VB.A - rABVG

where the symbol ~,” means a partial derivat

the symbol *|" means a covariant derivative

ive with respect to coordinates and

. . a
with respect to the connection Fka.

We can obtain a transformation of the connection M, with respect to non-

holonomic transformation of the coordinates.

AB
On the one hand

LI St .
BAes = rABeu FABBuex
and on the other hand
[ . j et
aAea ~.6A[aﬁej ]
_ i, i '
= {aABB)ej + Bﬂ(a)'eJ ¥
” byt 1k at
= (BABB)ej + BBBA(akeJ ).
Thus, we have
o _ L Ggiki a, i
FAB = A‘BBBAFkJ + AiaABB" (3.5)

The frame field (e;'{x)l determines the

of the spacetime.

abjects which must be lorentz invarient.

U S R, . By R P L I
rh‘ﬁ = rmem e FABL. eulb_eb
we obtain
a _ ' 0 b*
FAB = rb,Be.,.eA and

Thus, on the one hand
and on the other hand

bt b' b
a}\eﬁ = a)\{Lb eﬁ]

b
= (aALb e

10w

Therefore, indices of the frame describe

=r,eel

metric and the geometric structure

all geometric

Obviously, there iu

ﬂl}\a'b_al'b
Mo b lb' - rbﬁL. b*

r® = % e (3.6)

e (3.7

b b
+ Lb (akea) (3.8)
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[ R J

in local coordinate system. This means that s°% is a tensor and is gauge-

AB
invariant. Sgéu is called a torsion tensor.
From the isometric principle
_ . BA BA
- = 9 = = = .
2, ax wIgn 0 or g, v o, (3.9

we obtain the symmetric part of Euc¢lidean connection as

a _ a _ _Ba _ B.a
rluA) - ‘u A) gkrluﬂl gurlhﬁl' (3.10)
then the Euclidean connection is
[\ a - a . o a a
= ¥ - - -
qu (“ A} Suk Su.A SA.u QuA + Qu-k + QA.u' (3.11)

Let us now consider the gauge theory of metric defects under local Lorentz

invariance. BﬁA is the coordinate component of the gauge potential and

substituting {1.12) into (3.11) we obtain

a _ ,a a _ @ a4
ruA [ R Ba ™ Bun " Bay {3.12)
where
B.a a B.a
8 = B = .
oA 9, up and B'\.l_l guBAB (3.13)

(3.12) shows that the frame field le;'(x)l and the gauge potential B:A

together determine the geometrical structure of the continuum with metric

defects and the gauge field.

Iv. EQUATIONS OF THE FIELD

First, we consider the Sstructure of a Lagrangian function describing

metric defects and a gauge field.

=131-

Obviously, e;I and B:'b‘ are independent variables of the field

describing the properties of a continuum with metric defects and a gauge field.

Setting
' IJV= ayy 4.1
& (eb )u‘-.b‘a ( !
where
v ! et 4.2
€y nbce[uevl' ( )

we obtain the strength of a gauge field as

3 4 ] L] (4 a <
= - + - 4.3
b pv vabu uBhv chhu ty bR! ( !
then
= (F . 4.4
Fuv [Fbuv)ﬂﬁl.h‘3 { )

The strength of a gauge field satisfies the Bianchi equality

t ) : ]
.
Fouvia * Fovane * Foaune

= 0, (4.5)

where the symhol "#" means the covariant derivative with respect to the

coordinate and the strength of a gauge field, i.e.

=3 F - 4% - (% s+ -t F (4.85)

a
Fbuvl)\ AN bpv AP bov A v bua A Tbpv bA cuv’

Now the total Lagrangian function of the system is

L=L +L +L 4.
. 9

int
where L is the Lagrangian function of an elastic field, Lg , the Lagrangian
L}

function of a gauge field and Ll" the Lagrangian function describing the

'

interaction between the frame field e;i and the gauge field BLh , and there

=12~



are
L. = L.(uu, uulv) {(4.8)
L o= t:(Fqu”v) (4.9}

and
L., = tr(F”ve"v) = KR (4.10)

where
= pMe?*

R R.eu {(4.11)

and
RY = sf,:e:e_p,e‘ - t4.12)

Obviously, L. L9 and LMt are invariant under the group-coupie L x s,

where the group #4 1is the group of a non-homonomic transformation of the

coordinates.

{4.7) represents that the gauge field lBLa} and the frame field (e; }

commonly describe the field of metric defects,

The action functional is

= | HY, uY 4
§ = Ik - == tx(F, F77) - Rer(F, e"")1ed x, (4.1
where

1
_ a, _ .o /2
e det(e“) [ det(guv)l

and n 15 a new coupled constant.

Suppose that the Hamilton principle holds, and take the variation of the

“action functional with respect to e; and BL‘ , We can obtain the new equations

of the elastic field and the metric defect field as follows:

-13-

vt s i T B

3L aL

[] 1 [ _
5o - o Alem 1= 0 SN
1 v
[ I Y H
Rl 3 Re. Y (ﬂtl + Tl) {4.15)
and
Y nyiM AR
nF‘“v = ZKt" + T” (4.16)
where
[ ap, A 1 LT
t. = [tr(FuAF )e‘ . tr[FAOF }e.) [4.17)

is an energy-momentum tensor of metric defects, and

A afel] = - P (4.18}

Ho_
eb Scb Aa abllv

is the density of the spin flow in the field of metric defects, and

nz)\lcd=_ I ) 3 119
S‘h ScdeAeuev Za(uev] ZBclu l {4.19)
is the torsion tensor of the spacetime. ™ is an energy-momentum tensor of
a
the elastic field, and
da{el )
§ub - _%_ ; (4.20)
L] aBI
%}

is the density of the spin flow in the elastic field.
Therefore, the action of metric defects represents not only the geometric

effect of the metric, but the physical effect of the gauge potential. Thus, this

theory is different from the dynamic theory of the continuous distribution'® '?
V. DISCUSSION
1. In our treatment, the space-time i3 a nonriemannian space

of four dimensions, the geometry of the space-time is connected with metric

defects, and the gauge field is nonriemannian geometry. This space-time does not

-1h-




anly s the curvature, but alsoc the torsion. The connection of the space-time has

Lwo prrte, namely Lhe affine and the gauge. In particular, the geuge potential

describes both the defects and the effect of the physical field. Thus, our

procedure is different from the three state theory of the gauge field of a
continuum with dislocations and disclinations'®.
2. Since

u =du -{%m_ -8
v v HY @

(4.14)

uvuu'

then the field equation contains a coupled effect of the metric defect

and the gauge potential. Therefore, (4.14) is different from the representation

of Cauchy strain tensor' 'Y,

3. Eg. (4.15}) is a new field equation, It is the generalization of Einstein

equation22 (see also Refs. 23 and 24 ), and it describes the gauge theory of the

metric defect containing the elastic field. Based on continucus distribution

theory of metric defects similar to gravity theory, and setting tf =0, we

obtain

1
16 ¥k

where k is the so-called Newton constant of gravity. When the gauge potential

' =0,

v we obtain the results of continuous distribution of the dynamic metric

defect's'ls.

K. Konde'? has analogously discussed the general relativity and H. Y. Guo?’
has analogously discussed the gauge theory of gravitational field. The corres~
pondence given in this paper is the generalization of the correspondence between
continuous distribution theory of defects and gravity field theory or electro-

magnetic field theory.
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