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rearrangement of atomic spectrum (or the Zel'dovich effect).
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an arbitrary angular momentum £ (both with and without the

absorption). The equation is studied which connects nuclear

level shifts vJ.tb the low-energy scattering parameters Ct, ,

Xp • The conditions have been found under which the rearran-

gement of spectrum is replaced by oscillations of atomic levels*

The Coulomb renormalization of scattering lengths and that of

effective ranges is discussed. Some manifestations cf the Zel'-

dovich effect in the physics of hadronic atoms and mesomolecules

are considered.
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1. In the recent years there has been a growing interest both

experimental and theoretical towards research into systems bound

by the Coulomb potential distorted at short ( t r* Z
o
 ^.Й» )

distances'- ~ -*. The question of the structure of the energy

spectrum in such systems arises in many physical applications

. The disturbing potential V(r) is not assumed to be weak

s

and, as a rule, is deeper than the Coulomb potential V / %

— 2 2 & /£• . In particular, V„(r) can possess its own bound

states, or virtual and quasistationary states close to zero

energy. V7e suppose only that the potential V_(r) to be short-

ranged, i.e. 2, <c ^?g f where £ is a characteristic radi-

us of V (r) and Ci is the Bohr radius. In this case the
S D

energy spectrum can be expressed only through the low-energy

parameters, i.e. the Coulomb modified nuclear scattering length

"" and effective range *, , and is defined by the

Л t

which is applicable when

Yi
Here X - С~Л£/£ ) » E ia the energy of the level, j j " - ^

{ is the angular momentum \ f(^) ~ fY^)/f{^) ia di

ganuna function and atomic units are used, Д" r: //i -~ <?="

m is the reduced mass (the Bohr radius being £ •- f\ /file
В



~ and the energy unit £c =ч%е /Л )
#

Uote that the case of £ > 0 corresponds to systems

with the Coulomb attraction, while £<^ @ to the Coulomb repul-

sion (In the latter case there are evidently no Coulomb levels

which condense to E=0). The former case is realized in hadronic

atoms (p"p, £ i> t К He etc.) and the latter, for example, in

pp-scattering. Let us give for orientation the values of the

characteristic parameters for pp and pp systems: the reduced

mass hi ~rh /g , &
&
 ^ fi /the _ 5-7.5

 frut
 ,,,

С̂
Ь is

2m /m ^ 1000 times less than the Bohr radius in a hydrogen

atom equal to /t /7#
e
 & = 0.529.10 cm,and E

c
*-- 25.0 keV. (For

some other examples see Table I). Thus, in the problec at hand

there is, indeed, a small parameter £ Л?
л
 ̂  0.03 which was

exploited in deriving the basic equation (1).

The graphical solution of this equation for the case ^ =

= 0 is shown in Pig. 1 taken from ref.l^
8
-^. the variable V =

which is analogous to the principal quantum number n is plotted

along the abscissa axis. (Hote that at #
c
, — О , i.e. for the

nonshifted Coulomb levels, V = n = 1,2,3, . . . ) . Pig.1 clearly

shows that eq.(1) determines not only the positions of atomic

ns-levels shifted due to the short-range potential V (r) Lut

also the position of a loosely bound (in nuclear scale) s-state i

if it exists at all (i.e., if Cl
c%
 > О and ^ > > ^ » ^ ) . In \

Pig. 1 this quansinuclear level is denoted as У г У . . S
/» i|

When applying to pp-scattering ( ?"=-/) eq.(1) determi- |
$

nes the position of the S-matrir pole nearest to the threshold. f
&

With the Coulomb interaction taken into account, the virtual f

Mi



pole S ("singlet deuteron") is shifted from an imaginary

< £) *° *ne complex k-plane^ -I.

When the scattering length is small, function

in eq.(1) is near the pole. In this case eq.(1) directly yields

the well-known formula of perturbation theory in terms of the
Г7-91

scattering length
u
 '•*

a
s 11 ' T^J (2)

r<
Here Ас

н
а$-в the shift of the atomic h-C -level (generally

speaking, a complex one, i.e. Lfa ДЬ
И
* ~~~у" vi^ where \^g

is the level width) and £' r — £Z/%.ttZ\ This formula is

widely used in processing of experimental data (see also eq.(16)

below).

2. Rearrangement of atomic spectrum. Of particular interest

is the case when potential V(r) is attractive and deep enough

for the shallow nuclear level to exist (in nuclear scale, i.e.

jAte <&• •/ ), In this case eq.(1) describes the effect of the

rearrangement in atomic spectrumL-'»*-!.

Fig.2a represents the behaviour of the lower Coulomb s-

levels depending on the coupling constant f (i.e. у (t) «

"~§ ^ ( V t j
w h e r e

 fun
c t i o n

 2Yv<*°/ defines the shape of

the strong potential and й is a dimensionlesa coupling cons-

tant). At 4 - 5"̂  there appears a bound s-state in the poten-

tial V and all the atomic s-levels undergo a drastic rearran-

gement. The width of the rearrangement regicii js*- J A f ~

t h a t



the atomic ns-levels are considerably displaced relative to

ita nonperturbed Coulomb energies E — — £ /£n ,

while the quasinuclear s-level disturbing the Coulomb spectrum

is pulled out of the atomic region (i.e., always >> <£ / ).

At 4 > ?
ь
 the energy spectrum is again close to the unpertur-

bed one. However, the atomic wave functions j( (Г) acquire an
riS

additional zero at distances £ 'v £^ which provides their

orthogonality to the wave function of quasinuclear state, llote

that at "C = 0 the term -=- £, A in eq.(1) is but a minor

correction in atomic region, i.e. at V %, 1.

How let us make some comments on references. The rearrange-

ment of atomic spectrum was originally considered by Ya.B.Zel'-

dovich for the square well and for •£ = 0"- *. In ref. *• ̂all the

above qualitative features of this effect have been elucidated.

In ref.L -»this effect was independently investigated for С =0

and for some model potentials V_(r) without absorption. It was

also marked'- ^that the rearrangement of atomic spectrum can

manifest itself in hadronic atoms. The model-independent appro-

ach to description of the Zel'dovich effect based on eq.(1) was

proposed in refs.^»*-!. Applications of the theory to the light-

est hadronic atoms (pp, X"P » K~ He etc.) are considered in

refs.L-
3
»

4
»

25
»

27
»

28
.] , see also below, Sec.7.

3. The Zel'dovich effect at С £ 0. It has been recently

noted I. ̂ that for the nonzero angular momentum states the cent-

rifugal barrier qualitatively changes the picture of level move-

ment as VCT) gradually becomes deeper. If > j* 0, then at a

moment of appearance of a bound С -state we get



(see ref.I Jas well as Appendix A.). Therefore, in the right

hand side of eq.(1) the term with £, becomes essential.

With this in view, it follows from eq.(1) that there are only

a slightly shifted nuclear level, V - "?dg , and the Coulomb
His

H -C -levels in the system:

>

V„ = Ц + Pi

Here °^
n
/ *

s a
 dimensionless parameter rapidly decreasing

as v grows? ,s

(5)

<£* at lf^ 1, see eq.(A.8)

in Appendix A). Eqs. (4) become inapplicable when v7., approa-

ches the integer number H % {-{-{(the values of V =

... correspond to the nonshifted Coulomb levels). In the narrow

region |1|jtf-"'4 ̂  {^O/*A) there occurs an interaction

between the nuclear (/V€\ aaii atomic h{ - levels, their

energy being equal to



where о Ь
k
s is "resonance detuning" commonly used in atomic

physics:

- F*
;

(во

Thus, there is "term quasicros3ing" which is well known in quan-

tum mechanics. Unlike s-states, the Zel'dovich effect at t ^ /

consists in the following: the nuclear NC -level which lowers

with a gradual deepening of the strong potential V (r), successi-

vely collides with each of the atomic /e -C -levels (see Pig.2b).

The atomic И t -levels with ft > Vy are shifted upwards, while

those with fe < тЛ. - downwards.

The rearrangement of atomic spectrum arises when •C^-i'^'

In terms of the dimensionless coupling constant # со y[ \ %
o

this corresponds to

This estimate determines the interval of 4 values where the

nuclear fif£ -level раззез throughout the whole region of the

Coulomb spectrum, see Pig.2b. The term crossing region is much

more narrow,

( ? t )



According to eq.(1) we obtain at d. «=0: v -H^ hKg - bhg •

When Ct s o° and ^ = 0 , the atomic spectrum differs from the

Coulomb one most of all (see Fig.3f which refers to pp-atom but

can easily be recalculated for any other hadronic system (see

Table 1). The position of the nuclear and atomic & -levels

when "0 £0 is shown in Pig.4. Fig3 2-4 clearly illustrate the

difference in the Zel'dovich effect for the states with •£ =0

and £ ^ 1.

4. So far we considered the potential V (r) to be real.

However, eq.(1) remains valid for complex values of ^cs a s

that corresponds to the complex optical potential К - № ~~
 L
 W

and shows the ргезепсе of open channels in the problem
 4
' . In

this case the atomic levels are not only shifted but а1зо acquire

v/idth3 due to strong interaction at small distances.

To elucidate this point it is convenient to consider the

properties of eq. (1) in the complex plane of V =• £(-££:}. In

the case of slight absorption, when the depth of the real part

of V (r) changes, there occurs, аз before, rearrangement of the

atomic spectrum, the levels being only slightly ahifted into the

complex plane of energy E. For high aboorption the atomic levels
closed^ r t

raove alongYtrajectories in the E-planet-
J|
 -̂i. It seems conveni-

ent to examine the movement of levels in the complex plane of

variable •v? (see Pig.5, which shows the lines of the level ̂ J

of the function Jth /&g /&c$fi))
 f o u n d b y e

4

and 2- «0). The magnitude of absorption in a hadronic atom

can be characterized by a dimension2es3 quantity £ t



8

I" - J£ ^fa/acs) (8)

At g - ^j » 0.991 the trajectories of the poles near -J =1

and V «2 in the case of weak absorption intersect at the sad-

dle point S1 . One of the poles then returns to J =1, the

other moves to J « 0, i.e. it becomes nuclear level / l С \ » b
&
 J

At £ у $. the trajectories of the poles near the point V =1

are closed, i.e. rearrangement of the spectrum is replaced by

oscillatory movement of levels»

Pig.5 shows an important role of the saddle points S :

the traversing lines of the level separate the regions of these

two regimes. The values / •= Г correspond to the saddle

points S :

/
r
 = 0.991; |"

A
 = 0.997, ...

 }
 / -

At | < ?*£.% .* *be Is, 2s.,... ns-levels are in the oscillat-

ion regime, while the (n+1)s, (n+2)s, ... levels still remain

in the spectrum rearrangement state. Since the values f are

very close to unity, the intermediate region is narrow and it

may be accepted that ^ < / corresponds to spectrum rearrange-

ment, while £ > •/ to the oscillatory state. Note that for

•{ r=. О the curves in Pig. 5 and the values f practical-

ly are independent on 4-
c&
 «- 'A.

If •{, /0, the trajectories of the £ -levels and the po-

sitions of the saddle points ^ ^ ' depend, to a considerable

extent, on the value of Z, . Similarly to eq.(8),



define the quantity

(8')

which characterizes absorption in the system. Denoting its

value at the saddle point S by J^ » we find by

virtue of eq. (1) that ẑ '/fe | ̂  « 1 , just as for £ • 0.

However, numerical calculations show that at H.~f-4-1 the va-

lues / considerably exceed l,and, unlike the case of

С • 0, the sequence if is в decreasing one with n

increasing. This can be already seen from the asymptotics:

f

where p - i -

The lines of level of the function J/h. \ A /%g СV f

corresponding to ^ = 5" *' remain secaratrices, i.e. they

separate the region of spectrum rearrangement and that of osci-

llation of the levels.

Por further details concerning analytical properties of the

basic eq.(1) in the complex V -plane, we refer tot * \. Let

us also note that Kok >- -^studied the model problem "Coulomb +

• separable potential" ( ^ =0) and emphasized the importance

of saddle points о • The movement of the S-matrix poles

and the positions of the saddle points at -C f 0 were studied
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for the "Coulomb + delta-potential" model'- '•*and in ref. *• ̂

on the basis of the model independent eq.(1).

5, Coulomb corrections in the low-energy scattering. In
T (ct)

eq.(1) the values Q.g and Z.̂  can be connected with the

parameters £1. and £, which correspond to the strong

(short-range) potential Vs(r). At £ » 0 the Coulomb renorma-

lisation of the scattering length proves to be logarithmic,

~ f fa1 lf\ -*end that of the effective range is of the power-

like type, ~ <̂  , where f = C, £e |̂ f\ = \fa&\ At С t 0

the relationship of the low-energy parameters is normally of

the power-like type though the С -th term of the so-called

"effective range expansion" *• ' ^ i s renormalized logarithmical-

rjqi
ly

 J
. In particular, the Coulomb renormalization of the p-

wave effective range contains the large logarithm t/tj £\ . Let

us give formulae of the most essential Coulomb corrections:

(for the next terms of these expansions see refs. I- * °* i and

also Appendix B).

When С >, 1» there is also a simple formula connecting

the scattering lengths <# and *2, . The Coulomb cor
Г-jq

rection proves to be of a power-like type and is as follows
4
- •*»

20J



where X/ ' ) is a radial wave function for the strong potential

V (r) at £" =• О (when the bound { -state appears, i.e. with

the boundary conditions /^ (v C/O & at 4-^ and

_£=Using the results of the preceding Section it is easy to

obtain an equation directly connecting nuclear level shifts of

a hadronic atom with the parameters of strong interaction. Here

it is given for the case t в О'-*-':

(13)

/*7 . . c*̂
where A_ =" &

e t
 ^ =: 2

д
 is the effective range

when the bound s-state appears, 'fe is the Coulomb radius of the
system considered P

8
"

2 0
^, C

o
~

is the Euler constant and we put £ с Я. ~ f which corres-

ponds, for example, to pp-atom. In eq.(13) the corrections of ' ;

order л/
1
 t

o
 /&

л
 ere taken into account, while the terms of the ;|

higher order in ±
s
 fa are neglected. The coefficients 0

Qt
C. I

and Ъ.. depend on the shape of the strong potential. They can be |

easily calculated numerically for an arbitrary potential V
a
(r), j,

the method of the calculation is given in refs. *• » •*. I

The values of these parameters for some model potentials if

m
Ш
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*•

as well as for the OBEP potential, are given in Table 2. It can

be seen that c
0
 and b

1
 are but slightly dependdent on the par-

ticular shape of V(T). Therefore the calculations of the scat-

tering length #
fi
 with the help of experimental shifts of

atomic ns-levels (on the basis of eq.(13)) are not sensitive to

the choice of V
a
(r). An example of such a calculation for pp-

atom can be found in ref. ̂ - 1 .

7. Applications to hadronic atoms (the parameters /t , A
a

* о >

S
c
 etc. see in Table 1).

a) pp-atom was considered in refs.i-^'^Jin connection with

the indications'' J to a large shift of its ground state. How-

ever, at present the LEAH experiment yields the following values:

= (0.5 + 0.3)KeV, P
fs
 < 1 Ke

«(0.73 + 0.15)fCeV, X"
{
 -(0.85 +

In this case the shifts of s-levels are determined by pertur-

bation theory in terms of the scattering length, see eq.(2),

the nuclear level disturbing the spectrum is too far from the

atomic spectrum region to be calculated by eq.(1).

Some experimental data on pp-scattering have appeared

recently (at к » 9Or150 HeV/c, £ 2 e ~ 0 . 5 ) . At these ener-

gies , together with з-wave,. the p-wave is important. Since

there are 4 states with £ « 1 (1P1 and ^Q 1 2) the results

of the analysis of experimental data are still ambiguous *• •*.
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Using different solutions for partial scattering amplitudes

given in I- TJ and the formula

we obtain for the p-scattering length the values of the same

order as the hard sphere scattering length: &j — %
m
 /3 ~ i i**- .

Hence one may conclude that the pp-system in the p-wave is

evidently far from rearrangement,

b) 2- p - atom» This system is of interest due to the

fact that studying the data on the shift and width of the ato-

mic -43.|-level one can obtain the 21.M -scattering Jength

for -C -O
t
 1=1/2 and elucidate the nature of the 2129 HeV peak

in the Af> system 1
25
J.

c) К He-atom. The data on the shift of the 2p-state are

^
26
^ AEi>

s
 <43±8)KeV, ?2f> - (55+34)ey. Calculations

using eq«(1) shov/ that I * Jin p-wave there may exist a loose-

ly bound state of K~ with oL -particle. Its binding energy is

£ "̂  IT ZC °«5 UeVt see yig.6.

d) The basic eq.(1) can be applied to description of the

shifts and widths in heavier hadronic atoms, such as pTte,

p Li, Z. Li t Z О , ... In this connection it is useful

to have a general criterion of existence of a shallow nuclear

state. Let ̂
г
 = И ^ И Д С ^ ~~ ̂ 7 ) •

 Usin
S

eq.(2) and taking C^
ei
^ ~ л'

г )
 to be equal to the hard sphe-

re scattering length ci (A.3) we obtain the "critical"

value of Xk£ ,
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i

If ь> >»> <a , the perturbation of the atomic spectrum ia

strong and one can expect the existence of a shallow nuclear ste-
reo) j

te. tfote tiiat о
K
^ rapidly decrease with increasing "U .

Therefore, st ££ 0 a relatively small shift of atomic level

c»n indicate the spectrum rearrangement. For example, for К He

atom at 2
O
 /a ~ 1/20 and "C = 1 we have °S.f> ̂

 1 0

the above experimental shift of the 2p-state gives £ 2:7.1

condition д р> о allows one to quickly determine a

possible existence of shallow nuclear states. As a whole, the

research of nuclear shifts and level widths in hadronic atoms

will make it possible to obtain useful information on strong in-

teraction parameters at low energies.

e) To calculate the scattering length by the shift and width

of atomic level the formula by Deser et al.l-'-Hsee eq. (2)) is

commonly used which can be rewritten as

лг tn _ -2A/ >*<+* (or)

for t> see eq. (5). We denote these values of #£ as PT
Г 7

(perturbation theory), formula (2
1
) can be precised*•-*:

f.f
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{ <X ~ LKf&u) <& f )• Coefficients C^ depend on the

quantiun numbers Л
}
 {< as well as on 2^*) and are tabulated

" . Eq.(16) enables one to calculate (Я ' with a good accura-

cy without solving eq.(1). As a rule, it is sufficient to leave

in eq.(16) the first two or three terms.

Consider, for example, the К lie-atom. Only two terms in

expansion (16) give Л^'* = 72.38 fm
3
 at Д£

Лр
 = 43 eY,

?Xf> " °
 a n d

 &f
ei)
= (72.89 - i 45.49) fm

3
 at B ^ «= 43 eV,

Г = 55 eV. At the same time, the calculation with eq.(1)

©ives a
(

f

Ci)
* 72.4 fm

3
 and aj

ei)
* (72.9 - i 45.5) fm

3
 , res-

pectively. It is seen that the accuracy of this approximation

("improved PT", see'- -*) is шоге than cufficient.

f) One of the experimental methods of measuring nuclea\-

shifts is a study of radiative spectra for np -*> 1s, nd -> 2p,

and similar transitions. It should be emphasized in this connect-

ion that the formula for the probabilities of radiative transitions

tip -9- v>S and П Л -> *(> to a shifted level ( Е~~£72т>\

•P is arbitrary) were obtained and tabulated in refs.t-• * -*.

8. As the last example, let us corsider the application of
Too 3Q?

the above approach to the problem ' of the и -catalyzed

nuclear fusion. Ponomarev et al.'--' Jhave evaluated the energies

of delU and cii. К mesic molecule^ and predicted the existence

of loosely bound molecular states (for М{м -molecule <? . »

e
 34.9 eV, £ff a 0.64 eV, where £ ~ is binding energy,

J is rotational and V is vibrational quantum number). These

calculations were made for point-like Coulomb centres. A possible

effect of strong potential V (r) was taken into account in refs.
3



Jwhere simple models for V (r) were used whose parameters were
3

16

fitted according to experimental data on dt-elastic scattering

and el-+i-+ k-h oL reaction (for energies up to 200 keV). An

important result of these calculations is the sraallness of nuc-

lear shifts in molecular terms induced by the nuclear dt-inter-

action.

On the other hand, it is claimed in ref. l-̂ -'that the 3/2

resonance level in dt system ( £^ = 64 keV, t]./Z =70 keV)

can greatly affect the position of mesic molecular term due to

the spectrum rearrangement effect.

To discuss this point we applied the WKB method to the

Coulomb potential ]f (ъ} — — $/Ъ. modified at small distan-

ces. This provides the formula
,

where *-»/ ^
3 a
 dimensionless coefficient determining the

behaviour of the normalized wave function (without strong poten-

tial V ) at small distances
з

a n d
 ^

 e 1
» ^

 f i n d t h a t
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where the energy £ and ^-у^
 а г е

 calculated, the

strong interaction being neglected. Eq.(18) is model-independent.

Using the low energy scattering parameters <Z
C
 = -(3.88+i 1.27)-

. & and "> = (0.24+ X 0.016) a
B
 , derived from

Л. A.

reaction and the values C
eo
 « 1.02.10""* , C

0
. =0.927.10"*

taken from numerical calculations of mesic molecular wave funct-

ions \? i
 t
 we have

-1.25.1O~
3
eV, Г

ао
 • 9.0.10"

4
 eV

Д, £
о4
 « -1.04.10~

3
eV, p

e
y
 a
 7.4.10"

4
eV

which is in an agreement with the calculations »-
3
 -Ifor model po-

tentials V (r),
Э

Kote that even if 1she nuclear level H would hit the region

-of mesic molecule levela, the nuclear shift would have renained

small as well. Indeed, solving eq.(17) we find that

' are the energies of two interacting states, ££• - с -
fi о) л ^ r0i)w-f

where Я ' are the energies of two interacting states, ££• - с -£•

ia resonance detuning and Ey = — —-«Г £" =- £y — рГ ia resonance detuning and Ey = -—-. ..

Though -̂  e 0 here formula (19) is analogous to eq.(6). 3?he

smallness of the shifts J^ £ ' is provided by low penetreabi-

lity of the Coulomb barrier which acts in the same way as the

centrifugal barrier for *C /0 states:

C

Thus, the influence of Ve(r) cannot have any noticeable
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effect on the energies of mesomolecular terms calculated with

strong interaction neglected.

9. Exactly soluble models. So far our approach has been

based on the model-independent eq.(1). The boundaries of the

applicability region for this approximation can be established

поте accurately by comparing it with analitical solutions of

the Coulomb plus short-range potential problem. Such solutions

were obtained for the Yamaguchi potential, £- О \

3

( 2 W

as well as for the delta-shell potential at any {,

(21)

In x-representation the potential (20) corresponds to nonlocal

interaction. In this case the bound state emerges et £ -=q — /

) * /
» 0.3743 and с • 0.865, £ —-~-Cf - ̂ /3. The discrete spect-

rum is defined from the equation

, ш

where £ » 1, £ = [cA~/4J/(^'1>"^)j and p ~^-\ is hyper-
geometric function. When performing numerical calculations it

is convenient to seek for the coupling constant ^ аз а

function of Д ~(~ЯЕ) • ̂
e п а

^е made these calculations for

different values of M and compared the results with eq.(13).
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for the Yamaguchi potential, the energies of 1s and 2s-states

were calculated with the help of eq. (13) and of the exact eq.

(22), see Fig.7. We conclude that eq.(13) is actually vrlid

up to 2 ^sfi.S&a' It is seen from Fig.7 that rearrangement
S • _

of the atomic spectrum gradually disappears as t /ft — 3/(

increases. At *s (#& > #^the atomic s-levels smoothly move

with a increasing.

A similar study was carried out for the local potential

(21). Here the equation for discrete spectrum isL ••' J

where £ = 1 » *J ~ \ , £ = Л<\20 ап& JĴ W are the V/hitta

fcer functions. At g -* О eq.(23) takes the form of

( 2 4 )

from which it follows that there is precisely one bound state

y*
in each partial v/ave that exists at 4 > v ^ /L£+{* The

parameters %/*, t?^ and ay** , £/*** for this
Pi 7 28 зб(

сазе can be found analytically'- ' '•* J. The comparison of

the exact (23) and approximate (1) equations for the energy of

s-level is given in Pig.8, where it is seen that the uncertain- J

ty of energy £ calculated according to eq.(1) is not more than ^

10& untill A \ ^ 0.3 (i.e. the binding energy is 1езз

than 0.1 К [HfoZo ). Pig.9 illustrates the accuracy of our j

approximation, eq.(B.1)
?
for the s-scattering length. Г

A general conclusion that can be drawn from examination '

of exact solutions is as follows. Eqs.(1),(13) etc. obtained
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at 2
0
 <$c OL* are in fact applicable with а геазопаЫе

accuracy up to £ /Q =0.1 -r 0.2. Note that to get this

accuracy the introduction of terms of order -£s /&.„ is

essential, see, for example, Fig.8.

J.5i. Rearrangement of tho atomic spectrum can always appear

in the systems for which the interaction potential splits into

two parts with greatly differing radii.

bet us give some more examples: the problem with a short-

range potential in magnetic field L^ -Ha negative ion, H~, for

example); interaction of molecular terms at large distances

L ' 3; shifts of Landau levels in homogeneous magnetic field

in the presence of centerL^°J; model-independent account of

nuclear interaction for muon sticking probability in

Uifi —r fl "*"((*• "/ reaction. One should also mention a

collapse of quantum orbit of excited electron in heavy atoms

\- J (a characteristic example is a drastic change in the 4~f ~

shell wave function in passing from бй- , Z = 56, to La,

Z = 57)i And finally, when considering the electron spectrum for

a superheavy nucleus L* ~43J
 z
 ~ z >137, the energy spectrum

Car

undergoes a rearrangement at that value of Z when the bound

state dives into the lower continuum (within a limit of very

small nuclear radius , In (^А
е

с
Ы»/^

2
Ъ. The list of

examples illustrating the Zel'dovich effect can, no doubt, be

enlarged.

The author is greatly indebted to Dra.B.H.Karnakov, Л.В*

Kudryavtsev, V.I.Lisin and V.D.Hur whose assistance considerab-

ly promoted to get the results discussed above and to H.S.

Libova for the help in preparing the manuscript.
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Appendix A

The parameters Cl. and £* in eq. (1) have dimensions
1£C

and U , respectively (L is the length; note

that l ^ J = L ^ J ~ « only for s-wave).

At a moment of emergence of the £ -level in the short-

range potential Va(r)

At ^ •? • , asaiuning the normalization condition \ л*

- / to be fulfilled, we ' ^

It can be easily shown that for the scattering on a hard sphere

of radius t
a

where V ~

Hence there follow, formulae for the scattering length and the

effective range,
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(we denote the value for the hard sphere Ъу tilde). In other

cases &, and depend on the depth of V (г). Рог
s

, and 2
O f

some simple potentials they can be obtained analytically. So,

for the square well and for delta-potential we have

}
 square-well

$ -potential
(A. 4)

(here the values of ' refer to the point of emergence of

the bound С -state). At tf»

where С = 2, /S = 0 for the square well, С = 4, /в =-1 for

the £" -potential, С = 4, /S = 0 for the hard sphere and

/ о е/2, в 1.36 for all three potentials.

The asymptotics (A.5) has a general meaning. It can be

shown'•^^using the 1/n expansion^
4
-*that at €-**/>

where 7 -

X~ t «bile K, is defined from equation

Por instance, we find that 0.7303 end

* /x ;2.82 for the Yukawa potential, v(tt) = в
 Q

0.3652, ^ --1.96 for eaussian, -гг/лг/ =г e
- J f

 ; x
Q
 * 1,

» 0 and С » 1.36 tor the square well and delta potential,
о
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Using eq.(A.6) one can easily estimate different parame-

ters entering the problem. For instance, at •£ y? /

where 06 and P —parameters in eqs. (4) and (10), -ty "

= * V ft -1-ie*X) ^ 0.13 T . £ = «»5» (j I.+1-iAl) Hence
it is seen that odw and p. also contain, besides powers

of ?, /^a » essential numerical factors strongly depending

on

Appendix В

Let us briefly discuss Coulomb renormalization of the

scattering lengths and effective radii. We denote the Coulomb

modified nuclear scattering parameters by (cs) and the parame-

ters belonging to the strong potential 7
g
 at t — Q - by

index (a). The Coulomb renormalization is of the greatest

importance provided the potential V has a level close to zero

energy. We shall confine ourselves to this particular case. If

tf - 0,

(B.2)
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Here C
a
 = 1С +-e*.(X*Jb

s
) - /.

(B.3)

"
t
 - >-t-r -> Irk К

e

i) is a wave function in potential (14) normlized by

condition j[
o
 (ы> ) с / and corresponding to the value 5-~Зь

at a moment of appearance of the bound s-state. In eq.(Б.1) we

denote P "= £* ( J f{ = 2 /a <^ -/ ) «o^ *b-e terms j<

р
г
 are omitted. The coefficients ^ C

aj

 c

f
 and h

depend only on the shape of strong potential, i.e. they do not

change at the scaling l/{ fa) ~> OL \(
Ai
),

It one neglects in eq«{B»1) the corrections ^ P

(formally assuming ъ^ —
 c
< - О )

t
 one arrives at the well-

known formula by Schwingeri- -̂ which is asymptotically exact

within P —*• О • Comparing eq. (B. 1) with the exact solution

of model (21), we see that the range of applicability of this

equation is noticeably extended when corrections *>-" P

are taken into account (see, for example, Pig.8).

In the case of arbitrary €• "the large logarithm" appears

in the Coulomb correction for the coefficient £- at к

in the effective range expansion I °-i

(B.4)
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Неге •? ~ £ is the radius of nuclear interactxon while

the constant depends only on the shape of V(r). Mote that
s

S. is of dimension L~1 ; thus, &o-=-ifao, £^ — £ */

etc. In particular, at г ф О the leading correction is of

order <? , the term in eq. (12) singular at f~? О being

written explicitly,^ <//г'"
;
_ Y / ^ ' —

(note, however, that at t'Ф О the singular tern is but a

small correction of order % -fit P )•

Por p-wave

where fi^ is a constant (вее Table 2)» If ^ ^ / , then

( B
-

8 )

i.e. the Coulomb correction to Ъ, is
 O
f order P .At

{-0 this formula coincides with (5.2). In this сазе the

singularity at £>-> О disappears, and expansion (B. # ) does

not contain logarithms at all. In other cases, £^ ~f , the

singular term in expansion (B. 8) has the structure^ *
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i.e. the value of the Coulonb correction decreases with •£

growing.

Note that eqs.(B.7) and (B.8) were already used to con-

nect the values of effective ranges and energies of near-

threshold resonances in charged and neutral channels (for

(for K"*He-systera'-2^and for the lightest nuclei % e and ̂ Li,
8Li and S, etc.M).

The results of numerical calculations^- * -iof the parame-

ters t • Co etc. are shown in Table 2. In particular, it

contains the data on the Yukawa potential, I/(K} = e /x ; the

Hulthen potential, 1>(%)~(е *~ <)
 ;

 the square well,

t>/vr) ̂r OfJ-t) and the Coulomb well, TS~{X) ~ K~'&(?-*) .

The ОВБР potential corresponds to ̂ I-interaction, the first

line referring to the state v/ith S=0, while the seond - to

. All the numericals in Table 2 refer to the depth of

ial V (r) at a moment of a

state with the angular momentum

potential V (r) at a moment of appearance of the first bound
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Pootnotea

' In this connection it suffices to refer to a paper by

Zel'dovich*- ̂ devoted to a problem which is rather outside the

field of nuclear physics and concerns the electron energy

levels in a semiconductor with impurity centres ( •C «* 0).

The condition t
A
 г^Лл^ fulfilled there because of the fact

that dielectric penetreability of media £ » •/ . Hereafter

we call this phenomenon the Zel'dovich effect (for states with

arbitrary С )•

2
' If £•=: О , then the index j product in eqs.d) and (2)

should be omitted.

•'' Eq.(1) can be obtained by analytical continuation of the

effective range expansion^ ^into the region of discrete spect-

rum '•»•'•*. Another way of its obtaining is based on the coup-

ling constant evolution method^-».

' Por example, the annihilation b> f> —p 2 IT
}
 Зт

г
 —

in the case of proton-antiproton atom.

" i.e. contours in the J -plane where £#t

is kept fixed*

^ According to ref. "-21J, the shift A £f ~ 3 keV (that

should be compared with E J ^ - E^ = О.ЗТЗ^ 2
^ = 9.38 keV

'̂  See ref. C
11
J« For example, at {, • 0 (na-states

where fi
o
 » 3.154, fi

f
 » 1.541, fa • 1.018 and

at h. »<t'.

I
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®' Рог exaraple, in the case of pure Coulomb attraction,

> A at # < -fc < t^ , we have

rt is obtained Ъу eq.(5).

Table

The basic parameters for some hadronic systems

System

PP

rte

PP

dd

dt

469.

526.

548.

323.

436.

469.

937.

1124.

MeV

1

1

7

5

0

1

8

7

1

1

1

1

2

-1

-1

-1

57.6

51.4

49.2

83.5

31.0

57.6

28.8

24.0

]

25

28

29

17

23.

25.

50.

59.

.lev

.0

.0

.2

.8

.2

0

0

9

Pootnote: Here m • ra^raVCm* + n») is the reduced mass,

l s
 *be Bohr radius7E

c
 - /л
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Pig.1. Graphical eolution of eq .O) . £ »0. The position of

atomic ns-levels and of the qiiasinuclear level (^=7/

are shown by dote.
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Fig.2. Rearrangement of atomic spectrum with no absorptionyO for s-statea; b) for 4- /0 atatee.

""- dimensionleas coupling parameter f c o | ^ | % ; where V is the depth
of the strong potential and t ie its radius,
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The atomic spectrum of pp-atom for three values of s-

acatterine length (6 = — £" is the binding energy):

1) af « 0; 2) a$ - 6.6 fm ~ 0 И 2 Д ;

3) &
t
 = cC.
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(о}

£*>

£

Pig.4 . 5fhe atomic врес^шп with -jf /, "L :

a) in the case described by eq.(4);

b) in the region of "term quasicro3sing
n
« Broken lines

show the positions of the nonshifted Coulomb levels,



С^*
5
-2

Ъ
Щ™

а
&*

Ы level Of
 fy &*•<***)) in the complex V -plane ( £ *O,

J' "" A~ ' "
у
 ~ / ).The values of /^ f ^ J - 2r± 2lT (t-f) are indicated at the curves'.

ine pole motion marked by arrows correspond to the growth of the coupling parameter ^, . ._
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at

CAUSS

л

Fi£.6. The binding energy £ and the width ^ of quasinuclear

p-3tate depending on the effective range £y . The

values of <£. and Я* are given in HeV's, fcj"' fm-1

The arrow indicates for the gaussian potential.



Fig.7. The Coulomb plue Tamaguchi potential. The Exact reeulte obtained with eq.(22) are drawn

by the «olid line*, the reeulte obtained with the approximate eq.p3) are drawn by the broken

linea. Ifear the curve в the ratios %/&$ ° j uT * « • indicated.



Fig.8. The Coloumb plus delta-potential. The coupling constant dependence of JL-Y^ • The solid
curves are based on the exact eq.(23) and the broken ones on the approximate eq.(1). The values

are indicates at the curves.
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Pi£.9. The ratio t^/tf^for the model descried by eq.(21) with

with С «0, <? •= i (<Z
S
 = °°J. The curve3 1,2 and 3 eorres-

p6hd to exact solution, eq.(B,1) and the Schwinger i'onnu-

la (i.e., C.ndj^O *
n
 eq. (B. 1)^ respectively.

% V
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