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1. Introduction 

The physical world contains an amazing variety of beautiful objects 
with intricate and complex geometrical properties: the structure of a fern 
leaf, the irregular surface of a mountain or the ramified pattern of an 
electric discharge in a dielectric material (Fig.l) are only few examples. 
On the other hand, the physical laws into play are often a set of rather 
s imply stated mathematical rules. How does then a simple law give rise to 
such complex outcomes ? 

A class of objects with interesting geometrical properties are 
called fractals [1]. These are defined by the statement that a fractal 
contains within itself an infinite number of little copies of itself. 
Fractal is a fern leaf, which has branches that look almost like the whole 
object, and fractal can be considered the peaks and valleys structure of 
the surface of a mountain, whose irregular shape can be simulated by a 
simple computer algorithm. 

How would then a mathematician, a computer scientist or a physicist 
construct an object with such a fractal structure ? 

We'll try to answer this question, showing how these beautiful 
structures that appear in the real world can be actually desctibed by 
rather simple models, and we will address the problem of defining a measure 
which could allow us to distinguish between different fractal objects. We 
will see that this is not a trivial problem and that, to describe a 
fractal, a single outcome of a measure does not give sufficient information 
but that an infinite set of numbers is usually necessary. This property is 
known as "multifractality". 

The outline of this paper is the following: in section 2 some 
examples of fractal objects are given, pointing out how they can actually 
arise in natural situations. Some quantitative methods for characterizing 
their properties are also discussed. This section mainly consists of our 
free interpretation of the lecture given by L.P. Kadanoff at this school. 

In section 3 we will focus our attention on the percolation 
problem. The percolation cluster is in fact an example of a statistical 
fractal and, in the attempt of finding the right quantities to characterize 
its structure, we show that it is, indeed, a rcultifractal ensemble of 
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fractal sets, within a mathematical approach analogous to the one 
introduced in the previous section. 

Finally, we point out how this theoretical approach represents a 
powerful tool to characterize a variety of fractal objects and some general 
conclusions are given. 

2. Fractals and their measure 

How can we construct a fractal ? Let's take a triangle and, within 
this triangle, let's draw three little triangles identical in shape to the 
whole one. Each little triangle can then be partitioned, in the same way, 
three smaller triangles and the process can be carried on to have a 
complicated structure of triangles nested within triangles to the finest 
level. This fractal is known as the Sierpinski gasket (Fig.2). 

But we can think of a more natural process to obtain a fractal 
structure. The Diffusion Limited Aggregate (DLA) is constructed by computer 
in the following way [2]: we start with an aggregate of nearest-neighbor 
occupied sites on a grid. We send a random walker from a distance very 
large compared to the dimension of the cluster and we let it walk on the 
lattice until it hits a site neighboring the aggregate, which then grows by 
this one unit. The process starts again by sending more walkers. The DLA 
aggregate so obtained has a very ramified structure, tree-like and with no 
loops (Fig.3). Objects with this structure do indeed appear in nature: 
aggregates of uniform gold colloids [3] or Hele-Shaw experiments [4], where 
a low viscosity fluid is pushed into a high viscosity fluid, show patterns 
very similar to DLA. 

Why an aggregate grown with such an algorithm is a fractal, why 
does it have this ramified structure ? 

Let's assign for example a different color to walkers which stick 
to the aggregate in different intervals of time. We see that the later 
walkers cannot penetrate over a larger distance than the previous walkers, 
that is they cannot reach into the deep fjords of the aggregate to fill up 
the structure but they are screened by the most exposed regions of the 
tips. This screening effect causes the fractal geometry of the aggregate. 
And indeed this type of mechanism is responsible for the beautiful 
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dendrites that grow in water when it is cooled below the freezing point, or 
that electrons trace in a plastic material in a dielectric breakdown 
experiment [Sj (Fig.l). 

Is it possible to introduce a measurement able to determine the 
properties of a fractal and to distinguish among different fractals ? The 
goal is to associate to each fractal some number which can tell us, for 
example, if the DLA model, which is rather well understood, does catch the 
physics of similar fractal objects constructed in a laboratory experiment. 

Let's start with the classical way to characterize a fractal by 
introducing the Hausdorff dimension df. If we want to measure a fractal 
object like a line of length L, we take a small line of unit length u, we 
superpose to the line L many little lines u and count how many unit lengths 
we need to completely cover L. The number N - L/u represents a measure of 
the line L. Analogously, to measure a square (cube) of side L, we take a 
unit square (cube) of side u and measure the numbers of units N - L 2/u 2 

(N - l?/v?) needed to cover up the object. In general, this algebraic 
d x process leads to N - (L/u) and to the determination of the exponent df , 

the Hausdorff dimension. For an uniform compact object df is simply equal 
to the Euclidean dimension d. 

How does it work for the Sierpinski gasket ? 

We start with a triangle of side L partitioned into infinitely many 
small triangle?. By taking a unit triangle of side u - L/2, we need N - 3 
unit triangles to cover up the gasket. If we take instead u - L/4, the 
measure will be N - 9. Therefore, in general, for the gasket the measure 
will be N - 3 K, with u - L/2K, and the Hausdorff dimension 
df - logN/log(L/u) will be log3/log2. 

Tne same process can be applied to DLA. We can cover the aggregate 
of linear dimension t with boxes of side u and count the number of boxes N 
which have a piece of DLA in it. The logarithm of this number, logN, 
plotted versus log(L/u) will give for large values of L/u a straigth line 
whose slope is the Hausdorff dimension df . Starting from this simple model, 
we can also change come of the rules, by assigning for example a sticking 
probability p < 1 to the incoming walker, and what we see is that d. is a 
number that does not change for a wide variei.y of models. 
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This is known as "universality" and is a concept familiar in 
particle phys JS or in critical phenomena. One has seen that a quantity to 
measure is relative insensitive to the microscopic details or to the method 
used in the measurement. For example, the log-log plot of the magnetic 
susceptibility versus the temperature gives the same slope for different 
materials. Of course, this is a very good situation for physicists who, 
therefore, do not have to deal with microscopic details. 

Having defined the Hausdorff dimension as a suitable measure, for 
example, for DLA, we want now to compare the DLA aggregate with the similar 
object obtained with a dielectric breakdown or an Hele-Shaw experiment, by 
measuring df and seeing whether it is the same for all three cases. 

To do this, there are indeed several problems. To start, the box 
counting method does not give very accurate results for df . Moreover, only 
one number, df , does not provide enough information and it is insufficient 
for making any incisive comparison. Finally, the Hausdorff dimension 
probably does not reflect much of the physics which produced the fractal 
and cannot therefore describe all its properties. Can we define then 
another measurement to get a more detailed description of a fractal 
object ? 

Let us consider again a DLA aggregate on a lattice and let's send a 
large number of random walkers from infinity. Without growing the aggregate 
any further, that is removing the walker when it hits the aggregate. Let's 
count the number of walkers that hit a given site of the aggregate, for 
each site. We see that some sites are more likely to have walkers landing 
than others and, if we look at the sites which have, let's say, more than 
10, 100, 1000 walkers landing, we see that the larger the number of 
walkers, the farther from the center and towards the tips these sites are 
located. 

If p. is the probability that a walker lands at site j, we can 
define the quantity 

aj s log Pj/loga/u) (1) 

which represents how often a walker arrives at site j; then, if we count 
the number of sites n(0t) characterized by the same value of «, the quantity 



6 

f(oc) = log n(ot)/log(L/u) (2) 

is the fractal dimension of the set of sites having the sane value of a. We 
have defined then an ensemble of fractal dimensions f(ot) and the Hausdorff 
dimension df will just be the fractal dimension corresponding to the most 
probable a, that is the maximum value of the function f (ot). A fractal 
object that can be partitioned in sets, each with a different fractal 
dimension, is said to be a multifractal. 

Multifractality was first introduced in the contest of turbulence 
[6] and sucessively found in percolation [7,8], DIA [9,10] and dynamical 
systems [11]. With the quantities a and f(oc) we have constructed a tool 
that now can be used to try to answer some crucial questions about the 
different dynamical processes which give rise to different fractal objects 
and that can help us to relate models of statistical fractals with fractal 
patterns observed in physical experiments. 

3. Multifractality in percolation 

We will now focus our attention on the problem of percolation; we 
present a new approach to the study of this problem, based on the ideas of 
multifractality, that will lead to a better understanding of the structure 
of the percolating cluster and its properties [7,8]. 

We start by defining the bonO percolation problem [12]. Let's 
consider a lattice and say that a bond is present with probability p and 
missing with probability 1-p. For small values of p, we will have on the 
lattice isolated bonds or small clusters, but, as the value of p increases, 
some of these clusters will grow or coalesce until there will be a 
connected cluster of bonds which spans the whole system. The value of p at 
which this spanning cluster first appears in an infinite system is called 
pc,the percolation threshold. 

A typical example of system which exhibits such percolation 
transition is the random resistor network. To each bond we now assign a 
conductance equal to one if the bond is present and zero if the bond is 
missing. By monitoring then the conductance of the whole system, we see 
that this quantity is critical and goes to zero as p decreases toward p c. 



7 

What is the structure of this incipient infinite cluster at the 
percolation threshold ? 

To answer this question, we consider a random resistor network at 
the percolation threshold, we apply a difference of potential Av - 1 at the 
opposite odges of the lattice of size L and then we can partition the bonds 
in the spanning cluster in three different sets: the bonds that do not 
carry any current, called dangling ends. The bonds which are sinply 
connected, that is such that, once they are removed, the cluster becames 
disconnected; they carry the whole current and they are called red bonds or 
links. Finally, the bonds which are multiply connected, that carry a 
fraction of the whole current and that are called blue bonds or bonds in a 
blob. 

Therefore, the part of the incipient infinite cluster which carries 
current consists in the red bonds and the blobs and is called "backbone", 
whereas the dangling ends do not give any contribution to the transport 
properties since they don't carry any current. On the other hand, the 
dangling ends represent almost the total mass of the infinite cluster, 
having its same fractal dimension df - 91/48 in two dimensions, whereas the 
blobs have a fractal dimension dgB — 1.6 and the red bonds have a fractal 
dimension exactly equal to the inverse of the connectedness length critical 
exponent [13], ĉ g - —, equal to .75 in two dimensions. Moreover, the bonds 
in a blob can have a very different role in the network since they can 
carry a large fraction of the current, or they can be embedded in a very 
large blob and be almost balanced. 

It becomes clear, then, that depending on which property of the 
infinite cluster we are interested in studying, we have to focus our 
attention on different sets of bonds. Moreover, this initial partition of 
the cluster in three sets of bonds is not exhaustive, since does not 
reflect the very different roles played by the bonds belonging to the 
blobs. 

In order to give a better characterization of the different bonds 
in the backbone, we assign to each bond a weight equal to the voltage drop 
across it, V [7]. We can then define the quantity n(V) as the number of 
bonds characterized by a voltage drop V and the moments of such voltage 
distribution 
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2< n(V) V* ~ L 
p(k) 

M(k) - ̂  n(V) V* ~ L v (3) 
V 

By performing the sum in (3) by steepest descent method, and by supposing 
that the exponents p(k) form an infinite set of independent exponents, we 
find the critical behaviour of the quantity n(V) is given by 

n(V) ~ C(a) Lf<*> (4) 

where 

In V a a - - — — i.e. V ~ L a (5) In L 

Here, the f(a) are the Legendre transform of the critical exponents p(k), 
that is 

p(k) - f(a) - Z±-t- -k a (6) 

r. l d P W 
where a - — v dk 

The f(a) represents the fractal dimension of the set of bonds characterized 
by the value of V given by (5) and a therefore describes how this value of 
V goes to zero as the system size L goes to infinity. 

We see that, if ct(k) is a simple constant, the exponents p(k) would 
have a linear dependence on k and f(0t) would be also constant. This simple 
typa of scaling is what is usually found in critical phenomena and it is 
called gap exponent scaling. Here for the voltage distribution the scaling 
exponents of the moments are a more complicated function of k and the 
fractal dimension f(ot) have a non trivial dependence on a. 

All these results, are verified by computer simulations of a random 
resistor network at p c in two dimensions. The numerical results show that 
the voltage distribution, n(V), as function of In V is peaked at a most 
probable value of In V and has a long tail in the low voltage region 
(Fig.4). As function of V, instead, the n(V) is not well behav'ng since it 
all collapses near the origin. 
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Starting from the knowledge of the voltage distribution, it is then 
possible to determine ths critical exponents of its moments, p(k), and 
their Legendre transfron, f(<k). The function f(ct), representing the fractal 
dimensions, is shown in Fig.5. It is a bell-shaped function, whose maximum 
is the Hausdorff dimension of the backbone (- 1.6 in d - 2), and which 
recovers the known value of the fractal dimension of the set of red bonds 
(- .75 in d - 2) in the limit k —» +», where the moments are dominated by 
the largest voltage drop V - e x that occurs on the links. 

The anomalous behaviour of the voltage distribution is responsible 
for the infinite sets of critical exponents p(k). Turns out, in fact, that, 
in order to perform the sum leading to the determination of M(k) in (3), is 
much more convenient to integrate over the In V instead that the V 
variable. The leading contribution to the integral in (3) will then arises 
from different "typical" voltages depending on the different k-th moment 
considered. Only the k - 0 moment will derive its leading contribution from 
the most probable value of the n(V), whereas positive moments will be 
dominated by value of V in the high voltage region and the negative moments 
by the low voltage tail. Of course, if instead we were looking at the 
moments of In V, and not V, these would not suffer by this anomalous 
behaviour; they will be always dominated by the most probable value and 
they will simply exhibit a gap exponent type of scaling in term of a finite 
number of independent exponents. 

The point is that the physical properties of a random resistor 
network are related to the moments of V and not of In V: the second moment 
represents the conductance of the backbone, the fourth moment is related to 
the noise [8] and the k - -1 moment is related to the mean square passage 
tim'! in the hydrodynamic dispersion problem in the pure convective limit 
[WJ. 

Therefore, Che infinite hierarchy of exponents p(k) reflects the 
richness of the structure of the percolating backbone, which we can 
consider partitioned into subsets of bonds, characterized by a value of a, 
each set with its own fractal dimension f(0t) and each set playing a 
dominant role in the determination of different physical properties. 

This anomalous behaviour of the voltage ditribution can be verified 
by exact calculations on a hierarchical model introduced for the 
percolating backbone in ref. [7]. The model is stown in Fig.6: to each bond 
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we substitute the unit cell aade of two links and a blob of two bonds. At 
the N-th order of iteration, the model will contain therefore 2" links and, 
by the scaling relation 2 M - L 1 / v , the arbitrary parameter M can be 
eliminated in favor of the size L of the system that we are modeling. This 
is one of the advantages of the model together with its simplicity and the 
fact that it presents the self-similar structure of links and blobs, 
typical of the real percolating backbone. 

On this model, we can calculate the voltage distribution n(V) and 
we find that n(V) is a log-binomial distribution as function of the 
logarithm of the voltage 

n(V) - 2" (*j (7) 

where V(j) - 2J'/5" with j - 0,1,...N. 

Moreover, we find that the scaling law for th i s distribution 
n(V) - L f ( o t > i s expressed in term of a set of fractal dimensions, f (ex), 
which have a not t r i v i a l dependence on <x 

f(tt) - 1 - [ ( l -y (a) In ( l -y (o ) ) + y(a) In y ( a ) ] / l n 2 (8) 

with y(oc) - In 5/ln 2 - ca>, which is again a bell-shaped curve as function 
of oc in good agreement with the numerical results. 

Therefore, also exact calculations on the hierarchical models show 
that infinitely many subsets of bonds can be individuated, each with a 
different fractal dimension f(ot). That is the infinite hierarchy of 
critical exponents p(k) is expression of the multifractal structure of the 
percolating cluster. 

4. Conclusions 

The concept of multifractality arises in many different problems. 
Here we have discussed in particular its implications for DLA and 
percolation. Although these two problems represent very different physical 
processes, they can be usefully described within the same formalism. In 
fact, the voltage V in percolation plays the same role of the growth 
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probability p for OLA and the exponent a represents the strenght of the 
singularity of these fields. The voltage distribution takes the place of 
the growth site probability distribution, which represents the number of 
perimeter sites of the DLA aggregate characterized by the same probability 
of growing. The sites with highest probability, the tips, correspond 
therefore to the bonds with highest voltage drop, the links, whereas the 
sets characterized by smaller and smaller values of the growth probability 
(voltage) correspond to those sites (bonds) situated into the deep fjords 
(large blobs) of the cluster. 

As for these two previous examples, every phenomenon which gives 
rise to a fractal object can be described by means of the infinite set of 
fractal dimensions f(a). Fractals which are therefore characterized by the 
same f(oc) curve will supposedly belong to the same universality class. To 
this extent, the f(oc) curve plays for a fractal object the same role as 
critical exponents in critical phenomena. 
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Figure 1: Time integrated photograph of a surface leader discharge on a 2mm 
glass plate on SFé gas at 3 atmospheres from the dielectric breakdown 
experiment of ref. [5]. 

Figure 2: The first three iterations for the Sierpinski gasket. 

Figure 3: A 100,00 sites cluster grown on the square lattice using the DLA 
model in d - 2 from ref. [15]. 

Figure U: The voltage distribution n(V) of a 130x130 square lattice random 
resistor network at the percolation threshold (950 configurations). The 
distribution has been normalized by the number of configurations and by the 
number of bonds in the backbone. 

Figure 5: The fractal dimensions f(oc) - <t»(x(oc)) plotted as function of the 
quantity x - In V/ln VmBX , where V w a x is the maximum voltage drop which 
occurs on the links. 

Figure 6: Few levels of iteration of the hierachical model for the backbone 
of the incipient infinite cluster. 
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