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В. Lukács: Neutron Stars with orbiting light? KFKI-1987-74/B 

ABSTRACT 

We show that the space-time of nonsingular final states of collapse is 
not necessarily asymptotically empty and simple (although presently favoured 
nuclear equations of state seem to lead to this class at least in the spheri­
cal case). 

Б. Лукач: Нейтронные звезды с вращающимся светом? KFKI-1987-74/B 
АННОТАЦИЯ 

Показывается, что пространство-время несингулярных конечных состояний 
коллапса не обязательно должно быть асимптотически пустым и простым, хотя вы­
глядит так, что наиболее современные ядернофиэические уравнения состояния (по 
крайней мере, э сферическом случае) приводят к этому классу. 

Lukács B.s Neutroncsillagok keringő fénnyel? KFKI-1987-74/B 

KIVONAT 

Megmutatjuk, hogy a nemszinguláris kollapszusvégállapotok térideje nem 
feltétlenül aszimptotikusan üres és egyszerű, habár a pillanatnyilag legjobb­
nak tartott magfizikai állapotegyenletek - legalábbis gömbszimmetrikus eset­
ben - ezen osztályhoz tűnnek vezetni. 



1. INTRODUCTION 
General Relativity tends to predict the absence of re­

gular final states of gravitational collapse for too massive 
stars. This phenomenon is, e.g., indicated by a finite max­
ima! mass for equilibrium spherical configurations in any 
specific calculation up to now. Then the final state of a 
star above this limit cannot be one cold, compact object as 
e.g. a neutron star or a white dwarf. Of course, after the 
exhaustion of the nuclear fuel of the star, a rapid con­
traction will start, therefore one might expect that the de­
liberation of "gravitational energy" would eject the outer 
mass shells of the star so that the final state is one com­
pact object with sufficiently small mass, plus matter dis­
persed at spatial infinity. However, supernova simulations 
indicate that the ejection cannot be sufficiently efficient 
above cca. 10 solar masses (Arnett, 1967); then the central 
part of the matter cannot stop in any regular state of the 
final collapse, and in the spherically symmetric case a 
black hole will develop, with an unobservable central sin­
gularity. 

Now, the inevitabiliiy of such singular final states of 
stellar evolution seems to be a genuine relatlvlstic effect. 
Namely, it is the common consequence of two facts: the self-
amplifying nature of gravity and the limiting nature of the 
velocity of light. The first fact suggests that with in­
creasing mass somewhere gravity starts to dominate all the 
other effects, while the second prohibits the incompressible 
matter even as a limiting case (Curtis. 1950). So, indeed, 
one may expect a finite maximal mass, although the parti­
cular value obviously depends on the details of the equation 
of state. In fact, some singularity theorems (Hawking & El­
lis, 1973) predict the inevitability of singular final sta­
tes under quite general circumstances. 

Obviously, it is an appealing task for astronomy to 
find and Investigate such singular final states. Up to now 
the efforts have not been too successful, partly because of 
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the tremendous technical difficulties Involved. However, 
there are at least two fundamental problems as well. First, 
the signals for such states are often defined by the absence 
of something; second, it is not yet sufficiently clear, 
which are the common features of all the possible "irreg­
ular" final states of collapse. 

The first point does not need too much discussion. Con­
sider a spherical black hole as an obvious candidate for the 
final state of a too massive spherical star. Then there is a 
singularity at r=0, whose neighbourhood might produce very 
characteristic signals. However, this singularity is surro­
unded by a horizon (at r = 2m=2GM/c» , where G is the Caven­
dish-constant), preventing any signal to pass outward. 
Therefore a lonely black hole seems to represent the ideal 
Ding an sich. Of course, even a black hole will disturb the 
neighbouring stars via gravity, so in principle one might 
look for stars possessing orbits as if around an unseen com­
panion, but this la obviously a negative signal, and one may 
list various reasons not to see a companion. Another pos­
sible signal is X-ray radiation, coming from lnfalling mat­
ter from r=(several times m) : but this is possible also for 
neutron stars, therefore again one has to look for X-ray 
sources without charactaristlc neutron star features (e.g. 
pulsar effects) and above the predicted maximal equilibrium 
mass. The absence of observed pulsar behaviour may have va­
rious other explanations, as e.g. our particular location, 
while the predicted upper mass bound is not necessarily an 
onthologic fact. 

One may expect help by investigating some global fea­
tures of space-time. The idea is tnat the emergence of a 
singularity or a horizon leads to some changes in the global 
structure of space-time, which may have observ&ble conse­
quences, although very probably not too practical ones at 
the present status of art. (In fact, we will not discuss 
here the possible such signals.) And there we have arrived 
at the second point, the problem of common features of "ir-
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regular" final states of collapse. This will be the object 
of oar discussion In this paper. 
2. FINAL STATES WITH AND WITHOUT HORIZON 

It is well Known that all singular final states of a 
spherical collapse must possess horizon as well. Here we 
only recapitulate the main points. The most general sphe­
rical iine element in General Relativity is as follows: 

ds» r-e a< r- t>dt» + eD<r, ̂ dr* +r* (de* +sin* 8dö» ). (2.1) 
How, accepting the standard form of the Einstein equation, 
wllhout cosmologic constant, 

Л 1 К-(Н/г)в 1 К = -(81тС/с4)Т1к, (2.2) 
wnere KJK is the Ricci tensor, в щ is the metric tensor, and 
Т щ is the energy-momentum tensor, one obtains equations a-
mong the functions a, b and the characteristic quantities of 
the matter. Now, outside the matter TiK=Ot and then Birk-
hoff'r theorem (Hisner & al., 1973) states that the solution 
Of eq. (2.2) is unique: 

e a-e~ b=i-2m/r, (2.3) 
where m is an arbitrary constant, connected to the mass M 
observable for very distant observers as 

m=GM/c» . (2.4) 
Hence n>0 is expected for space-tines around a star, and 
then the line element (2.1), (2.3) has a hori2on indeed at 
r=2m (Hisner & al., 1973). 

Of course, this particular result is valid only outside 
the matter, so the horizon is not necessary if the matter 
exceeds r = 2m. In some such cases there still Is a horizon, 
as e.g. for a Reissner-Nordström metric (Misner & al., 1973) 
containing only Maxwell field, In some other cases there is 
not, as for a perfect fluid. However, if there Is a col­
lapse, and the outermost shell of the matter has just passed 
Inward r = 2m, the horizon appears, and afterwards the matter 
cannot stop because gtt becomes positive below 2m, so dr = 0 
ceases to be a timelike path. 

Now consider a star with angular momentum. Then the 
line element (2.1) is no more valid, and without spherical 
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symmetry Birkhoff*s theorem does not hold, therefore there 
is no unique solution even outside the matter. However, it 
is proven (Robinson, 1975) that the ferr solution (Misner & 
al., 1973) 

ds* =ot* 0 _ 1dr* +d0» )• (r* +a* )sin* 9dö* + 
• 2mra-2(asin» edö-dt)»-dt» (2.5) 

а* (г, t)sr* + а* cos* в 
Э(г)=г* -2mr+a* 

is the unique vacuum solution with regular horizon. There­
fore it is the only black hole solution without uncompen­
sated electric charge and magnetic field. 

Here we are not going to discuss the details of the 
Kerr solution; for this see Boyer & Lindqvist (1967). How­
ever, it is worthwhile to note that the new parameter a Is 
connected to the total angular momentum I of the source as 

a=J/Mc. (2.6) 
Now, if a<m, the solution (2.5) possesses two horizons at 

r + :m±(m* -a* )K. (2.7 ) 
However, for a>m, there is no horizon, the (ring) singula­
rity is naked. 

Since the ratio a/m is simply connected to the ratio 
I/W , one could predict which type of final state is ex­
pected for a particular star. For realizing this possibility 
one meets serious problems; first the ejection of rotating 
shells is far from sufficiently cleared up, second there is 
no unicity proof for a>m Kerr solutions. Nevertheless, one 
may perform rough guesses with the results that the majority 
of the rapidly rotating A and В stars will not develop hori­
zons in the collapse (see Appendix A). Therefore, definitely 
various types of global structures may be expected as "ir­
regular" final states of collapse, The details of the pos­
sible structures are still partly unknown, because the com­
plete list of solutions with angular momentum Is not yet at 
•'each. 

Of course, the singularity itself must be common for 
all the irregular final states. But in some cases it is cur-
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talned off by the horizon, and In the horizonless cases gen­
erally we do not know the details of the collapse. For the 
a>m Kerr solution th* appearance of the naked singularity 
would generate causality anomalies, often eliminated by a 
principle that such a solution cannot be realized (Penrose, 
1969). Mow, one may guess that satter will counteract very 
firaly when the change of the geometry tries to put it on 
the verge of temporal paradoxes, and this response may lead 
to a result conform to the above principle. So It is not 
sure that the external observer could see the singularity 
before t=o». 

The immediate conclusion of the above arguments is that 
a common distinctive signal of all the irregular final sta­
tes of collapse can be based neither on the horizon nor on 
the singularity. 
3. ASYMPTOTICALLY EMPTY AND SIMPLE SPACE-TIMES 

Now, there is defined in the literature a class of 
space-times, which is the obvious candidate to contain only 
regular final states and all of them. This is the class of 
asymptotically empty and simple space-times (Hawking & El­
lis, 1973) (henceforth AES). For the precise-definition see 
Appendix В or Hawking & Ellis (1973). Here we only list the 
properties directly used in further argumentations. These 
space-times 

-go to the Minkowski metric in the space-like infinity 
and do this sufficiently rapidly; 
-become matterfree in the same limit sufficiently 
rapidly; and 
-cannot contain lightlike geodesies along which photons 
could escape to Infinity. 

Therefore for a very distant observer these space-times can 
be interpreted as containing only localized bodies in the 
internal region, leaving the infinity undisturbed; and, in 
addition, they cannot trap the light, only scatter. Such 
solutions seem to coincide with the intuitively felt char­
acteristics of regular matter configurations; in fact, per-
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Bitting light captation one could be confronted with the 
black hole solutions as well, absorbing light. Therefore up 
to now the AES class is the most fret-sawn class for sol­
utions globally similar to Minkowski, excluding the minimal 
number of internally "strange" ones. Hawking ft Ellis (1973), 
therefore, state that this class contains the solutions 
whose matter content has not undergone collapse (in their 
terminology "collapse" means "collapse without regular final 
state"). If so, then we have at least one clear distinctive 
difference between regular and irregular final states of 
collapse: the first ones belong to the AES class, the second 
not. Hence later one may find distinctive observables. 

However, unfortunately, the situation is not so simple. 
In the remaining of this paper we show counterexamples: reg­
ular final states which do not belong to the AES class. 
Therefore the question of distinctive classification is 
again open. For these counterexamples we restrict ourselves 
to spherical solutions; since no constructive method is 
known for exhausting the nonspherical solutions with matter, 
one simply cannot go further in this moment. However, a list 
of counterexamples does not have to be complete. 
4. THE TOLMAN-OPPENHEIMER-VOLKOV EQUATION 

Consider spherical final states with fluid matter. Then 
the metric has the structure (2.1) with a and b independent 
of t, while the energy-momentum tensor has the form 

T 1 K = €u 1u k + p(g i k+u 1u k) (4.1) 
where € is the energy density, p is the pressure and u* is 
the velocity of the fluid. The latter has obviously only 
time component, and this only component is completely de­
termined, being u* a unit vector. Both p and € depend only 
on the coordinate r. Furthermore, a final state cannot be 
hot, therefore both of them depend only on the particle den­
sity, so (Harrison & ai, 1964) 

P = P(€). (4.2) 
The actual form of this equation of state depends on the 
actual matter content, and in principle is fully determined. 
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However, above several normal nuclear density (at or above 
usual neutron star densities) the p(€) function is very 
poorly Known, »inly because of the technical problems in 
the theories of strong interaction. 

If eq. (1.2) is specified, the unknown quantities are 
3, паше 1у €, a and b. Similarly, we have 3 nontrivlal com­
ponents of the Einstein eq. (2.2), say, the QO> il a n d 22 
ones. Therefore the solutions are completely determined up 
to constants of integration. In order to see the number and 
role of these constants, here we shortly recapitulate, how 
to generate the solutions. For details see Hawking ft Ellis, 
1973; Harrison al., 1964). 

First we introduce a mass function m(r) by the defi­
nition 

e-b(r) . i-2m(r)/r. (4.3) 
Then the Einstein equation gives 

m\ : ''irGc~2€r» , (4.4) 
p> : -Gc~2(€+p)(m+4npc~2r3)/[r(r-2m)J, (4.5) 
a' = -(l/2)p'/(€*p), (4.6) 

where the prime denotes r derivative. Now, eq. (4.4) can be 
integrated as 

о 
m(r) : 4nGc"2 

0 
€(x)x* dx + m . (4./) 

0 
Then, substituting this into eq. (4.5), for given p(€), 
P(r), €(r) and m(r) can be obtained, containing mo and 
€Q-€(0) as parameters. Finally, by integrating eq. (4.6), a 
multiplicative factor appears in g tt=e a. However, this fac­
tor can be removed by a proper redefinition of the time co­
ordinate, needed when matching to exterior Schwarzschild. 

Localised configurations must possess a boundary, now 
at some г«В. There p and e b must be continuous (Llchnero-
wicz, 1955). But outside eq. (2.3) holds. Therefore 

m(B) 5 m = GM/c» (4.6) 
So m(r) is indeed the mass within radius r in geometric 
units. 
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But then m0 is the mass in singular state at r=0. In­
deed, if at r=0 € and p are positive and finite, and m 0>0, 
then eq. (4.5) leads to singularities in the p{r) and €(r) 
functions. Hence for all regular configurations HQ-O, and 

m(r) ; 4*Gc " 2 j€ (x )x* dx. (4.9) 
Oj 

Eqs. (4.5) and (4.9) constitute an lntegro-differential 
equation, called the Tolman-Oppenheimer-Volkov (henceforth 
TOV) equation, whose only constant of in', „gration, as seen 
above, is € 0, which will be the only free constant of the 
whole metric. Static, cold spherical regular configurations 
of spec if led matter are completely determined by the central 
density (Harrison & al., 1964). 

Now we are able to explicitly formulate the conditions 
for having a counterexample. The Schwarzschild solution is 
not AES, because it possesses a llghtliKe orbit at r=3m (Ro­
bertson & Noonan, 1969). Therefore the space-time of a reg­
ular spherical static fluid configuration is not AES if at 
the surface m(R)/R>l/3. (The other possibility for not being 
AES is to possess a lightliRe circular geodesic inside the 
matter, but we will not discuss here this rather exotic 
case.) Our question is: is it possible to build up such a 
regular sphere? 

There is a well-known such example, the so called in­
terior Schwarzschild solution (Tolman, 1934) of constant 
density. This density can be chosen such that the surface be 
located below 3m. However, the corresponding equation o* 
state is acausal, permitting infinitely fast "sound" signals 
(Curtis, 1950), therefore we should rather exclude it from 
the present discussion. Here we require that the equation of 
state be causal 

dp/d€ < 1 (4.10) 
and the energy posltlvity conditions (HawKlng & Ellis, 1973) 
hold: 

€ > o. (4.11) 
(€ + p) > 0. 
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Furthermore, we restrict ourselves to positive pressures, 
although this would not follow from any fundamental prin­
ciple (Lukacs ft Martinas, 1904). Our reason is that negative 
pressures are hydroóynamically unstable (Danielewicz, 1979). 
not expected in fine! states, and, anyway, the surface is at 
P=0. 

Even a superficial observation at the TOV equation re­
veals that there are serious troubles when 2m(r)->r. Since 
at small rfs m(r)-r3«r, at the first such crossing p*->-». 
By assuming that m(r)-2r changes its sign from - to • with 
finite first and second derivatives at a regular r 0, one 
obtains that there dp/d€->+co, prohibited by causality. So 
one cannot expect R<2m(R) from the TOV equation. (Of course, 
there is a stronger globaJ argument that inside the horizon 
a velocity pointing into *• direction is forbidden. But now 
we see how this is reflected in the equilibrium equation.) 

However, there is no such problem when 3m(r)->r; there 
are quite regular approximate solutions of the TOV equation 
there. So the TOV equation in itself does not guarantee that 
all its regular solutions be AES. Therefore in the subse­
quent Sections we will investigate if R<3ra(R) is possible 
for equations of state fulfilling Conds. (4.10-11). 
5. EINSTEIN'S DUST 

A classical example for R<3ra as limiting behaviour is 
the Einstein dust (Einstein, 1939). Consider non-interacting 
particles revolving around the common center of mass in each 
direction. Then spherical symmetry is preserved and the con­
figuration remains static. (Of course, now the TOV equation 
is not valid, the matter not being a fluid.) We again have 
the 3 independent components of the Einstein eq. (2.1); the 
unknown quantities are a, b, €=moc*n and the tangential com­
ponent of u*. Therefore one quantity is free, e.g. the den­
sity. (For details see Appendix C.) It is easy to evaluate 
the equations wien € is confined to a thin shell; not sur­
prisingly then the minimal possible value of R/m is 3 (Ein-
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stein, 1939). This remains vall* for a general regular €(r) 
function (see Appendix C ) . 
6. ASYMPTOTIC SOLUTIONS WITH T-LAW 

Sometimes it is assumed that at very high densities 
P = (T-i )€ (6.1) 

where т is a number constant between 1 and 2 in order to get 
p>0 and satisfy (4.10). It is, of course, impossible to 
prove or disprove such a belief, based on the assumption of 
some Kind of scale laws. However, two cases do deserve spe­
cific attention: т = 4/3 for free relativistlc Fermi gas, 
while т=2 for high densities of a matter containing repul­
sive pair interactions of finite range, and is believed to 
be realized in a very dense nuclear matter. In any case, for 
T-laws this latter is the lest compressible matter. 

Now, the TOV equation is too complicated for being sol-
vaűle analytically even for such a simple law, excepting the 
limiting case €0:<x>. Then €~l/r* . Probably this limiting case 
would give the most compact object, but the (6.1) law does 
not permit really localisable bodies. One can see this in 
the limiting case: € does not vanish at any finite r, and 
p~€. Therefore the boundary condition cannot hold. However, 
one can be roughly orientated г observing that anywhere in­
side the matter 

m(r) - ßr. '>.Z) 
wher? ß is a constant and (Harrison & al., 1964) 

ß : 2(T-1 ) / { У +4Т-4). (6.3) 
So, for т = 4/3, 0 = 3/14, while for т:2, ß = i/4, which latter 
tiius seems to be the upper limit for m(R)/R with a pure т-
law. Therefore in this case no lightlike orbit would appear. 
7. THE SIMPLEST DEVIATION FROM T-LAW 

As mentioned above, a pure т-law does not lead to fi­
nite objects. In fact, it is an everyday experience that at 
low densities p«€, and there is an € s so that p(€ s)=0. Then 
the sphere may have a surface. Now, the simplest equation of 
state with this property is as follows: 
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p = (т-1)€ - p 0, (7.1) 
p 0 = (T-i)€s. 

With such an equation of state the TOV equation is already 
impossible to be analytically solved. However, a factor 

Gp 0/c* г i/r0* (7.2) 
giving the scale of the radius, can be removed from the equ­
ation, introducing dimenslonless density and radius. So 
there is a scaling in p 0. Therefore the dimenslonless mass 
and radius, together with R/m, will depend also only on the 
dimenslonless € 0- For r=4/3 and r=2 these functions are dis­
played on Figs. 1 and 2, respectively, while Fig. 3 is the 
density profile of a particular solution for т=2. One can 
see that for т = 4/3 the minimum of R/ra is cca. 3.5, so all 
these solutions belong to the AES class. However, for r=2 
R/m goes below 3 in a wide region of the central density, 
having a minimum of cca. 2.75. Therefore the quite harmless 
equation of state 

P = € - p 0 (7.3) 
leads to regular static configurations, who.se space-times do 
not belong to the AES class! 

Still we are not ready. At least two other objections 
are possible. These solutions may be unstable, or the above 
equation of state may violate general principles other than 
discussed here. 
8. OH THE STABILITY OF THE SOLUTIONS OF TOV EQUATION 

Here we discuss the stability against radial oscil­
lations. Nonradlal oscillations are out of the scope of the 
present formalism, violating the spherical symmetry, but, 
anyway, it seems that for small oscillation the tangential 
component causes secondary effects; other instabilities may 
exist too, but they are handled by other methods. Here the 
only other instability is a thermodynamic one, but it does 
not appear, because dp/d€ is never negative for the present 
equation of state. 

The stability conditions against radial oscillations 
are completely Known, and in the absence of phase transition 

http://who.se
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Flg. i: 120«total mass, 40»radius and R/m(R) ratio versus 
central mass density for equation of state (7.1) with т=4/3. 
Each quantity is dimenslonless, ti.e removed scale factors 
are: Po/c* for mass density CQ/C* ; cV(G 3Po)K for total mass 
and (cVGPo)^ for radius. Symbols: squares for mass, tri­
angles for radius and rhomboids for R/m(R). The vertical 
arrow indicates the central density beyond which the con­
figurations are unstable against radial oscillation. 



- 13 -

4.00 

3.80 -

3.60 -

3.40 

3.20 -

3.00 -

2.80 -

2.60 

»•о о о о о о-

0.00 2.00 4.00 6.00 8.00 10.00 12.00 

Flg. 2: 45«tot*l mass, 15»radlus and R/m(R) for r=2. Scales 
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he boundary is located at unit density. 
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are listed ín (Harrison & al., 1964). (The above equations 
of state do not contain phase transition.) The final results 
can be recapitulated here shortly as follows: 

The possible modes of oscillations can be arranged ac­
cording to increasing frequency square Q* . The mode is un­
stable if Ö» <0. Now, modes can switch from stable to un­
stable or backward only at extrema of m(€ 0), and 
for max. with R(€Q) increasing: the l?st unstable one 

becomes stable; 
decreasing: the first stable one 

becomes unstable; 
for min. with R(€Q) increasing: the first stable one 

becomes unstable; 
decreasing: the last unstable one 

becomes stable. 
For very low masses one can use Newtonian methods and then 
these configurations must be stable. Hence one gets th-i 
stability regions indicated on Figs 1 and 2: in the second 
case there remains stability down to R/m=2.87. 

The physical meaning of the specific equations of state 
will be discussed later. 
9. THE WALECKA MEAN FIELD EQUATION OF STATE 

The equation of state (7.3) was able to produce non-AES 
solutions, but it was a handmade simple equation of state. 
In order to partially reveal its physical meaning, let us 
introduce the particle number density n. for a cold fluid of 
one component p = p(n), €=€(n), and, from thermodynamics (Har­
rison & al ., 1964): 

€ = pn - p, (9.1) 
d€ - udn, 

where и is the chemical potential. So 
p : nd€/dn - €. (9.2) 

Then eq. (7.3) can be Integrated as 
€ = (C» /2)n» • p 0/2, (9.3) 

where С is some coupling constant. Now, the constant term 
Po/2 does not seem too physical, representing a positive 
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zero point for the energy density. Later we will return to 
this question; here we only note that it may be regarded as 
first approximation for terms slower than linear. Such a 
slower than linear term, if dominates, leads to negative 
compressibility, causing a first order phase transition. 
How, very dilute neutron matter possesses such an instab­
ility at €/c*Я10 1 2 g/cm3, where p-decay starts (Harrison & 
al., 1964). There is another (liquid-gas) phase transition 
between cca. 0.1 and 0.5 normal nuclear densities (Walecka, 
1974). Therefore the form of eq. (7.3) in itself is not a-
physical. However, in the true equation of state there must 
be terms between n* and n as well, e.g. the relativistic 
Fermi contribution n 4/ 3. 

As mentioned above, the true equation of state is still 
unknown well above normal nuclear density. However, skilled 
guesses do exist; maybe the best one is the Walecka equation 
of state (Walecka, 1974). It describes a dense baryonic mat­
ter, in our case neutron matter; correctly includes the Fer­
mi behaviour of neutrons, while for the interaction intro­
duces two nonquantized mesons, a scalar for long range at­
traction, and a vector for short range repulsion. The two 
coupling constants are fitted to the ground state density 
and energy of nuclear matter. The theory is thermodynami-
cally consistent, and in the limit n->co the causality limit 
dp/d€=l is Just reached. More discussion is unnecessary 
here, because the details can be found in (Walecka, 1974), 
and still no real evidences or counterevldences are known 
well above normal nuclear density. 

How, the TOV equation can be numerically integrated for 
the Walecka equation of state, and the curves M(€ 0), R(€n) 
and (R/m)(€0) are shown on Fig. 4. One can lmmediaV ly see 
that R/m remains everywhere above 3, but only with a narrow 
margin. And the fact is that R/m>3 does not come from the 
structure of the equation of state. In order to demonstrate 
this we have multiplied the repulsive coupling constant by 5 
while keeping the difference of the repulsive and attractive 
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Flg. 4: 3«mass, radius and R/m(R) versus central mass 
density for the Walecka equation of state with canonical 
values of the coupling constants (WalecKa, 1974). Mass and 
radius in Kilometers, €0/c» in 1 0 1 5 g/cm3. Symbols as on 
Fig. 1. 
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coupling constants. Then R/m crosses 3 with the minimal va­
lue cca. 2.89. While such an equation of state does not re­
produce the ground state of nuclei, it is still possible at 
higher densities (although, to be sure, we have no evidence 
for such higher coupling constants). 
10. EXOTIC EQUATIONS OF STATE 

How we are going to return to the simple equations of 
state of Sect. 7. Both special equations used there possess 
some connection with hypothetical high density systems. This 
question deserves some further investigation. But first we 
show that if one wishes to get equations of states leading 
to R/m<3, and fo-> this pushes the whole problem well above 
normal nuclear densities, where indeed anything may be true 
at the prestnt status of art, then he raust be contented with 
"metastable" states. 

At low densities the pressure is low but positive. Now, 
In a thermodynamic a 1ly stable state the second derivative of 
С with respect to the extensive densities must form a posi­
tive definite matrix (Kirschner, 1970). In our case the mat­
rix reduces to one element, so 

d* €/dn* : (dp/d€) (€+p)/n* >0. (10.1) 
Now, on the middle side the second and third terms are non-
negative, so the first one (the inverse compressibility) 
must remain positive in thermodynamically stable regions. So 
there p is monotonously increasing with €. This means that 
there cannot be a second zero of p, needed for surface, at 
higher densities. 

However, this argumentation strictly holds only if 
there is no first order phase transition between us and the 
hypothetical denser states. Namely, consider a first order 
transition. There will be a pair of € values (on the two 
sides of an unstable region, outside) producing the same p 
and p vaiues, respectively: these two states mark the be­
ginning and end of an equil tbrium phase transition. If all 
the iow density states are of positive pressure, then in 
equilibrium phase transition the matter evolves through po-
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sitivé pressures up to the exotic states and we cannot get a 
star consisting of purely exotic states. Nevertheless, let 
us start from the high density states. By some "overrari-
flcation" process one may go behind the startpoint of equi­
librium transition; here still the compressibility is posi­
tive, so the matter is (thermodynamically) stable. Such 
states are sometimes called jet as table; the actual state is 
stable, being a local energy minimum, but a mixture of pro­
per ratio of two phases would be a lower energy state, so, 
if the second (low density) state is present as some nuclei 
of condensation, one can expect the transition. Neverthe­
less, in itself, the overrarified high density state is 
stable, and if the compressibility remains positive until 
p=0, the high density states can form localized stars com­
pletely beyond our present knowledge. 

In a strict sense a metastable object is not a final 
state, because the phase transition will happen in finite 
time. However, this remark is not to be overemphasized. Per­
haps the best example is the equation of state 

P = €/3 - p 0. (10.2) 
This equation of state can be derived in the perturbative 
regime of QCD for a quark plasma; PQ=4B/3, where В is the so 
called "bag constant", the iero point of the energy density 
of the "perturbative vacuum" of QCD. Now, according to cal­
culations, the QCD plasma at low densities (between cca. 15 
and 6 normal nuclear densities) is transformed into nuclear 
matter (Kuti & al., 1980; Lukács, 1983) via formation of 3 
quark groups; of course, this happens in equilibrium at. po­
sitive pressures. However, it is sometimes claimed that Cyg 
X-3 may be a quark star (Baym et al., 1985). This can be in 
two ways. Either there the quarK->nucleon transition has 
been delayed by a potential barrier for astronomical times, 
or, oppositely, its state may be of deeper energy, being a 
mixture of u, d and s quarks, and then the usual state of 
matter is metastable with a very long lifetime compared to 
any observation (De Rú.jula & Glashow, 1984). 
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Since Fig. 1 shows that a quarK equation of state can 
lead only to AES solutions, the reference to Cyg X-3 only 
demonstrates that metastabi1ity may be extended to astro­
nomical timescales. Now we turn to eq. (7.3). It is some­
times suggested that the energy density of an overcompressed 
nuclear matter may have a second minimum somewhere well ab­
ove normal nuclear density. These states are called density 
isomers (Stöcken & al., 1979), and there is no evidence for 
them. The basis of the idea, however, is that mesons are 
also sources of the strong interaction, therefore one may 
imagine a nonlinear amplification of attraction (mediated by 
the mesons) with increasing density ("pion condensate"). If 
so, then in the neighbourhood of the second minimum the 
state is locally stable; tr.ere the energy density is quad­
ratic in particle density, with a positive minimum, roughly 
as in eq. (9.1) corresponding to (6.3). And such an object 
may not be an AES solution. 

Finally we note that if the exotic behaviour appears 
very far above nuclear densities, then the pressure of nuc­
lear states can be regarded approximately as 0. Namely, the 
structure of the TOV equation leads to the suppression of 
the weight of the relatively low density states: the central 
core causes high gravity, therefore high pressure gradient 
outside, so the low density states constitute a thin layer 
negligible both in mass and in radius (Harrison & al., 
1964). So one might construct an equation of state as fol­
lows: first a familiar nuclear matter behaviour, then above 
a first order phase transition with a huge density gap, fi­
nally an equation of state of type (7.3) on the high density 
branch. With such an equation of state probably R/m could go 
below 3 even with a nuclear matter surface. However the in­
formation is so poor about very high density states that 
this construction would be a mere play. 
11. CONCLUSION 

Our conclusion is as follows. One can choose such equ­
ations of state, with which some solutions of the Tolman-Op-
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penheimer-Volkov ea- tion are static spherical configu­
rations whose spac«. time is not asymptotically simple and 
empty. These equations of state are harmless from thermo­
dynamic viewpoint, causal, and obey energy positivity con­
ditions. Therefore the Asymptotically Empty and Simple class 
does not include all possible nonsingular final states of 
stellar collapses; consequently this class is not the proper 
tool to distinguish between singular and regular final sta­
tes. 

The physical meaning of this result is that the AES 
class is slightly too restricted. Roughly speaking, the 
original goal was to exclude black holes and naked singu­
larities. Both objects can absorb light (slower signals can 
be absorbed even by regular objects), so obviously only 
light scattering is to be permitted. Now, a "neutron star" 
with H<3m and a lightiike orbit at r = 3m is Just the border­
line: this light has n< t been absorbed, but rather was there 
forever. 

It is a different question whether one may expect the 
reel existence of such "supercompacf final states. The ans­
wer of the present day nuclear physics is probably no, as 
far as the matter is predominantly neutrons. Although our 
knowledge about dense states is limited, one may believe 
this answer for neutrons, because from several nuclear den­
sities not neutrons but quarks are expected. With Increasing 
density the nonperturbative QCD regime and possible more 
exotic states are practically unknown, so the prediction 
would be useless. 

A slightly more positive statement can be formulated 
according to the experience collected from the numerical 
calculation that the decrease of R/m below 3 is impossible 
or very difficult when the matter is in the relatlvlstlc 
Fermi regime. Therefore one may guess that the ideal candi­
date to form such a star would be a boson with repulsive 
pair interaction. The author does not have any serious pro­
posal for this. However, the list of the hypothetical "sub-
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elementary" particles (preons) is quite long today, there­
fore the existence of compact final states with lightlike 
orbits cannot be excluded. 
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APPENDIX A: ESTIMATION FOR THE RATIO OF KERR PARAMETERS FOR 
STARS 

Because of the unicity theorem for Kerr solution (as 
far as the existence of a regular horizon is postulated), 
this solution seems to play an important rőle among singular 
final states of stellar evolution. One cannot directly de­
termine the Kerr parameters (cf. eq. (2.7)) for final 
states, since the collapse may include steps of substantial 
mass ejection. However, at least the initial values can be 
taken from observation. For first estimation one may re­
strict hicself to luminosity class V (main sequence) because 
if the star does not belong to a close binary, probably no 
essential mass loss happens before collapse, and all other 
luminosity classes have evolved from the main sequence. 

The mass versus spectral type relation is well estab­
lished (from binaries). For angular momentum the task is 
more complicated, because 
l ) the angular momentum cannot be directly measured except 

for very small General Relativity effects (for the Sun 
the light bending has an angular momentum correction in 
the sixth digit); 

2) the rotational velocities can be observed via Doppler 
widening of spectral lines, but the effect has to be 
separated from other Doppler effects and vrot,/c»iO"3; 
finally 

3) the angular inertia cannot be measured, only calculated 
from stellar models. 

Therefore the data given below are to be received with max­
imal caution, but one may hope that they are correct for or­
der of magnitude. 

The rotational velocities can be found in the litera­
ture. Here we use Landolt & Börnstein (1952). The angular 
momentum can be written as 

I = o-R»Mvrot, (A.i) 
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where a is a number factor depending on the internal mass 
distribution. For a homogeneous sphere o":0.4, therefore now 
one may expect definitely lower values. 

Now, Landolt & Börnítein (1952) gives <vro-t_> for vari­
ous spectral types and luminosity classes, occasionally mean 
deviations, and distributions aggregated for all luminisity 
classes. Since R substantially differ for different lumino­
sity classes, the most decent attitude is to use only the 
averages for luminosity class V. As for the number factor a, 
we note that from numerical integration of different stellar 
models one gets 

a=0.078 for polytropes of index 3 
Q-0.069 for the present sun, roughly GZ 
0" = 0.064 for 3 solar mass (roughly АО) 

(for the last two models see Novotny (197J)). Thus о is not 
too model-dependent; here we will use the polytrope 3 value, 
which seems to overestimate a, but even in the worst case 
only by some ZQ'/-. 

After this one may take M and <v r 0- t> from literature 
(Landolt & Börnstein, 1952), and calculate m and <a> for 
various spectral types of the luminosity class V according 
to the formulae of Sect. 2. The result is displayed on Fig. 
5. One can see that for all spectral types candidates for 
collapse (i.e. M greater than at least 1.5 solar mass, 
roughly F5 and earlier types) <a> > m, with a very wide 
margin. 

Now, m is characteristic for the given spectral type as 
indicated by the narrowness of the main sequence on the 
Hertzsprung-Russel diagram. However, the rotational velocity 
does not essentially influence the structure of a main sequ­
ence star, therefore v r o t may have a wide distribution with­
in a spectral class. However, for cases when the mean devi­
ations are listed at all, they are definitely smaller- than 
< vrot >> therefore for the majority of stars of spectral type 
F5 and earlier a>ra indeed. More definite statements could be 
manufactured by observing that the published (mean devi-
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Fig. 5: Average Kerr parameters (in kilometers) versus spec­
tral types for main sequence stars. Symbols: triangles for a 
(estimated) and squares for m. 



- 26 -

ation/average velocity) ratios are roughly conform to Gaus­
sian distributions. (LuKács, 1972) However, for our present 
purposes a detailed statistics is not needed. 

For estimating the decrease of a/m by mass ejection, 
here we note that for polytropes 3 the calculated a(r)/m(r) 
does not go below s0.6(a/m). (LuKács, 1972) Of course, by 
magnetic coupling the angular momentum loss may be higher 
but only if the field does penetrate the deep interior of 
the star. For any case, according to the above data, we have 
no evidence that a<m Kerr solutions would be characteristic 
for singular final states of the collapse. 
APFENDIX B: THE ASYMPTOTICALLY EMPTY AND SIMPLF CLASS 

According to Hawking & Ellis (1973) a time- and space-
orientable space (#, g) is called AES if there exists a 
strongly causal space (M', e') and an imbedding 9 which im­
beds M as a manifold with smooth boundary 9M in M', such 
that 
1) there is a smooth (C^) function ß on M1 such that on 

6(M), Q is positive and 0"g* = {&*& )g; 
2) on Щ ß = ö and dQ|:0; 
3) every null geodesic in M has two endpoints on dbt, 
4) RiK = 0 o n a n open neighbourhood of ЭМ in MJdM. 

Since for all localized spherical objects the asymptotical 
region is Schwarzschild (cf. Birkhoff's theorem), which goes 
to Minkowski sufficiently fast, we concentrate on Cond. 3. 
Hawking & Ellis (1973) notes that the boundary W can be 
thought to be at infinity, and for Minkowski space it con­
sists of the two null surfaces / + and Г (future and past), 
each with topology R ^ S 2 . Null geodesies in M must have 
their past endpoints on /" and future endpoints on / +. 

Now, this condition does not hold if exterior Schwarz­
schild solution is still valid at r = 3m, because there is a 
lightlike orbit, i.e. a null geodesic without endpoints in 
the nul1 Inf inity. 
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APPENDIX C: FORMULAE FOR EINSTEIN'S DUST 
If the particles revolve on circular orbits, with the 

same probability in each possible directions, then the 
space-time is static and spherically symmetric, i.e. the 
form (2.1) remains valid with time-independent a and b. The 
energy-momentum tensor is a sum of dust ones: 

T i K : Eamonuaiuc« (C.l) 
where m 0 is the particle mass, n is the particle density and 
a stands for possible directions. Because of the circular 
shape of orbits 

ид 1 : 0, (C.2) 
while from spherical symmetry one obtains that all nondia­
gonal components of T i K vanish, and 

Еа< иа2) г = Еа< иаЗ> г s í n ' e г v*/г. (С.З) 
Finally, from velocity normalization, 

u Q0 : e a/ 2(l + v* ,'r* ) % . (C.4) 
Therefore the unknown quantities are: a, b, v and n, while 
for equations we have only the 3 nontrivial components of 
eq. (2.2). (The geodesic equations for the orbits must be 
consequences, and indeed they are, as it can be seen by 
straightforward calculation.) Therefore one function remains 
free, let it be chosen the density n. 

Since T 1 1 ^ , the corresponding component of the Ein­
stein equation connects a and b, namely 

e b = 1 + ra1 (C.5) 
where the prime is the r derivative. By introducing again 
the mass function m(r) as in eq. (4.3), the remaining two 
components of the Einstein equation read as: 

m' - 4nGc~2m0nri (r-2m)/ (r-3m) (C.6) 
v? : mr* /(r-Зга) . (С.7 ) 

Hence there is no orbit for r/m(r)<3, and the last possible 
orbit Is 1ightlike. 
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