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ABSTRACT

71:o rnect,n,ri:!eal behaviour of a material manifold with dislocations

find tti :•.<•! Lnation:-. is explored by applying nonriemannian geometry and gauge

field theory. A peonietrie gauge theory of metric defects is introduced by

Jo.,:ni Lnrr-n'. 7, i nv;i.-i .-nico. As a result, we give the connection coefficients

«: + >• L1 i.-.• -ifrinc at.J Die gauge connection. Taking the displacement field,

:,:,n Prrune f!n:,d ,lr,<i I/IK, gauge field as basic parameters, we obtain the

coni-.ti Luiivn t;qu;it.i on:; and the governing equations based on a variational

principle with rrr.pecl to the groups of a coordinate transformation and a

gauge transform;!!,ion,
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INTRODUCTION

Generalised continuum mechanics is an iaportant phase of current develop-

nent in modern continuua »echanics. This field, initially studied by K. Kondo

1 l!, E. Kroner3* and B. A. Bilby et al.5'6, is closely related to the theory

of nonrienannian geonetry. In continuous distribution theory of defects, it

has been discovered that the reference configuration, in the constructs q£

nonrienannian space, such as metric, torsion and curvature tensors, is an

Euclidean space with Euclidean netric structure and topological structure.

According to the breaking of different structures of Euclidean space, defects

are called metric or topological defects, respectively.

Since 1954 when the Yang-Mills theory7 was established, one recognized

that Riemannian geonetry itself essentially belongs to a kind of gauge field

theory8'9. Furthermore, recently it was learned from the study of supergravity

that the geometry of nonriemannian space with nonvanishing torsion also belongs

to a kind of non-Abelian gauge theory.

It is known that non-Abelian gauge theory can be naturally applied to any

field in theoretical physics, provided that the field is related to Riemannian

or nonriemannian geometry. Based on this point of view, some work has been

done in using the gauge theory to study generalized continuum. A.G. Herrmann 10)

and A.G. Herrmann and D.G.B, Edelen 11) first used Abelian gauge theory to

discuss the gauge invariance of the governing equations with electro-magnetic

jo)
field theory. Her works lead to further study "by D.G.B, Edelen and

A. Kadic and D.G.B. Edelen in the Yang-Mills minimal coupling theory for

materials with dislocations and disclinations. In the field of geometric
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gauge theory, Y.3. Duan and Z,P. Duan 1 ' and Z.P. Duan 1 5' discussed the

geometric representation of the gauge theory of defects.

For a complete theory of generalized continuum mechanics, we have to deal

with not only the geometric aspects of the material manifold but some process

of physics. In this paper, we establish a geometric gauge theory of metric

defects based on Lorentz invariance and continuous distribution theory oE

defects.

I. THK GAUGE POTENTIALS

The mathematical theory of non-Abelian gauge theory, which is introduced by

C. N. Yang and R. L. Mills7, takes the transformation of gauge potentials as

B ' = S B S + — S 3 S (1.1)

where S is the spin gauge transformation.

E. Bortorotti1G, K. Kendo and Ishizuka gave the transformation of the

connection as follows:

(1.2)

which is symmetric or non-symmetric with respect to indices p and K under

the coordinate transformation

" I " ax1 (1.3)
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FroB the expressions (1.1) and (1.2), we obtain sone information as follows:

(1) These transformations have non-homogeneous terms -*— S" 3 S and

Aa3oB' under corresponding transformation. Therefore, (1.1) and (1.2) mean
i p A

that the syanetry is broken.

It is well known that the transformation operator B̂  may be written as
p

where

V' = (1.5)

are covariant derivatives with respect to the connections H . Under the first
k i

order approximation, covaiiant derivatives V WJ may be rewritten as

(1.6)

then we have

= s' (1.7)

where i' are called differential extensions,
p

For fixed index j, i^ are covariant components of a vector in (p) system

and it is written as the sum of a gradient and a rotation

based on the principle of decomposition, where

(rot.dJ)g.

-h-



Therefore
Let

In a vector tield, rot.grad ; 0, the Ricci coefficients/

(1.8)

11.9)

It means that antisymmetric field cJ plays a leading role and symmetric field

aj. plays an indirect role. The non-symmetry of the connection gives an
pp

antisymmetric field which is not only inducted by a stress field, but also can

be generalized to be inducted by other physical effects. Therefore, a symmetry

breaking will act as a role of an antisymmetric field.

(2) Since Lorenti group i is a linear transformation group depending on

some parameters, the gauge syraetiy of a rotation field will be broken under a

local Lorentz transformation group and the role of a rotation field may be

determined by physical effect of a gauge field. Therefore, gauge potentials

B1B
1 must be antisymmetric for contravariant indices a' and b", i.e.

B '"'
d.10)

B*It ueans that gauge potentials B* take values in Lie algebra of Lorentz

group X, , The coordinate components of gauge potentials ate B* which satisfy the
PA

following transformation laws'

then

where

(1.12)

(1.13)

(1.14)

The expression (1.13) means that gauge potentials B° are gauge-invariant

and the role of an antisynnetric field is determined by both the antisymmetric

part B
I PAJ

of gauge potentials and Ricci coefficient-; g".
pA

(3) In the mathematical theory of a gauge field, we choose a torsion tensor

S'!° and a spin
pA

(1.15}

as a gauge-invariant physical variable which is independent on the choice of a

coordinate system, where

(1.16)

From (1.13) and (1.15), it is obvious that we must choose gauge potentials Ba

(JA

as basic variables of a field.

and their antisymmetric parts are

DA D[jki

II. THE PHYSICAL MODEL

ln the classical theory of a continuum with defects, the dynamics of

dislocations satisfied global Lorentz invariance1'''9, and defects in

generalized solids satisfied only local Lorentz invariance in coupled physical
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fields. From the viewpoint of fields, just as the physical substance of

topological defect introduced an antisymmetric field, there are other physical

fields having antisymmetry. Therefore, we treat it with the role of

antisymmetric fields by gauge potentials having antisymmetry.

To give the physical nodel of this paper, we introduce two basic

assumptions as follows' :

(1) The dynamics of continuum dislocations satisfies a local Lorenti

invariance in generalized solids;

(2) ':'!:<-> first set of integrable conditions of a frame field is broken.

Thus, from the assumption (1), there exists a local Lorentz frame field

(e* (x)) which transforms on every spacetime point, where a' = 0, 1, 2, 3 is
a

the index of the frame and a = 0, 1, 2, 3 is the index of the coordinate. For

a', e* (x) are contravariant components of the local Lorentz frame and for o,

are covariant components of the local coordinate system, and they satisfy

e'\e9. = 6P; e ' V = (,'', .a. i a. o b b

a, 0 = 0, 1, 2, 3; a1, b1 = 0, 1, 2, 3.

The Lorentz frame field determines the metric of spacetime

dXadx^- = e* eb

where n ... " diag(1,-1,-1,-1) is local Minkowski value of the metric and
i b

The matrix of the metric may be written as

f .

where J - (n >, • ) • Therefore, the local transformation group of the frane is

a Lorentz group X- .

From the assumption (2), there are

where t*', , is a connection of the fraae field e^ (x), and

where 8O •
.S "

We introduce a differential operator

X . = ea.9

for the covariant components of the frame, there are

where

and

« = ; : « • - < • < • - < • > >

•' f' -Y* ' c( - R' ' '

where R1 ' ' * is the frame components of a curvature tensor.
b ' c ' 4 '

III. THE EUCLIDEAN CONNECTION

Let (e*'(x>) be a Lorentz frame field in spacetime of four dimensions
a

and V*' V*'+ dV*' be two vectors at point P(xp) and its adjacent point
P p P

Q(xS+ dx P), respectively. The Lorentz frame field introduces a change in
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SV = dV* - dV (3.1)

where dV* is the change introduced by vector V* itself, and 3V1 is the
p p p

change introduced by Lorentz frame field at points P and 0.

A matrix element of Lorentz group «C is L* at point P and L + dL at

point Q, then

V1 + dV1 = V1 + L* &v\ t V*dL*

and

Substituting (3.1) into the above two equations and substractiwj them, we obtain

JV*" = t\ 6V'p (3.2)

It means that 6vt is a vector and it is independent on the choice of the

Lorentz frame.

For every vector v" , if
p

- 3V*'= 6V*'= 0 (3.3)

holds, we say that the Lorentz frames at points P and Q are quasi-parallel.

Let r° be the spacetime connection of the local coordinate system. For
pA

contravariant and covariant vectors IT, and V* , there are

Xa *

then their covaiiant derivatives are

v1' = v1' - r" v1'
BIX f.h A M

(3.1)
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where the symbol "," means a partial derivative with respect to coordinates and

a
the symbol *|" means a covariant derivative with respect to the connection P.o.

Ap

We can obtain a transformation of the connection r° with respect to non-
AB

holonomic transformation of the coordinates. On the one hand

and on the other hand

Thus, we have

"A B - •
(3.5)

The frame field (e* (x)l determines the metric and the geometric structurea

of the spacetime. Therefore, indices of the frame describe all geometric

objects which must 'be Lorentz invariant. Obviously, there i:-,

r*'a = r" e''.e
A. = r" L''ellb.eX = r" e1 eXL*' l" = r" L' " lb ,

b 0 AP a b »f i i t' b X0 a b • b- tl i b'

we obtain

Thus, on the one hand

and on the other hand

(3.6)

(3.7)

(3.8)
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in local coordinate system. This means that S^o
u is a tensor and is gauge-

XB

invariant, s
XB

is called a torsion tensor.

From the isometric principle

=0,

we obtain the symmetric part ol Euclidean connection as

M X ~ 9.,

then the Euclidean connection is

r v =

(3.9)

(3.10)

(3.11)
'p X1 "MX "it. X "X. p "yX ' *M-X ' "X. M'

Let us now consider the gauge theory of metric defects under local Lorentz

invariance. B a is the coordinate component of the gauge potential and

substituting (1.12) into (3.11) we obtain

(3.12)

where

Y = gB and (3.13)

(3.t2) shows that the frame field (e^ (x)) and the gauge potential

together determine the geometrical structure of the continuum with metric

defects and the gauge field.

IV. EQUATIONS OF THE FIELD

First, we consider the structure of a Latjrangian function describing

metric defects and a gauge field.

-11-

Obviously, e* and B* are independent variables of the field

describing the properties of a continuum with metric defects and a gauge field.

Setting

(4.1)

where

•r- (4.2)

we obtain the strength of a gauge field as

then

F" » B B* - a i ' + B" BC - B* B' ,
bpv v bM t> bv c v bu tp bp

Fliv '

The strength of a gauge field satisfies the Bianchi equality

F* + F* + F* = 0
byvl lX bvAIlM b X p I v

(4-3)

(4.4)

(4.5)

where the symbol "I" «eans the covariant derivative with respect to the

coordinate and the strength of a gauge field, i.e.

-» - a F" - I " If' - { " IF* + B* Fc - B C V . (4.6)
b u v I X ' X b p v X u b a v X v b y a t X b y v b X c(jv

How the total Lagrangian function of the system is

L = L + L + L,' ,
• 9 m t

(4.7)

where L is the Lagrangian function of an elastic field, L , the Lagrangian

function of a gauge field and L , the Lagrangian function describing the
1 n t

interaction between the frame field e* and the gauge field B* , and there
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and

where

and

L = L (u , u „ )
i I V ullv

I = tr(F Fpv)
9 M *

L = tr(F egv) = KR
inl uv

H = RV

i b V * \t

(4.8)

14.9)

(4.10)

(4.11)

(4.12)

Obviously, t^, L and L.nl are invariant under the group-couple X * J4-,

where the group 4̂- is the group of a non-homonomic transformation o£ the

coordinates.

(4.7) represents that the gauge field IB**I and the frame field [e1 )
M a

commonly describe the field of metric defects,

The action functional is

where

S = J[Le - -JL t.lr/1 - ItrlF/lld'.,

t = det(e') = [ - det(g(jv)]

(4. 13!

and n is a new coupled constant.

Suppose that the Hamilton principle holds, and take the variation of the

action functional with respect to e* and B** , we can obtain the new equations

of the elastic field and the metric defect field as follows:

-13-

3u 3u

and

where

is an energy-momentum tensor of metric defects, and

tW - - -f- IS» - S* e'eU - s\ec
xe

M] = - e
MV,,

I b ; ib j c X b c b X i . b II v

is the density of the spin flow in the field of metric defects, and

(4.15)

(4.16)

(4.17)

(4,18}

S SX e'e'e" = - 23f e" -
<b cd >. |J V t M VI

is the torsion tensor of the spacetime. T^

the elastic field, and

3UL )
h* = -i-
ib • b

u

B e . (4.19)

is an energy-momentum tensor of

(4.20)

is the density of the spin flow in the elastic field.

Therefore, the action of metric defects represents not only the geometric

effect of the metric, but the physical effect of the gauge potential. Thus, this

theory is different from the dynamic theory of the continuous distribution
1 8 , 1 9

V. DISCUSSION

1. In our treatment, the space-time is a nonriesnanman space

of four dimensions, the geometry of the space-time is connected with metric

defects, and the gauge field is nonriemannian geometry. This space-tine does not
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only !IHK t.:,i; ciirviiturc, "but also the torsion. The connection of the space-time has

Ivo finrts, namely the affine ana the gauge. In particular, the gauge potential

describes both the defects and the effect of the physical field. Thus, our

procedure is different fron the three state theory of the gauge field of a

continuum with dislocations and disclinations1* .

2. Since
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u . = 3 u - < c l u - B ° u ,
wlv v u u v o uv o

then the field equation (4.14) contains a coupled effect of the metric defect

and the gauge potential. Therefore, (4.14) is different fron the representation

of Cauchy strain tensor13'1*.

3. Eq. (4.15) is a new field equation. It is the generalisation of Einstein

equation2 (see also Refs. 23 and 24 ), and it describes the gauge theory of the

metric defect containing the elastic field. Based on continuous distribution

theory of metric defects similar to gravity theory, and setting tM = 0, we

obtain

K =

where k is the so-called Newton constant of gravity. When the gauge potential

BM = 0, we obtain the results of continuous distribution of the dynanic aetric
t b

defect13'19.

K. Kondo has analogously discussed the general relativity and H. Y. Guoi1

has analogously discussed the gauge theory of gravitational field. The corres-

pondence given in this paper is the generalization of the correspondence between

continuous distribution theory of defects and gravity field theory or electro-

magnetic field theory.
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