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‘THE GOULOMB SYSTEMS DISTORTED AT SHORT DISTANCES IN ATOMIC AND
» NOCLEAR PHYSICS+ Preprint ITEP 87--136/

. . V.8.Popov - M.t ATOMINFORM, 198:7 ~ 42p.
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AR - In ;yigéﬁs.bound Hm;tﬂhjéqulomb interaction distorted at
) short distances there mey appean, under certein conditions, s
rearrangement of atomic spectrum {or the Zel'dovich effect).
Specific features of this effect are discussed for states with
an erbitrary anguler momentum f {both with and without the
abgsorption). The equation is studied which commects nuclear
level shifts w..th the low-energy scattering parameters 622 .
Zﬁ . The conditions have been found under which the rearran-
gement of spectrum is replaced by oscillations of .atomic levels.
The Coulomb renormalization of scattering lengths and that of
eflective ranges is discussed., Some manifestations ¢f the Zel'-

dovich effect in the physics of hadronic atoms and mesomolecules

are considered.

Pig. = 9, ref. -49

;@ biucruryr recperiveckoR n sxcnepumentantiol $usnxw, 1987




_‘l_._In the recent years there has been a growing interest both
experimental and theoretical towards research into systems bound
by the Coulomb potential distorted at short ( Z ~ 2 ((d )
4.'1.:x.st&lnceszrl 11']. The question of the structure of the emnergy
spectrum in such systems arises in many physical applications

v « The disturbing potential Vs(r) is not assumed to be weak

and, as a rule, is deeper than the Coulomb potentisl V (r) =
c =

=Z Zz ez/é. . In particular, V_(r) can possess its own bound
states, or virtual and quasistationary states close to zero
energy. YWe suppose only that the potential Vs(r) to be short-
ranged, i.e. zo & Az , where 20 is a characteristic radi-
us of V (r) and (ZB is the Bohr radius. In this case the
energy spectrum can be expressed only through the low-energy
parameters, i.e. the Coulomb modified nuclear scattering length
CZ(“) and effective range Z{“) , and is defined by the

2
equa'h.on[2 61 (c:
,Z f /!1

b aslt(5) - ¢ Sr(f egmr ®

which is applicable when

b}

Ade, <« 1, 2 «a, (17

Here /} (‘-,25/& ), E is the ene?gy of the level, _g"‘:'z:z?z,

f is the angular momentum ), 7/’/2) = FI/Q)/I-'(B) ig di-
ganma function and atomic units are used, £ = ~€ =71 ,
m is the reduced mass (the Bohr radius being 528 - 57/)18:-(4{%




Kot

nes the position of the S-matrix pole mearest to the threshold.

2

a ['S’(-{ end the energy unit Ec -'-'”leé/ﬁz).

Note that the case of ér > () corresponds to systems
with the Coulomb attraction, while £:<:(? to the Coulomb repul-
sion (In the latter case there are evidently no Coulomb levels
which condense to E=0). The former case is realized in hadronic
atoms (pp, Z"/) ’ K e etc.) and the latter, for example, in
pp-scattering. Let us give for orientation the values of the
characteristic parameters for pp and pp systems: the reduced
mass/?z:ﬂzf,/z' y» Ay = },"7://7:6_,2= 57.5 fm, which is.

2me/mp 2 1000 times less than the Bohr radius in a hydrogen
atom equal to lfz/ﬁle e®- 0.529.10"8cm,and E~ 25.0 keV, (For
some other exasmples see Table I)., Thus, in the problem at hand
there is, indeed, a small parameter ZO/Z%‘“’0-°3 which was
exploited in deriving the basic equation (1).

The graphical sclution of this equation for the case ﬁf =
= 0 is shown in Fig.1 taken from ref.[38}, the variable v = /A
which is analogous to the principal quantum number n is plotted
along the abscissa axis. (Note that at 443 =0 ; i.e. for the
nonshifted Coulomb levels, -/ =n = 1,2,3, «ee)e Fig.1 clearly
shows that eq.{1) determines not only the positions of atomic
ns~levels shifted due to the short-range potentisl Vs(r) ut
also the position of a loosely bound (in nuclear scsle) s-state
if it exists at all (i.e., if &, >0 end 1> ”/1»2:)° In
Pig.1 this quansinuclesr level is denoted as ¥V = f” .

When applying to pp-scattering ( &= -7 ) eq.(1) determi-

With the Coulomb interaction taken into account. the virtual




3

pole 150 ("singlet deuteron®) is shifted from an imaginary aexis,
¢ %<0, to the complex k-plane (61,
When the scattering length is small, function f//—,ﬁ'/,])
in eq.(1) is near the pole. In this case eq.(1) directly yieids
* the well-known formula of perturbstion theory in terms of the

scattering 1engi~.21[7"9~l

£ :
) 2 2063 (s 4t
AE =€¢"€,.e = S a, H(,/‘,I? (2)
/=

xl ” (({l)zn3

Here Aé; y, is the shitt of the atomic }zZ -level (generally
! r
speaking, a complex one, i.e. .[hz AEK:’ '—‘*':i' r;"g ,where »e
(e ‘
1s the level width) and £; ; )- - £%/24*. This formula is
widely used in processing of experimental data (see also eq.(16)

belOW) .

2. Rearrangement of atomic spectrum. Of particular interest

is the case when potential Vs(r) is attracitive and deep enough
for the shallow nuclear level to exist (in nuclear scale, i.e.
‘),2_ « 1 o In this case eq.{1) describes the effect of the
rearrangement in gtomic spectrum{3 ’43.

Fig.2a represents the behaviour of the lower Coulomb s~
levels depending on the couplin’g constant ; (i.e, Vs { 2 ) =
=~ j Z"{?/?o )where function 7)‘("'/ ?a) defines the shape of
the strong potential and j is a dimengionless coupling cons-
tant). At ;‘ = j.-;. there appears a bound As-Astate in the poten-
tial Vs and all the atomic s-levels undergo a drastic rearran-

genent., The width of the rearrangement regicu isﬁ] ﬂ J =

=g-g|~ % /4, (at ¥ = 0). Note that in this region all

AP




4
the stomic ns~levels are considerably displaced relative to

its nonperturbed Coulomb energies E”(:) = - fl/ an )
while the quasinuclear s-level disturbing the Coulomb spectrum
is pulled out of the atomic region (i.e., slways VN <71 ).

At j >f'- the emergy spectrum is again close to the unpertur-
bed one, However, the atomic wave functions szs (2) acquire an
‘additional zero at distances €~V 2_ which provides their

orthogonality to the wave function of quasinucleer state. Note

(cs)y 2
thet at f = 0 the term :2%' ’?( A in eq.{1) is but a minor

correction in atomic region, i.e. at % Zs 1,

Now let us meke some comments on references., The rearrange-
ment of atomic spectrum was originally considered by Ya.B.Zel'-
dovich for the gquare well and for f = 0[1]. In ref. [ﬂall the
above qualitative features of this effect have been elucidated.
In ref. [1011;1115 effect was independently investigatéd for ﬁ =0
and for some model potentials Vs(r) without absorption. It was
also marked“olthat the rearrangement of stomic spectrum can
manifest itself in hadronic atoms. The model-independent appro;
ach to description of the Zel'dovich effect based on eq.{1) was
proposed in J.'e:ﬁ's.[3 ’4]. Applications of the theory to the light-
est hadronic stoms (Pp, Z'f) s K™*He etc.) are considered in
refs.L3’4'25’27’28] , See also below, Sec.7.

3. The Zel'dovich effect at Z # 0. It has been recently

1:).oted‘-.,”‘l that for the nonzero angular momentum states the cent-

rifugai barrier qualitatively changes the picture of level move-
ment as Vs(r) gradually becomes deeper. If £ # 0, then at a

moment of appearance of a bound f ~-gtate we get




() (s) » 1-2¢ ;

?e < 0, |z ~ 2 > 1 (3)

(gee ref. (12.135 well as Appendix A.). Therefore, in the right-

. . fks)
hand side of eq.(1) the term with 2{

With this in view, it follows from eq.(1) that there are only

becomes essential,

a slightly shifted nuclear level, V¥ = );fﬁ , end the Coulomb

h { ~levels in the system:
52 (cc) (CS))/
= (-7 ,
¢ (4)
Voonewnt. O

vfl( AL /tz—*"i/z.

Here %4 ne is & dimensionless parameter rapidly decreasing

as f grows:

{"V es %—
Xy = RS Z(Pne/(?t( )‘) ,
(5)

(’“")(/ L) (%), A :

2 /434
( d}:{ ~ (?,/ZB) &1 at (,‘; 1, see eq.(A.8)
in Appendix A). Egs.(4) become inapplicable when JN approa- ;

l[‘

/l( {/2

ches the integer number 2 2 /+1 (the values of Y={0¢1, {+2 , 1

ees correspond to the nonshifted Coulomb levels). In the narrow
region |v, ~w| ~ (} [« ) there occurs an interaction
between the nuclear (/V[) and atomic r{ - levels, their

energy beyng equal to




e

6

0 £t 56, [6E ) e a5 22 ¥l g

4

where Sv E;{ is "resonance detuning” commonly used in atomic

physics:

5) (e (")
X’E’ S —d - ) [ :- ’ (S)j kf (61)

Thus, there is "term gquasicrossing' which is well known in quaa-
tum mechanics. Unlike s-states, the Zel'dovich effect at 7 2 7
consigts in the following: the nuclear /1/£ ~level which lowers
with a gradusl deepening of the strong potential Vs(r), successi-
vely collides with each of the atomic x L <levels (see Fig.2b).
The atomic # (—levels with 2 > ‘»ﬁ, are shifted uwpwards, while

those with £ < VA’ - downwards.

The rearrangement of atomic spectrum arises when ¥ /<7/,4/<00.
In terms of the dimensionless coupling constant g (7] ‘Vs \ 2

this corresponds to
‘ /2 \?
A7 =17 &f”;?(;;) , f2 7 @

This estimate determines the interval of ; values where the

nuclear ,4/( -level passes throughout the whole region of the

Coulomb spectrum, see Fig.2b. The term crossing region is much

mOTe NArrow,

;’7 ~ (2 /2, )HV (7")
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o : . (cs) _ _ e
According to eq.(1) we obtain at dt =0: V=4, é;t 'Ehl .

When £(S= o%and { =0, the atomic spectrum differs from the
Coulomb one most of all (see Fig.3, which refers to pp-atom but
can eagily be recclculated for any other hadronic system (see
Table 1). The position of the nuclear and atomic £ -levels
when 4 #0 ig shown in Fig.4. Figs 2-4 clearly illustrate the
difference in the Zel'dovich effect for the states with ﬁ =0
and £ Z 1.

4. So far we considered the potential V_(r) to be real.
However, eq.{1) remains valid for complex values of 4“ as well,
that corresponds to the complex optical potential K = U< W
and shows the presence of open channels in the problem 4) » In
this case the atomic levels are not only shifted but also acquire
widths due to strong interaction at small digtances.

To elucidate this point it is convenient to consider flfle
properties of eq.(1) in the complex plane of V¥ = §'(~,3 E)./In
the case of glight absorption, when the depth of the real part
of Vs(r) changes, there occurs, as ,bei"bre, rearrangement of the
atomic spectrum, the levels being only slightly gahifted into the
conmplex plgilgsgé‘ energy E. lor high absorption the atomic levels
nove alonéﬁ:?e?j’é)ctories in the E-planeDB'MS. It seems conveni-
ent to examine the movement of levels in the complex plane of
variable ¥ (see Fig.5, which shows the lines of the level 5)
of the function Jm (%8 /zzcs[vj) , found by eq.(1) at £ =0
and 2 =0). The magnitude of absorption in a hadronic atom

es
can be characterized by a dimensionless quantity ; .




8
g = e [”‘/ﬂ /afs} {=0 (8)

At £ = £, = 0.991 the trajectories of the poles near +/ =1
and Y =2 in the case of weak absorption intersect at the sad-
dle point S; . Ome of the poles then returns to v =1, the
other moves to ¥ = 0, i.2., it becomes nuclear level ((€\>> E;)
At ;‘{ the trajectories of the poles near the point <+ =1
are closed, i.e. rearrangement of the spectrum is replaced by
oscillatory movement of levels,

Fig.5 shows en important role of the saddle points Sn:
the traversing lines of the level separate the regions of these
two regimes, The values £ = ;‘h corresppnd to the saddle

points Sn

g{ = 00991; ;z = 00997, see 3 - /—— /? ,z’ +.-(9)
(">,) 45°n

it ;’h< f(?;u_{ , the s, 23,... ns-levels are in the oscillat-
ion regime, while the (n+1)s, (n+2)s, ... levels still remain
in the spectrum rearrangement state. Since the values f”_ are
very close to unity, the intermediate region is narrow and it
nay be accepted that f &< 4 corresponds to spectrum rearrange-
ment, while g‘ >4 to the oscillatory state. Note that for

{=¢ the curves in Fig.‘)’ and the values ¢, practical-
1y are independent on [151

If + #0, the tra;ectorles of the 4 -levels and the po-

sitions of the saddle points ,S‘ ( ) depend, to a considerable

(es)
2,

extent, on the value of » Similarly to eq.(8),




define the quantity
) {/ 1’""/ (cs)
5% &) [“‘[ 2 /) (8"
AT

which cheracterizes absor{ption in the sysiem. Denoting its
value at the saddle point Q’ 4 by 5/:({) , we find by
virtue of eq.(1) that {1/& g(l/ = 1, juat as for ﬁ = O,
However, numerical calcuﬁz;t::ms show that at J ~ €47 the va-
lues ;’ { ¢/ considerably exceedi,and, unlike the case of

{ = ¢, the sequence { ;"J is a decreasing one with n

increasing. This can be already seen from the asymptotics:

@) 025 G /r | 1&h&E S
5 ~ {10)
h -~ - f 13 ",
1+ 6(%) /ﬂ]:t /; ® 77 Sy
/.
{.’z 1-A¢ é(a)i g 3
where f{ S T ( / >> 1.

The lines of level of the function /[, { e (cs[xi)}
corresponding to ;‘ ::;f) remsin separatrlces, i.e. they
separate the region of spectrum rearrangement and that of osci-
1lation of the levels,

For further details concerning analyticel properties of the
basic eq.{1) in the complex ¥ ~plane, we refer to.[4'151. Let
us also note that Xok [1633tudied the model problem "Coulomb +
+ separable potential" ( f =0) and emphasized the importance
of saddle points ,S,L « The movement of the S-matrix poles
and the positions of the saddle points at £ # O were studied
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for the ™Coulomb + delta-potential®™ model [171 and in ref. [1 51

on the basis of the model independent eq.(1).

5, Coulomb corrections in the low-energy scatiering., In
(cs) tee)
eq. (1) the values QJ end 2

(s) .
?t which correspond to the strong

can be connected with the

parameters d((s} and
(short-range) potential Vs(r). At £ = 0 the Coulomb renorma-
lization of the scatiering length proves to be logerithmic,

~ S’ {n fﬂ Dajand that of the effective range is of the power-
like type, ~ € , where © = g2, ([@]:’2,/43}. at € #£0
the relationship of the low-energy perameters is normally of
the power-like type though the € ~th term of the so-called
"effective range expansioan” [8'49115 renormalized logarithmical-
lyng}. In particular, the Coulomb renormalization of the p-
wave effective range contains the large logarithm {h { f{ « let

us give formulae of the most essential Coulomb correctiona:

'S 17 _ .
— T B = TAS e[+, {=0

dlﬂ) QO(S)
(11)
(cs ) (s)
?{ —'2.{ = 45' {klfk—f‘"' 3 f:j
(4,19,2¢] 4

(for the next terms of these expansions see refs.

also Appendix B).
When Z > 1, there is also a simple formule commecting

. (es) )
the scattering lengths 6Zc and . 4( -« The Coulomb cor-

rection proves to be of a power-like type and is as follows[w’
20 ]



1

. , (zeﬂ S i) Je

tes) (5)
a, a, 2 2¢er

(12)
where XC / ") is 8 radial wave function for the strong potential
V(r) et =0 (when the bound { -state appears, i.e. with
the boundary conditions K( (‘f) o 2 e+ o at 2> 0 and

4
{im 2 /(/‘b) =41 ).
22w
6.Using the results of the preceding Section it is easy to
obtain an equation directly comnecting nuclear level shifts of
a hadronic atom with the parameters of strong interaction. Here

it is given for the case { = 0[4-]:

A -+ 3 1t
_Z-—-f-c/«('f )«) {“*s”'(o*‘;?s-;/l%:
(13)
4
= — L + £ & +)
A r 7 s
where ﬂs = dfs) , ?s = 2:‘) is the effective range i

when the bound s-state appears, tc is the Coulomb radius of the
system considered [18-20-], €, = 2C+ n (2%/%), C = 0.5772e0e
is the Euler constant and we put ¢ = a, = { which corres-
ponds, for example, tc pp-atom. In eq.(13) the corrections of
order ~ 2, /48 are taken into account, while the terms of the
higher order in % /48 are neglected. The coefficients C,C,

and b1 depend on the shape of the strong potential. They can be
eagily calculated numerically for am arbitrary potential V (r),

the method of the calculation is given in refs. [4, 20}

The values of these parameters for some model potentials
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V.(2) = "’21 v(x) K=2/2 (14)
22,
as well as for tne OBEP potential, are given in Table 2. It can
be meen that S, and b1 sre but slightly dependdent on the par-
ticular shape of V. (r). Therefore the calculations of the scat-
tering length A, with the help of experimental shifts of
étomic ng-levels (on the basis of eq.(1})) are not sensitive to
the choice of Vé(r). An example of such a calculation for pp-
atom can be found in ref.EBQ].
7. Applications to hadronic atoms (the parameters #r , db,

E, etc. see in Table 1).

8) pp-atom was congidered in refs.[3’4]in connection with
the indications[s] to a large ghift of its ground state. How-
ever, at present the LEAR experiment yields the following values:
4E, =0.5+ 0.3)kev, [, < 1 gev(22]

AE, =(0.73 £ 0.15)KeV, M7 =(0.85 % 0.39)Kev[233

In this case the shifts of s-levels are determined by pertur-
bation theory in terms of the scattering length, see eq.(2),
the nuclear level disturbing the spectrum is too far from the
atomic apectrum region to be calculated by eq.(1).

Some experimental data on ﬁb-scaftering have appeared
recently (at £, = 90¥150 MeV/c, k2,~ 0,5), At these emer-

gies , together with s-wave, the p-wave is important. Since
2) the results

[2a]

there are 4 states with 7 = 1 ('P, and p_
. 2°?
of the analysis of experimental data are still ambiguous
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Using different solutions for partial scattering amplitudes

given in [24} and the J'formula ¥
2f AR At =
[ £ ) £ ( a, ? «€ J =7,

we obtain for the p-scattering length the values of the same

~ 3 3
order as the hard sphere scattering length: 4, = 2, /3~ 1 fm”,
Hence one may conclude that the pp-system in the p-wave is

evidently far from rearrangement,
) J p - otom. This system is of interest due to the

fact that studying the data on the shift and width of the ato-
mic 3S.‘-level one can obtain the J // -scattering Jength
for { =0, I=1/2 and elucidate the nature of the 2129 MeV peak
in the Ap _systemrzsj.
c) K'4He-atom. The data on the shift of the 2p-state are
(26} AE (43+8)KeV, FZP = (55+34)éY. Calculations
using eq.(‘l) show that [27 28]111 p-wave there may exist a loose-
1y bound state of K with & -particle. Its binding energy is
& ~ T ~ 0.5 leV, see Fig.b. i
d) The basic eq.(1) can be applied to deseription of the ‘
shifts and widths in heavier hadronic atoms, such as '54}1@,
'56Li, 2 e , 2 “B s ess In this connection it is useful
to have a general criterion of exisience of a shallow nuclear
state. let O , = \AE;A/(E,:” - E'm ) . Using |
eq.{2) and taking qf" =~ aé” to be equal to the hard sphe- 4
re gcattering length &; (A.3) we obtain the "ecritical® 2

value of J; 2




14
' 20+
(C"') (rn+€)! ,2;- ;

“ne (2()/(;/+.{)(ﬂ (..()l /za (15)

§ s> 5 : -
It > s the perturbation of the atomic spectrum is
sirong and one can erpect {the enstence of a shallow nuclear sts-

X{C'
te., Note that raplidly decrease with increasing 4 .

Therefore, at £ £ O a relatively small shift of atomic level

can indicate the spectrum rearrangement. For exemple, for K"4He,
cr)
atom at 2, /a ~ 1/20 and € = 1 we have J.( ~ 10~%, vhile
the above experimentsl shift of the 2p-state gives S ~7.10 -3 >
;.(C")
>2

Tue cond:.tion Y > 5 allows one to quickly determine a
possible existence of shallow nuclear states. As a whole, the
research of nuclear shifts and level widths in hadronic atoms
will make it possible to obtain useful information on strong in-
tereaction parameters at low energies,

e) To calculate the scattering length by the shift and width
of atomic level the formula by Deser et al.[ﬂ(éee eq.{2)) is

commonly used which can be rewritten as

Y 2P AC+3 (pr)
t (14
A g.;zc T X r;‘:( = P s c ) (2*)

for b . See ea. (5). We denote these values of “, as PT
(perturbation theory). Pormula {2') can be ;precised[.l 1—lz

(es) (pT) a0+ i
a, = 4 {{"“' lZ’C;e }(, x=< 4:(716) T
' ¥
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20+
( & ~ (Qp/”a) <& 1 ). Coefficients S depend on the

quantum numbers /2, £ as well as on 2‘;“) and are tabulated

o
7 . Bg.{16) enables one to calculate d‘(“) with a good accura-

cy without solving eq.(1). As a rule, it is sufficient to leave
in eq.(16) the first two or three terms.
‘Consider, for example, the ¥ 4ite-atom. Only two terms in
expansion (16) give ﬂ,(“) = 72.38 fm’ at Aé;,, = 43 eV,
F’lz,, = O and (/'l{(cs)= (72.89 - i 45.49) Im° at B2p = 43 eV,
[ = 55 eV. At the same time, the calculation with eq.(1)

2
gives A= 12.4 tn® ana 2%%: (72,9 - i 45.5) &P , ree-

pec‘l:i\rely.f It is seen that ihc accuracy of this approximation
{"improved PT", sec [1 11) is nore than sufficient.

£) One of the experimental methods of measuring nuclea-
shifts is a study of radiative spectra for np -» 1s, nd - 2p,
and gimilar transitions. It should be emphasized in this connect-
ion that the formula for the probabilities of radiative transitions

np—> VS and nd — V£ to a shifted level ( E=‘~§2/,‘?Vz',
¥ is arbiirary) were obtained and tabulated in refs. [3 ’281.

8. As the last éxample, let us coraider the application of
the above approach to the problem{29’301 of the {1( -catalyzed |
nuclear fusion. Ponomarev et al. l:Bﬂh&we evaluated the energies
of ddf( and d’f‘lo{ mesic molécules and predicted the existence
of loosely bound molecular states (for dz‘(l( -moiecule Eof a
= 34,9 eV, éH = 0,64 eV, where ng is binding energy,

J is rotational and V¥ is vibrational guantum number). These

calculations were made for point-like Coulomb centres. A possible

effect of strong potential Vs(r) was taken into account in refs.
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[32there simple models for Vs(r) were used whose paramzters were

fitted according to experimental data on dt-elastiic scattering

~and o +% - K+ oL reaction (for energies up to 200 keV). An

important result of these calculations is the smmllness of nuc~

lear shifts in molecular terms induced by the nuclear dt-inter-

actlon.
X s . . {331 +
On the otfiex hand, it is claimed in ref. that the 3/2

resonance level in dt system ( E'r = 64 keV, C./), = 70 keV)

cen greatly affect the position of mesic molecular term due to

the spectrum rearrangement effect.
To discuss this point we epplied the WKB methcl to the

Couloib potential |/, (2) =~ 3$/% modified at small distan-

ces, This provides the formula ~/
2 z e 7 s)
£ é‘(ol "[‘z,-*{)','fl Y 7. - £ [———‘{7{—/— ¢
- - = LA - ¢ = -
w =g e e T2 [ an
45 4
where Ctz! is a dimensionless coefficient determining the
behaviour of the normalized wave function (without sirong poten-
tiasl Vs) at small distances 8) :

~(t+%) S e,
,?h{/é} =G, 4, 2% S@w A2 =7 (1)

(2+2) o
(2, = (srf> .4t £ =0O0and & =1, we find that

' ~7
e/ 1 2\ L s fa -2 S (18)
£ E,;v Sz sy [4“ (3 5 CS) £ ,

S e TP
-

SESTES S

T
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where the enerx E % and C are calculated, the
strong irtcraction being neglected. Eq.(18) is model-independent.
Using the low energy scattering parameters (Z_ s = -{3.88+1 1.27):

. QB- and ?cs = (0,24+ i 0.016) Ag y derived from 6{({,0‘)”
reaction and the values C, = 1.02,107%, C_ y =0.927.1074

taken from numerical calculations of mesic molecular wave funct-

ions [3 1] s we have

AE e -1.25.107%v, [ . =9.0.107% ev
oo oo
-3 -4
A EM e =1,04.107°eV, [,q = T-4.107"eV

which is in an agreement with the calculationsDz}for model po-

tentials Vs(r).'
Liote that even if fhe nuclear level ¥ would hit the region

.of mesic molecule levela, the nuclear shift would have remained

small as well, Indeed, solving eq.(317) we find that
) 6C,y 7
AEA;Z)— i g S’E'i_[[f‘gj -+ v 1 é .
v A (2 -3z, )2, (19)

(e
where E(1 2) are the energies of two interacting states, AE = E E(O}
2

SE = EA/ E@/ls resonance detuning and E;/ T - m%)
Though ¢ = O here formula (19) is analogous to eq. (6): The
smallness of the shifts A E (2

1lity of the Coulomb barrier whlch acts in the same way as the

J.s provided by low penetreabi-

centrifugal barrier for € #£0 states:

Gy o etp -2k ) ~ f077 . 7

Thus, the influence of V s(r) cannot have any noticeable
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effect on the energies of mesomolecular terms calculated with

strong interaction neglected.

9. Exactly soluble models, So far our approach has been

based on the model-independent eq.(1). The boundaries of the
applicability region for this approximation can be establighed

rore accurately bj comparing it with analitical solutions of

~ the Coulomdb plus short-range potential problem. Such solutions

were obtained for the Yamaguchi potential, /= O !
3

T o 2] — = ___Zé{.——————’—““‘ '
/s(lb}/b = ff—z(,”z'f’/(‘)((b/{f‘ﬂy (20)

as well a3 for the delta-shell potential at any &)

V(=) = - _Z Ss(t-2) (21)
s A2

In x-representation the potential (20) corresponds to nonlocal

interaction. In this case the bound state emerges et } =;o-: »{,

when X,o/z) = 1~ ex/‘/’/(é)' 2 :3{"-f ' 2¢/?s =

= 0.3743 and ¢ = 0.865, ff = —2—_(—@ =‘z/3. The discrete spect-

rum is defined from the equationp4’35l

I (1, - z\_f,' 2—-/\‘()' 2) =({“"—{)(/+F’L}? (22)

2
where & =1, 2 = [(r\—ﬁ}/(/\-f-(‘f)] and F =,F, is hyper-
geometric function. When performing numerical calculations it

is convenient +t0 seek for the coupling constant ? as a
/ 2
function of J = ’.ZE)‘V. We have made these calculations for

different values of [l( and conmpared the results with eq.(13).

Using @, = 2;//;-5)/( = ’;’28 [{' ?‘/;)_{, Jo=7



19

for the Yamaguchi potential, the energies of 1s and 2s-states

were calculated with the help of eq.(13) and of the exact eq.
(22), see Fig.7. We conclude that eq.(13) is actually velid
up to 25 /A 345. It is seen from Fig.7 that rearrangement
of the stomic spectrum gradually disappears as 2, /qg :3/[’
increases. At és /43 Zd{the atomic s-levels smoothly move
with i increasing.

A gimilar study was carried out for the local potential

(21), Here the equation for discrete spectrum is[28'36}

r[£+(—v) / e
crgrs e =

-f
_§' =1, V= A . 2 =2A Z, and ,W are the Whitta-~

where

ker functions, At { —» O eq.(23) takes the form of
A A | =
[{4'%1. O &)'k/’”ﬁ (+a.) 2 (24)

‘from which it follows that there is precisely one bound state
in each partial wave that exists at > Y = ,2{-.’—/. The

parameters 4 ((SJ,. z ((3} and dcc'” ’ ?((csj for this

case can be found analytically[.l?'za'j‘q. The comparison of

the exact (23) and approximate (1) equations for the energy of
s-level is pgiven in Fig,8, where it is seen that the uncertain-
ty of energy E calculated according to eq.(1) is novt more than
104 wntill A % & 0.3 (i.e. the binding energy is less
than 0.1 fiZ/z”f?o'z )e Fig.9 illustrates the accuracy of our
approximation, eq.(B.1), for the s-scattering length.

A general conclusion that can be drawn from examination

of exact solutions is as follows. Eqs.{(1),(13) etc. obtained
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20 & 626 are in fact applicable with a reasonable
zp/Qgs = 0.1 %+ 0.2, Note that teo get this

at
accuracy up to
accuracy the introduction of terms of order ?S/ng is
essential, see, for example, Fig.S8.

10, Reerrangement of the atomic spectrum can always afpear
in the systems for which the interaction potential splits into
fwo parts with greatly differing radii.

Let us give some more examples: the problem with a short-
range potential in magnetic field[37l(a negative ion, H™, for
example); interaction of molecular terms at large distances
[38,3§k shifts of Landan levels in homogeneous magnetic field
in the presence of centerfBg}; model-independent account of
nuclear interaction for muon sticking probability in

Adtp — h -f-(/fa‘) reaction. One should also mention a
collapse of quantum orbit of excited electron in heavy atoms
[403(5 characterigtic example is a drastic change in the ﬂff' -
shell wave function in passing from Ba , 7 = 56, to Ia,

g = 5?} And finally, when considering the electron spectrum for
a superheavy nucleus [41"43J, Z ~ Zcr > 137, the energy spectrum
undergoes a rearrangement at that value of Z when the bound
state dives into the lower continuum (within a2 limit of very
small nuclear radius | in (t/MeC;V »zEZ]). The list of
examples illustrating the Zel'dovich effect can, no doubt, be
enlarged.

The suthor is greatly indebted to Drs.B.l.Karnakov, A.E,
Kudryavtsev, V.I.lisin and V.D.lur whose assistance considerab-

ly promoted to get the results discussed above and to NW.S.

Libova for the help in preparing the manuscript.

marnms.
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Appendix A

The parameters & ; &nd 25 in eq.(1) have dimensions

AZH{ and Lfa/z‘

, respectively (L is the length; note
that [ﬂ ] [ ?(J only for s-wave),.
At a moment of emergence of the { -level in the short-

range potentlal Yy (r)

-{
Xc[z)_;:?k{[é}:: Acé “+: , 2262 (4.1)

o

i €24, assuming the normalization condition S,( /“‘/’/ﬁ-

= f to be fulfilled, we have [121 °
) 1-2¢ / 2
2 = -2 [ o /¢! A, | w2

It can be easgily shown that for the scattering on a hard sphere -

of radius 2,

A_, (k%)

{ 7)/ -y
R AR\
(2e!)” e, A, (£%)

where vV = €+ 72 .

A, () = T (22) 0,00 = 4 -2 .
(2+0) GV + {}
Hence there follow formulae for the scattering length and the
effective range,
~ (2 {/} ,1(4-/ ~ (;(,‘./)/z

a =~ — ¢ 2, = —

1-2¢
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(we denote the value for the hard sphere by tilde). In other
cases czf) and ?;3) depend on the depth of Vs{r). Por
some simple potentials they can be obtained analytically. So,
for the square well and fér delta-potential we have

. {;(1—3)/,‘1//?('*{), square-well
25 /25 - a/ //(4— () 5 § -potential -4

(here the values of 2 :) recfer to the point of emergence of

the bound € -state). At >»> 1 ,

2(‘) - C.{’sexp{;!{ r -_»ﬁ-} .?.4—26 (A.5)
x4

2

R

where ¢ = 2, A& = O for the square well, C = 4, p =-1 for
the & -potential, C = 4, g = 0 for the hard sgphere and
{ o e/2 = 1,36 for all three potentials.
The asymptotics (A.5) has a general meaning. It can be

shown“ﬂusinz the 1/n expansion D"ﬂthat at € > v°

?,M ~ -2 f2e. /f/(;—)} (2.6)

where {- = <xp (Io +‘{_&2):

o e %
I = tur, +§4‘x{’5{1— [{— Xi;‘:f(i}lzé (A7)

: U4
X= %/% , while X, is defined from equation X» +2V =0,

For instance, we find that ¥ =7,] = 0.7303 and { =
—-X
= 2.82 for the Yukewa potential, v(x) =& /x : Io -
pu et
s 0.3652, ¢ = 1,96 for gaussian, v/d e ¥ ; x, =1,

I, = 0 and { = 1.36 for the square well and delta potentisl.
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Using eq.(A.6) one can easily esiimate different parame-

ters entering the problem. For instance, at { =2 {/
-
N(;?.) : exp {"Zl{h /{/‘({),() /L:{+/)

f_’zz (1.8)

~(5%) T exp S Et ufe/h)f

where O 4e and S" -—parameters in egs.(4) and (10), -(f =
= exp(]‘ 1—-—-&2) 0 19 l oL eff(z f+1— ‘4 )He*xce
it is seen that dlz ¢ and - f" also contaln, besides powers

of 2, /43 s easential numerical factors strongly depending

on ¢

Appendix B
Iet us briefly discuss Coulomb renormalizatiorn of the
scattering lengths and effective radii. We denote the Coulomb
modified nuclear scattering parameters by (cs) and the parame-
R ters belonging to the strong potential Vs at 5 =0 =~ by
index (s). The Coulomb rencrmalization is of the greatest
importance provided the potential Vs has a8 level close to zero
energy. We shall confine ourselves to this particular case, If
{ = o, thenml
o = o (1249) 25 (Bfsl v +q5) o,

.

'écs_ = 2 (1+F g) -

: .;} AT
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Here €, = 2C -+ {n(zé'c'/?s) =1 848 — tn /?_g/?c),
2§ [1- K73 42
° (B.3)

e = CKF%(& R + S“E(rk)_‘/‘:z‘/’) -/?.g , R>0

N s
i (2) is a wave function in potentiel (14) mormlized by
condition L ( oo) = { and corresponding to the value ? = ja
at a moment of appearance of the bound s-state. In eq.(B.1) we
denote P=S$2( |¢f = és/aa & a ) and the terms <
S’z are omitted. The coefficients fﬁ Co, S and h
depend only on the shape of strong potential, i.e. they do not
change at the scaling Z—/ 3 ) -> ocz Z-ﬁ"). o
If one neglects in eq.{B.31) the corrections ~- $
(formally assuming £, = =0 ), one arrives at the well-
imowvn formula by Schwinger[ijhich is esymptotically exact
within £ — 0 . Comparing eq.(B.1) with the exact solution
of model (21’), we gee that the range of applicability of this
equation is noticeably extended when corrections ~ g’
are taken into account (see, for example, Fig.8).
In the case of arbitrery ﬂ "the large logarithm®™ appears
in the Coulomb correction for the coefficient & P at £ o
in the effective range expansion sl

‘ £e+{ S/L) _____+.—-—2£+"+:5£ +--

S(es)_ S(:) = 2¢ I{h({g"?.) ""‘c'au_sfl

¢ ¢ (.5)
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Here 7?2, ~ 2, 1is the radius of nuclear interaction while
the constant: depends only on the shape of Vg {r). Note that
S{ is of dimension L~} ; thus, =~’f/2,. s, =
etc, In particular, st /# O +he leading correction is of

order §’ » the term in eq.(12) singular at ¢ O being
461 ¢ )
written explicitly,c 4/ res) _ »{/ﬂ,a’ -

22/ a/? AEHT
;U_) SX‘ Bl L (,,_ S tufs|rdesy

(note, however, that at £ ¥ & the singular term is but &

. U+
small correction of order ¢ A $ )e
Por p-wave

2(45)—?(5): 45;(/?![’5&3
t

.{ o« ) +.I.J (Ba?)

where B, is a constant {(see Table 2). If { = 1 , then

7
Cs)f, () Yy
AE-1

2 /?c = /+ é‘Ii 2,“)‘ + - (8.8)

i.e, the Coulomb correction to ?c(s) is of order © . At
¢ =¢ this formula coincides with (B.2)., In this case the
gingulerity at - ¢ disappears, and expansion (B.§ ) does
not contain logarithms at all. In other cases, ¢ .2 7 s the
singulaer term in expansion (B,'8) has the structure (461

@) y6)_ 2z (Lro)(reey) A0+, L
2! ?( =3 W 4 [{ [n/ Bstimate (A.6) gives

Se2| @ _ osa-(47)7
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i.e. the value of the Coulomb correction decreases with ﬁ

e e IR

growing.

Note that eqs.(B.7) and (B.8) were already used to con-
nect the values of effective ranges and energies of near-
threshold resonances in charged and neutral channels {(for
(for K'4He-system[2ﬂand for the lightest nucle.i He and 5Li,
8I.i and BB, etc. [25]).

The results of numerical calculations [4’20101‘ the paramec-
ters 2‘“ s €, etc. ave shown in Table 2., In particular, it
contains the data on the Yukawa potential, vix) = e-'/ X ; the
Hulthén potential, v(x}:(e = ‘f)—’ ; the square well,

v(¥) = 9({~x)  end the Coulomb well, v(x)=x 'O(Tx) .
The OBEP potential corresponds to WN-interaction, the first
line referring to the state with S=0, while the sednd ~ to
5=104], 411 the numericals in Table 2 refer to the depth of
potential Vs(r) at a moment of appearance of the first bound

state with the angular momentum ﬁ "
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Footnotes
1 In tkis connection it suffices to refer to a paper by
Zel'dovichU}devoted to a problem which is rather outside the
field of nuclear physics and concerns the electron energy
levels in a semicbnductor with impurity centres ( £ = 0).
The condition 2, &&,is fulfilled there beceuse of the fact
that dielectric penetreability of media & >> 7 . Hereafter
we call this phenomenon the Zeldovich effect (for states with
arbitrary f ).
2) 1 f <=0 , then the index j product in egs.(1) and (2)
should be omitted.
3) Eq.{1) can be obtained by analytical continuation of the
effective range expansion Bglinto the region of diccrete spect-
:L"umtz’3 ]. Another way of its obtaining is based on the coup-
ling constant evolution methodtsl.
4) FPor example, the annihilation F,b - 25, 3%, ---

in the case of proton-antiproton atom. .
5} i.e. contours in the ¥ -plane where [m (ﬂs /Qts(ﬂ)
is kept fixed.

6) According to ref. {2”, the shift AEfs 2 3 keV (that
should be compared with BS2) - B§9) = 0.375¢%E_ = 9.38 keV.

7 See ref, C“.L For example, at { = 0 (ns-states)
= 1 ~
Cf ‘{su +’t_“z§?c; -~ (gn»

where Bo = 3.154, A = 1.541, - 1.018 and
(Sh~ =3/mnat 27T
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8) For example, in the case of pure Coulomb atfraction,

—~&/» a8t OL<2<¢® , we have '
vz} ==&/ N y 3)4/2
€, = m [Io.tl g )

2

ia obtained by eq.(5).
Pn&

Table 1.

The besic parameters for some hadronic systems

System| m, MeV < QB  fm VE, , keV

pp | 469.1 1 57.6 25.0

Zp | 52.1 1 51.4 28.0

S p | se87 1 49.2 29.2

Kp | 323.5 4 83.5 17.8

K%He | 436.0 2 31.0 23,2

PP 469.1 1 57.6 25.0

ad 937.8 -1 26.8 50.0

at - |1124.7 -1 24.0 - 59.9

Pootnote: Here m = mym,/(my + m,;) is the reduced mass,

@, = kYmelz] s the Bonhr radius, By = s e¥/f 2.

R
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Fig.1. Graphical solution of eq.(1), ‘L a0, The position of

atomic na-levels and of the guasinuclear level (\’:-'\i, )

are ghown by dota,
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Fig.2, Rearrangement of atomic spectrum with no absorptionip) for s-states; b) for A .;‘O atates.
The dimensionless ooupling parameter g ‘V:‘ ’z. where V_ is the depth '
~of the strong potential and £ 1s its radius. ? o :
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Pig.3. The atomic spectrum of ;p-atom for three values of s-
scattering length ( € = — £ is the binding energy):
1) @ =0; 2) 4 =6.6mz0.12a, ;
3) &, = o0.
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Fig.4. The atomic spectrum with ¢ > { :

a) in the case described by eq.(4);

b) in the region of "term quasicrossing®. Broken lines

show the positions of the nonshifted Coulomb levels,
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-1 <15 -i8 =7 7P

Fig.G; The binding energy £ and the width 7~ of gquasinuclear
(s
p-state depending on the effective range 2{ ) o The

values of & =and 7‘/ are given in MeV'g, Zf(s)in fm".

s
The arrow indicates 2‘{(‘) for the gaussian potential.
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Pig.7. The Coulomd plus Yamaguchi potential. The Exact resulis obtained with eq.(22)ﬂiai~; é;;\vm
by the molid 1'1nu. The results obtained with the approximate aq.{(13) are drawn by the broken
lines. Near the curves the ratios Z\,/a‘6 P \3/," 4 are indicated.
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Pig.8. The Coloumb plus delta-potential. The coupling constant dependence of L%, . The s01id .
curves are based on the exact eq.(23) and the broken ones on the approximate eq.(1). The values

of S"o are indicates at the curves.
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e,/a

[~

The ratio %, /A, for the model described by eq.(21) with
with € =0, ;:f/ﬁsf—""). The curves 1,2 and 3 corres—

" pohd to exact solution, eq.(B,1) and the Schwinger formu-

la (i.e., gf ¢ = & in eq. (B.1)). reapectively,

£
;
i
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