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After the general developments of conformai invariance in two 
dimensions, it was realized that the study of critical models in finite 
geometries, in addition to the practical information it could provide 
through finite size scaling (see Pr. Rittenberg lecture), was also of 
great conceptual interest. The simplest example is the case of the torus, 
a genus 1 surface which is thus not conformally equivalent to the plane. 
This geometry appears quite frequently in lattice calculations for systems 
with periodic boundary conditions, and is also very natural from the point 
of view of string theory. We will discuss briefly in these notes the main 
results obtained so far in this simple case. 

The torus can be parametrized by a complex number T which is defined 
up to a modular transformation only, and the associated partition function 
must be invariant under the modular group. This proves to be a very strong 
constraint, which determines the possible operator content of the theories 
ie the degeneracies of the primary fields. These were not fixed by 
considerations in the plane only.We discuss in part 1 the case of the 
minimal t" eories with c < 1, and reexpose briefly the resulting ADE 
classification. 

From another point of view, the toroidal geometry imposes as well, 
through boundary conditions effects, the operator content of theories 
which are mapped onto a free field (Coulomb gas) . Using know information 
about these mappings, we rederive in part 2 results of part 1 which were 
obtained so far by more formal considerations, providing in this way a 
connection between the microscopic models and their continuum limit 
partition functions. 

To determine completely the possible conformai theories, one would 
need also to obtain the structure constants of the operator algebra. This 
can be in principle ans .ered in various ways, like calculating four point 
functions on the plane, or two point functions on the torus. Correlators 
in toroidal geometry have also interest on their own, in relation in 
particular to various lattice calculations. We expose in part 3 the 
simplest attempts in this direction by calculating multi-energies or spins 
correlations for the Ising model on a torus. 

"Bra sov summer school on conformai invariance Saclay, SPhT/87 
and string theory" 
f'oTana Brasov (Roumanie), 1-15 Scptcphrc 1987 



1. Partition Functions on a Torus and Modular Invariance 

In statistical mechanics it is quite common to study models on a 
lattice L x L' with periodic boundary conditions, ie on a geometry which 
has the topology of a torus. For a temperature larger than the critical 
temperature T c, the correlation lenght £ is finite in the bulk and the 
properties of the finite system become independent of the precise boundary 
conditions as L, L' -• °°, up to exp(-L'/^) corrections. For T - T however, 
the bulk correlation length is infinite and finite size scaling theory [1] 
shows that for the finite system it increases linearly with the 
dimensions, so one erpects now corrections of the kind exp(-cst L'/L)- If 
L, L' -» °° keeping the ratio L'/L fixed, one gets for the partition 
function 3 an asymptotic behaviour 

-• * ir) exp f . LL' x Z — (1.1) 

where f is the bulk free energy per unit surface, and Z contains the 
finite size corrections, f is not universal but Z is expected to be [1]. 
Using the additional property of conformai invariance, one can get a 
formal expression for Z. Indeed, it is the trace of the L' power of the 
transfer matrix, whose spectrum is determined (see Pr. Rittenberg Lecture) 
using the logarithmic mapping w - L/2ir log z. It is known that the ground 
state scales as [2] 

ITC 
fL - f + - — (1-2) 

6L2 

where c is the central charge, and the gaps as [2] 

m̂  - 2TT x/L (1.3) 

associated to eigenstates of moment 

1̂  - 2TT s/L (1.4) 

x,S being the dimension and spin of the operators of the theory 
(x - h + h, s - h - h). In the continuum limit, it will be useful to 
generalize the calculation of Z to an arbitrary torus described by two 
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«J, 
complex numbers 0)., , c^ and T - — - (JR + iUj , u > 0 (fig. 1). Introducing 

q - exp 2T1 T one gets [3] 

Z-(qq) c / 2 A S q hq h-(qq)" C / 2 4S N - Xh(q)X-(q) (1.5) 
all operators ., h h h 

In the last expression the sum is restricted to the primary fields, the 
contribution of their descendants being resummed in the characters (see 
Pr. Rittenberg Lecture) 

^(q) - qh Z D„ H q" (1.6) 

where D„ is the number of independent descendent^ at level N. 
On the other hand it has been shown that consistent conformai 

theories ("minimal" ones) can be built which have a finite number of 
primary fields, for the central charges [4] 

6(p-p')2 

c - 1 - K ¥ , (1.7) 
PP 

the dimensions of these fields being given by Rac formula [5] 

h (rp - sp') 2 - (p - p') 2 

r s W ( 1" 8 ) 

where 1 < r < p - 1, 1 < s < p' - 1. For such theories, the correlation 
functions and the whole operator algebra can be calculated (6].However the 
formalism In the plane does not tell the exact operator content, ie the 
number N - of fields of dimensions h, h being actually present in Che 

hh 
theory [4]. This can be answered by turning to the genus 1 surface (ie the 
torus) and using the expression (1.5) for partition functions. Indeed it's 
clear that for a given torus, u 1 and <dj are not uniquely defined and one 
could consider as well any 
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I - 1 ' * : Ve d 

1 

1 

"2 

abcd 6 2, ad - bc - 1 (1.9) 

We must r!. s de^ mrt :'\az Z(T) is modular invariant, ie invariant under the 

transfer-3- ic. T - (at +b)/cT + d, and this will turn out to be a very 

s?:rong c ; : raitic 11 ' 

It i ..-£ cour e sufficient to ensure invariance under tlie two 

generat •? 

T + 1 S : T —» -1/T (1.10) 

Under T, c, - • e 2 ' '^q and by (1 .6 ) . X,, (q) —» e 2 , 1 t h Xj,(q). Hence invariance 
under T :• ~ ';&•:].s£ic6 if 

f i h 
- 0 for h - h € Z (1-11) 

ie only ir.4"̂ .-. spi.i operators contribute to Z. This was expected since in 

the spectrur o»" e ucciel wich periodic boundary conditions on a strip, only 

integer m* tenta (i ' < *.i~s of — ) appear. For studying the effect of S one 

needs the j- -z.l'.^. t :pr&ssion of the characters X which has been obtained 

in (7). Rest;r*.•••. 1 *./-.-, ourselves for simplicity to the unitary series [8] 

p - m fl, p' - m, Œ > 2, one has 

Xh " *rs 
V / (2nm(m+l)+(m+l)r-ms]2/4m(u+l) 

n-t 

Z, <jq 
n—-00 { (s—-s)| (1.12) 

Then, denot i i^ '*"* - - 1 / T , Poisson formula gives 

< " C / U *„<«'>- 2 A,,, q - ^ X i , . (q) (1.13) 

A boing thr CT matrix 



Ahh'" ATs.r's 1' ra(m+l) 
' s.-*., w .-•..,. t sin Trr' sin "«TSS' (-) < r* s ) < r * s > (1.14) m ID+1 

and the sum in (1.13) runs over 1 < s' < r' < m - 1. A is symmetric and 
its square is equal to one (since S 2 - 1). Modular invariance translates 
thus into 

A . N - N . A (1.15) 

which is a system of diophantine equations [3,9]. One shows easily that 
the choice N - - 6 - is always a solution. For c - H (m - 3) it's the 

hh h . h 
only one and 

Z - ( q q r , M 8 ( lX 0 l 2 + I X 1 / 1 6 I 2 + \XHI2) (1.16) 

which is identified as the Ising model partition function, matching the 
known exponents x € - 1, x„ - 1/8 or using the exact solution [10].For 
c - 4/5 (m - 5), two solutions are possible, either 

Z - < ^ ) , / 3 0 ( ' X 0 ^ ' X 1 / 1 5 l 2
+ I X 2 / 5 l 2

 + .X 2 / 3l 2
 + l x r / 5 l 2

+ IX 3I 2) (1.17) 

Z - < « ) " , / 5 0 ( , X . ^ , 2 + , ^ / 3 ^ / 5 | 2 + 2 | X 1 / , 5 ' 2 + 2 ^ / s " 2 ) <!•"> 

(1.17) is identified with the 3 state Potts model matching dimensions [8] 
and using the fact that the spin with X„ - — msut be twice degenerate due 
to the Zj symmetry (3] 
model [3]. 

(1.18) corresponds to the tetracritical Ising 

Finding all the solutions of (1.12) is a difficult tank which has 
been achieved only recently. Surprisingly it turns out that the modular 
invariants can be labelled by a pair of simply laced algebra, one of which 
is always of A type [11]. We refer the reader to the literature and quote 
only the results in table 1. In addition to two infinite series (A,A) and 
(D,A) generalyzing (1.17) and (1.18) one notes the appearance of three 
exceptional cases (S 6-E 7-E 8,A). Various physical realizations can been 
proposed for these partition functions. Generic models are obtained by 
building Restricted Solid on Solid Models, the heights of which are 
located on the Dynkin diagram of the underlying algebra [12] (Fig. 2). 

It has to be noticed that the invariants of table 1 generalize 
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readily to non unitary theories. A. simple example is obtained with 
p — 5, p' - 2 , c - -22/5 corresponding to the Lee Yang singularity 

Z - (qq) 1 1 / 6 0(lX 0l 2 + IX. 1 / 51 2) (1.19) 

A negative dimension appears then in the Kac table (1.8), h 1 2 - -1/5 
for (1.19), and the formula (1.2)-(1.4) must be corrected. Indeed the 
small q behaviour of Z is given now by Z ~ (qq)' c / 2 4 (qq)hl2 so (1.2) 
reads instead f - f + Tc'/6L2 where 

4 c' - c - 24h 1 2 (1-20) 

Similarly the first gap is n̂  - 2"Hx'/L where x* - lxl — 2/5. The presence 
of negative dimensions is general in the non unitary case, all invariants 

1 - (P - P') 2 

containing [11] the dimension h - . Precise rules for the 
4pp' 

modification of the transfer matrix spectrum have been given in [13]. 
Attempts have b-;en made in [14] to construct also invariants 

associated to central charges (1.7), but with dimensions outside the 
minimal grid. 

2. Coulomb Gas Construction of the Partition Functions on a Torus 

The results of the previous section have been obtained using very 
general methods, but they have the drawback of being rather formal. For 
more practical applications in statistical mechanics, one would like to 
have a method for establishing connections between the abstract partition 
function (1.5) associated to a conformai field theory and models 
formulated on the lattice. In the simplest cases it is enough to proceed 
by inspection, like for the Ising model [8] or the Lee & Yang singularity 
[15] where there is only one modular invariant reproducing results known 
by other methods. For the three state Potts model, we have seen in section 
1 that there are already two candidates, and it is an argument about the 
symmetry of the model which allows the correct identification [3]. For 
more complicated models the procedure obviously becomes hopeless, and 
numerical calculations ca»i then prove very useful. 

To derive critical properties of 20 models, a somehow different field 
theoretic technique had been developed in the past, the so called Coulomb 
Gas technique [16]. In this approach, one first reformulates the model to 
be studied (usually as a solid on solid interface model) in such a way 
that it can be argued to renormalize at criticality onto a free Gaussian 
bosonic theory with action 



4TT J l^l z d zx (2.1) 

This crucial property cannot in general be rigorously established, 
but it can nevertheless be checked in various ways, performing for 
instance approximate renormalization group calculations. The coupling 
constant of the associated Gaussian model g has also to be determined, 
usually using some extra information from the eight-vertex model solution 
[17]. Physical observables can then be translated in Gaussian terms [18], 
as combination of electric or spin wave (ie exponentials of the field 
exp ie <f>) and magnetic or vortex operators (ie operators creating a branch 
cut with discontinuity of 2wm for the field <p). Their dimensions are 
readily calculated [18] 

2 2 e g™ 
x«.m + S — • s.m ~ en> < 2- 2) 2g 

This approach which was pioneered by José et al. [IS] for the XY model has 
been successfully used in a number of cases, such as the Q-state Potts or 
0(n) [19] models providing, under the above mentioned renormalization flow 
assumptions, an exact determination of the main exponents. It turns 
out, as demonstrated in [10], that one can in fact use this Coulomb gas 
mapping to derive also the partition functions on a torus, and then the 
whole operator conter'- of these models. 

The partition function for the free field (2.1) with periodic 
boundary conditions has been calculated in many different contexts 
already. A dzeta regularization [9] of the determinant of the Laplacian 
gives 

-E ll(q)lJ 

(2.3) 

where T, n and q are the same as in section 1. The dépendance on g in 
(2.3) comes from the zero mode, the subtraction of which prevents a 
rescaling of <p. ZQ has a small q behaviour corresponding to c - 1 which is 
known to be the central charge of a free bosonic field. The complete 
expansion in powers of q, q shows also the presence of a marginal 
operator (with x - 2) Identified as 3 <Mp, but none of the dimensions 

i (2.2) is observed. 
In mapping a lattice model onto a free field, some other terms are 

usually generated due to the boundary conditions. We can discuss for 
instance the case of the XY model whose lattice action is 
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A- - - Z. [cos(<p -<p )-l] (2.4) 
T t . . \ * (ij> 

At very low temperature all spins are almost parallel, and it is justified 
to expand (2.4) into 

* - i~ E *» - x2 
2 T < i j > 

(^r^ j ) 2 <T - * °> <2-5> 

which becomes (2.1) in the continuum limit with 

8 - I T (T — 0) (2.6) 

At higher temperatures, the approximation (2.5) fails, in particular due 
to the presence of vortices, ie configurations where local angle 
variations are still small, but globally <p can vary by multiples of 2'"' 
around one point [18]. It is well known however that for T smaller than a 
critical value T c, these vortices are irrelevant. Under renormalization 
transformation, vortices of opposite charges come closev and ultimately 
annihilate each other [18], giving still rise to a fixed point action 
(2.5), but with a renormalized temperature [21] 

2ir ( T T* ^ 

The end of this critical line is characterized by the marginality of the 
lowest dimension vortex operator : g(T) (m-l)2/2 - 2, thus 

g(T c) - 4 (2.8) 

For T > T c, the vertices do not disappear under renormalization, and the 
model is no more critical. 

Now on a torus special care must be taken of boundary conditions. 
Indeed the periodic geometry allows configurations where <P varies along 
the generators of the torus and this topological property remains of 
course unchanged in a renormalization. Thus for T < T c , the XY model in 
the continuum limit is described by the free field (2.1) where <p is not 
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periodic but eau have shifts 

/ - -
<P(z+l,z+l) - <P(z,z) + 2fr m 

( 2 . 9 ) 

< P ( Z + T , Z + T ) - < p ( i > z ) + 2IT m' 

for any m, m' S Z. For boundary conditions (2.9), the partition function 
is readily calculated introducing the classical field such that A <pci - 0 

nrr - m' 
<Pcl z + cc (2.10) 

and 

Im-m'Tl2 

Tl 

It has the modular transformation properties 

(aJ + bï 
Z""'(c77~d~J " Z.«-b«'.o+d..<T> (2-12) 

expected from its definition. The complete XY model partition function is 

obtained by summing over m and m' [20] 

,- I 
xy c x ° ' urn 

m ,m' G Z I n l 2 em € Z 
L_I «%^fe-^\,l: 3 x v - z c ( g ) - ^ z.«.(g>—~ ^ q g q^^g ' (2 - 1 - 3 ) 

this last equality being obtained after a Poisson transformation. It has 
s t i l l c - 1, and presents now the operator content expected form (2 .2 ) . 
Expression (2.13) wi l l be cal led in the following a Coulombic partit ion 
function; i t Is instructive to notice that this oM<»ct appeared also in 
the past in the context of str ing theory [tl] as the part i t ion function of 
a free f ie ld compactifled on a c i rc l e of radius R ~ Ng. Similar formulas 
can be obtained for describing the F-model, or the Ashl in Teller model 
c r i t i c a l l ines . In the lat ter case however one must add the contribution 



10 

of sectors where the field <p has antiperiodic boundary conditions, 

corresponding Co the identification of the spin as the twist operator 

(creating a branch cut with <p —• -<p) with dimension xH - - independent of 
8 

g, we refer the redear to references [22]. 

To reproduce the partition functions of models with c < 1, an 

additional ingredient must be added. generalizing somehow the charge at 

infinity of ref.[6] to the torus. We shall discuss that in some detail for 

the 0(n) model on the honeycomb lattice defined by 

" J i ' <jk> [ T ' "J 
(2.14) 

S be ing a n-component spin with ISl 2 - n. (2 .14 ) can be a n a l y t i c a l l y 
cont inued t o n G F us ing a high temperature expansion 

. S 
graphs r-' «> (2.15) 

In (2.15) the graphs are formed by JC non intersecting self avoiding loops 

(or polygons) of total length Ĵ  . The model is known to be critical for 

n € [-2,2]. It can be transformed into a SOS model [23] by introducing 

height variables <p on the centers» of the hexagons. An arbitrarily oriented 

polygon corresponds then to a wall between two regions of constant height, 

with a step ± <P0, the highest <p being on the left of each arrow. The 

Boltzmann w-ïî ht consists of a factor — for each bond, times e , v(e' l v) 

for each left (right) turn. Then, since the difference between the numbers 

of left and right turns for a polygon on the honeycomb lattic** in the 

plane is n/ - n r - ± 6, one has 3 n - %sos if n - 2 cos 6v. At criticality, 

this SOS model is argued to renormalize onto the free field (2.1), and for 

the choice <pQ - ir one gets [19] 

-2 cos 4ir g 
1_ 1. 

4'? 
(2 16) 

On a torus however, 3 n * "$sos since polygons which wrap around it have 
t\f - n f. The necessary correction is easy to obtain in the strip limit 
where one has only loops wraping around Vj . To give to these loops the 
weight n instead of 2, one introduces charges +(-)eQ at +(-)°°. Then the 
Boltzmann weight of a configuration has an additional exp i e Q [«p̂ , - <P.oJ, 
each non contractbile loop contributing to it by exp ± 2i T e 0 depending 
on its orientation. Suraming over all configurations gives then the new 
weight 2 cos 2ir e 0 which is the desired result provided 
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n - 2 cos 2TI e n (2.17) 

The ground-state is modified by these charges, and accordingly the central 
charge becomes [13] 

c - 1 
6(2g - 1/2)' 

24h. - 1 -
g 

(2.18) 

1 1 1 
In the I s i n g c a s e for instance , n — 1 g i v e s g - —, e Q — — and c - — as 

3 6 2 
expected . Resu l t ( 2 . 1 8 ) was f i r s t obtained i n [2] u s ing a somehow 
d i f f e r e n t language. 

The s i t u a t i o n in the case of the torus i s more d i f f i c u l t s ince there 
i s no " i n f i n i t y " anymore where to put the charges . F i r s t , i t i s c l e a r that 
s i n c e the l o o p s - h e i g h t s correspondence i s only l o c a l , the presence o f non 
c o n t r a c t i b l e loops leads to s h i f t s of <p s i m i l a r to ( 2 . 9 ) . For a g iven 
conf igurat ion these read ( f i g . 3) 

6<p - 2^n 2^ €. 

o'<p - 2^n' 2s 

(2 .19 ) 

To write (2.19) we have used the property that if two unoriented polygons 
f and ?' coexist on the torus, then they arê -are! homo topic. Thus there is 
one specie/ of polygons 3* only at a given time defining two basic shifts 
(2Tn, 2Tih') and (6<p,6'<p) is obtained by summing over all the polygons with 
their orientation € } - ± 1. Now the crucial observation is that n and n' 

2-, c. - ± A where A are indeed prime together [ 2 0 ] . Thus 

denot3s the g r e a t e s t common d i v i s o r , and 
2™ 21T 

cos 2ir e„ - cos 
!&<f>l I6 '<p|, 

2ir e 0 — — A — — 
0 2 T 2 T 

(2.20) 
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Then, exactly is in the case of the strip, summing over all € ( gives to 
each ~'f these non contractible loop the weight n - 2 cos 2'f e„ . One gets 
finally [2u] 

\ — ^ Z B S . ( g ) co s [2 ï ï e 0 n iAra ' ] (2.21) 
m,m'€Z 

an expression which is clearly modular invariant since m A m' is. (2.21) 

is interesting for any n, but it presentr £ome pathologies for n € IN. In 

the case of the Ising model, the sum (2.21) can be performed decomposing 

it on classes of congruence of mm' mod 6, and one gets in the end 

3„-i — ~ Zr(12) - Z„ j-| n = 1 2 | c c[3) 
(2.22) 

which can be shown to be equal to (1.16). A completely similar calculation 

reproduces as well the Q-state Potts model partition functions, both in 

the critical and tricritical regime. 

This shows clearly how the Coulomb gas technique can provide a link 

between lattice models and their critical properties such as the partition 

functions. Of course, it has the drawback of being much less general than 

conformai invariance, since a new mapping has to be established for everv 

new model under consideration before its properties can be calculated. The 

two approaches must however be more deeply related. Indeed Dotsenko and 

Fateev [6] have shown for instance that the construction of four point 

functions in a free field supplemented by a charge at infinity and 

screening operators led naturally to the kac formula for the dimensions of 

the fields, and to the Feigen and Fuchs integral representation for the 

solutions of the BFZ equations. It is also quite puzzling to notice that 

all minimal partition functions can be written [20] as 

Z(AD£,A ) - I £ 7 . (g - ÏL-] COS 

r m m ' G Z V ? } 

2* 
— n m A m1 

where n belongs tc the exponent, of the associated ADE algebra (2.23) 

(2.23) is t generalization of (2.21) involving several charges. 

3. Correlation Functionr on a Torus 

To complete the understanding of critical theories on a torus one 

would like to calculate also the correlation functions. These have first 
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an i n t e r e s t on t h e i r own, s i n r p fhe i r knowledge p r o v i d e s a s y s t e m a t i c 

( p e r t u r b a t i v e ) r o u t e t o the s tudy of d e v i a t i o n from c r i t i c a l i t y ( 2 3 ) . 

A l s o , c o r r e l a t i o n func t ions on a t o ru s can b e shown to be r e l a t e d to 

p a r t i t i o n f u n c t i o n s on h ighe r genus s u r f a c e s a f t e r a proper "p inch ing" 

[1M-
In principle, the correlators on the torus can be calculated using 

the structure constants of the theory and the logarithmic mapping which 

give the necessary transfer matrix elements. The general formula however 

seem quite untractable. Even the two point function which has the sj.mplest 

form in the plane 

(A<Z,Z) A(0,0)) -
z 2 h z 2 * 

(3.1) 

must have a rather complicated expression on the torus. If the short 

distance expansion reads 

A(z,z) A(0,0) - A z A" 2 h z*'2* C A A B B^(O.O) (3.2) 

A.A 

one must have now 

(A(Z,Z) A(0.0)) - Zij ,û-2h TA-2ft 

A.A 

:**8 \Ba£/ (3.3) 

all the mean values (B) being a priori non zero. 

One would like to find a more compact method of calculation, 

generalizing for instance the approaches of 16], but it seems difficult to 

implement the notion of charge at infinity and screening operators here. 

One can write nevertheless the ward identity [15] 

<T(z) A,(l)..,An(n)) - (T)(A,(1) - A„(n)> 

n 

.1 
i-1 

" h; (z-z,) + - • (z-z,) 3 

<A,(l)...An(n)> 
+ 21* 3 T <A1(l)...An(n)> 

(3.A) 
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wherR 

<T> - 2iT dT Log Z (3.5) 

and 9j is the Jacobi theta function (see Appendix A), generalizing the 
expression in the plane [4] to the doubly periodic case, with the 
appearance of a new term associated to the variation of modular ratio in 
the change of coordinates. For degenerate fields [4], differential 
equations follow. In the simplest case of dégénérescence at level 2 one 
has 

ô* - 2h n, 
2(2h+l) z y 

-2iw dr 

2 
i-1 

-h.-
(B^' 

v \ 

e ; 
(z-Zj) + r- (z-Zj) 3 Z 

(3.6) 

Z(A(Z,Z) A^D.-.A^n)) - 0 

where 

I e ; (0) 
"l - - ? e;(0) 

These equations seem unfortunately quite difficult to solve in general. 
Up to now, progress has been made for the free bosonic theories like 

the Ashkin Teller model [26), and for the Ising model which is equivalent 
to a free Majarana fermion theory [27] with action 

A J ( * a * + * a * ) d2x (3.7) 

We shall now discuss this case in some detail. 

As a consequence of the Jordan-Wigner transformation [10] the fermion 
(•,*) must be assigned periodic (P) or antiperiodic (AP) boundary 
conditions along the periods «j and Wj of the torus. This gives rise to 
four sectors labelled by v - 1,2,3,4 for PP, PA, AA, AP. The partition 
function has been evaluated by dzeta-regularization [9] and reads: 
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I O „ ( O I T ) | v 

(3 8) 
y I O „ ( O I T ) | y 

" v-2 2 l t | (T) | " v 

where 8 v are Jacobi theta functions ( s e e Appendix A) , r\ f8i<°)>l 
21T 

1 / 3 

I S 

Dedekind's f u n c t i o n . The v - 1 contr ibut ion vanishes in ( 3 . 8 ) , due to zero 
mode of the Laplacian with doubly per iodic boundary c o n d i t i o n s . The 
e x p r e s s i o n ( 3 . 8 ) reproduces ( 1 . 1 6 ) . 

One can e a s i l y wr i te the fermion propagator ( * ( z ) *(w) > v in each 
s e c t o r v. Using the short distance expansion: 

1 
*(z ) *(w) + 0(1) ( 3 .9 ) 

z-w 

and the q u a s i - p e r i » d i c i t y propert ies of the theta funr _ions ( see Appendix 
e , ( z - w ) 

A) we conclude tha t for V X 1: <¥(z ) *(w) >„ x i s doubly per iodic 
8 v ( z - w ) 

and has at most one p o l e , the unique zero of 8 V on the torus ( s e e Appendix 
A) . By a well-known theorem on e l l i p t i c funct ions , i t must be a constant , 
f i x e d by the short d i s tance l i m i t . 

e v(z-w) e;<o) 
<*(z) * ( w ) > v - . — - , v * 1 (3 .10) 

0V(°> e,(z-w) 

so the fermion propagator reads: 

/L' Zv<*(z) *(w)>v 

<*(z) *(w)> (3.11) 

LS 7.. 
V 

v 

Using ( 3 . 1 0 ) we deduce the two point energy c o r r e l a t i o n 
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z y ie v(z)i
2/iOw(0)i 

(f(z.2) £(0)) - -

-' iQv(0)i 

(3.12) 

It should be noted that in (3.11), (3.12) there is no contribution of 

the v — 1 sector. This can be justified [27] but is not obvious a priori, 
even if Z, itself vanishes. Indeed one can show for instance that (£ > * 0, 

and that only the v — 1 sector contributes in this case {13] 

<£> -
Z 1 ( £ > 1 2iMnl3 

.' iev(0)i 

(3-13) 

2n points correlation functions can be evaluated easily using (3.11) 

and Wick's theorem: they are simply modulus squares of Pfaffians of the 

propagator in each sector [27]. The case of 2n+l points is more difficult 

because of the role of the v — 1 sector. 

Tb-î calculation of spin correlators is different since due to the 

Jordan Wigner transformation, the spin o is not local in terms of * and * 

and one has 

*(z) a(w,w) ~ H(w,w) 
(z-w)* 

*(z) o-(w.w) _ _ H(w,w) 

(z-wr 

(3-14) 

where u- is the disorder operator dual to the original spin a. The 

non-integer power — expresses the monodromy property {4] of insertions of 

spins in 'I' or * coLielaLots, that makes them change sign when the ff 

-argument describes a loop around <"s. Expressions (3.9) and (3.14) and 

periodicity conditions can be used to determine completely the auxiliairy 

function 
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G„ -
(*(Z) +(«) o-(z, .z,) ^(z 2.z 2)) 

( a( z1- zl) a ( z 2 . z
2 ) ) 

(3.15) 

Using again properties of 8 -functions, we can exhibit the following 
candidate for G„: 

H„ - -
e;<o> 

e,(z-w) f ^z-z^ecw-z;,)^ 
e^z-z^ecw-z,) 

( 2 

, IZ-W-H-

z, -z 

^ 

•Fr) 
+ (z*-*w) (3.16) 

e 
Then, for a v ( z ) -

( zy+zz\ 

the function (Gv-Hv)/av(z) a v(w) is 
[0,(z-Zl) 6,(2-^)T 

again elliptic in z and w and has at most one pole in z and w, so it is a 
constant, vanishing by antisymmetry in the exchange of z and w; thus 
G v - H v. 

From the expression relating the stress tensor T(z) and the fermion: 

T(z) - lim - - {*(2) a u *(w) - dz *(z) *(0)) ] + 
z—r 2 (z-w)2 

(3.17) 

we get now the insertion of T in the spin correlator, generating at short 
distances first the conformai dimension b - 1/16 of operator n and second 
a derivative of <oo"), for which we have an explicit value: 

(T(z)a(z1,z1)a(z2,z2))^ 

ha + (z-z,) *1 
(3.18) 

LogCoiz^ ,Zy ja(z2 ,z2 J ) +reg terms 

We get a similar differential equation for the antianalytic part of <o*7)v 

by replacing * with * in (3.15). (3.18) can be integrated to give 
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e v . 

<"(•••=•)"M0> - ^ r - l 9 - < 0 ) r , . , . .,„< < 3»> ' ' ' i e , ( 2 , - Z ; , ) i " ' 

Periodicity conditions impose to sum (3.9) over the four sectors, and 
finally 

(o-(z,2)a(0,0)) -

4 4 

e;<o) " * S ZV(<T(2,Z)<T(0,0)) 2 l6v(z/2)! 
v-l N 'v y - 1 

7 ._ , 
z- v — ' - v i 

V 

2 * iev(o)i 
e,(z) (3.20) 

Physically the insertion of o' s may be viewed as creating a branch 
cut joining z and 0 along which * has to be antiperiodic. A translation 
z —» z+1 or z —• Z+T lets the cut wrap around the torus and changes the 
boundary conditions for the fermion, exchanging the contributions of 
different v sectors, including v - l (fig.4). (3.12) as well as (3.20) 
satisfy modular covariance in the following sense: 

<A(z) A(w)> (T+l) - (A(z) A(w)> (T) 
<A(z/T) A(w/T)> (-1/T) - z 2 h z?-*<A(z) A(w)>(T) (3.21) 

One checks the short distance expansion of (3.20) against (3.3) and (3.13) 

(o-(z,z) o-(O.O)) + Caaz Izl 3' 4 < £ > + . . . (3.22) 

where [4] C9at - 1/2. Finally (3.12), (3.20) satisfy the expected 
differential equation (3.6). 

The preceding approach was used also in the context of string theory 
on orbifolds (28) . For higher spin correlators it turns out to be mere 
convenient to use a bosonization technique where one computes squares 
(o ...or*, of correlation functions in each fertnionic sector via a free 
bosonlc model [27]. The general result is 
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Z^<a(l). . a(2n) > 
hi' 

*,-Al. Ee -0 

Se , zi n OiUi-^i 1 

ei(0) 

£.£. 

C.23) 

(3.23) can be checked numerically for n - 2,4. Indeed in [29] Burkhardt 
and Derrida have considered a lattice Ising model on squares N*N and 
calculated using a transfer matrix technique the first moments of the 

magnetization M2n - ( 

2n 
V They have obtained in particular the 

rertormalized coupling constant V(N) - M4/M|for N < 14. In the limit N —» °° 
the values converge to a universal constant evaluated as 
V - 1.1670+0.0015. Now one can give an expression of M 2, M 4 using (3.23) 

M 2 n " f since M,_ - I d2x, .. .d 2x ? <or(l).. ,<j(2n) >. The integrals cannot be 'square performed analytically but estimated numerically, giving V - 1.168±0.005 
in agreement with the above value. 

Naturally these calculations generalize to mixed correlators of the 
most general type involving o~, \Lt t [27]. 
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Jacobi checa functions 

v - 1 2 3 4 
2i H T 

(oc.P) - (1/2.1/2) (1/2,0) (0.0) (0.1/2) 

1 -<n-wt) 2 
8v(zlT) - Z q 2

 e2i «<„•*)< z*P> 
rf=z 

Quasi-periodicity relations 

e , 8 2 8 3 8 A 

- 2 i w K ) 
z —» z+1 - 6 , - 8 2 8 3 8 4 A ( Z I T ) - e v ' 
z —» Z + T -A8, A8 2 A8 3 - A 8 4 

Zeroes 

6 1 9 2 6 3 9 « 

Z DH-ITT m+—HIT 
1 I f 1) ( 11 
— H I T m+—f \n¥— T iiH- n+— h 

2 2 i 2j I 2j 
Modular transformations 

9 1 0 2 9 3 9 « 
ir ir i.iTz 

1- i -
- T+ l e / t 9 1 e ^ 8 2 8^ 83 B ( Z I T ) - f ^ r e

 T 

1 z 
- ; z — - -ifiO, B84 B8, B 8 ? 

2 
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F1GURK CAUTIONS 

Figure 1: In the continuum limit the torus will be described by its 

modular ratio T - — . Without loss of generality a>1 can be taken equal to 
W1 

Figure 2: The unitary models of the ADE classification can be interpreted 
as RSOS models the heights of which take values on the associated Dynkin 
diagram. 

Figure 3: A typical configuration with two polygons ont he torus 
£, - £ 2 - 1; n, - n 2 - 1. 

Figure 4: Translating the argument in the oa correlation maps a 
frustration line around the torus and changes thus the fermionic sector. 



TABLE 1 
List of kr.o*n part i t ion functions in terms of conformai characters. The unitary 

ser ies corresponds to p' « m+l, p » a or p » m+1, p' • B, m • 3 , 4 , . . . . 
p ' - l p-1 

i Z Z 
2 r- l s»l 

u r i r <* , . - » ' \ - , 

p-* 

= 4p + 2 i Z -
?>1 2 s« l 

' 4pn 

I 
r odd *1 

I r/2p+l 

2p-l 

' * „ « ' + 2 ^ , M . 1 ' + ^ ( X r . X ' p ' - r . + C ' C ' ) 

r odd »1 

» 4p I ^ 
P>2 2 s»l 

p-1 ( 4>-l 2p-2 

I lx r. l» + l x „ . I J + Z <x r.*;,_ r .•c.c.) • 
r odd «1 r even «1 

U.M.'W 

"^• . 'V^ 

P-1 

12 i £ ( ' X - + X T ' | a ^ I X < ' + X " ' 2 + I X

8 . + X - . | a ) ( E . ' \ - i > 

P-1 

?' = 18 | £ ( ' \ . + ^7,i a + ix , .^ . . ! ' + I^.^M."' + 1 \ . ' 2 + ( < * 3 . + \ , . , * ; . + c - c - 3 ) « , •» , . , ' 

p-i 

?' = 3 0 i^Wu^.^.l-W.,^,.'') ( E . ' A o , I p - 1 
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Coexeter Exponent 
number 

n*1 1 2. n 

2tn-1) 1, 3, , 2n-3. 

1 2 3 k 5 
E. • » 1 • • 12 1. L, S : 3. 

1 6 

2 3 U 5 6 
-« • r—• • 18 1 S 7, 9. n 13. 1" 

*7 

1 2 3 u S 6 7 
• • • • 1 • • 30 1,7.11.13.17. 19.23, 2''T 
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