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ABSTRACT

The FRAP-T6 code was extended to calculate: (a) fuel surface
azimuthal temperature distribution; (b) work done on cladding by internal
pressure; and (c) azimuthal heat conduction in the cladding. The
extensions were assessed by comparing calculated and measured cladding
ballooning characteristics for four in-nile fuel rod tests. The assessment
showed that the calculation of the fuel surface azimuthal temperature
distribution improved the calculations of cladding ballooning. Both
calculations and experimental results indicate that coplanar blockage due
to cladding ballooning is unlikely during a large break LOCA.
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EXTENSION AND ASSESSMENT OF THE CLADDING BALLOONING MODEL
IN THE FRAP-T6 CODE

1. INTRODUCTION

The effect of cladding ballooning and rupture on cooling of the
reactor core during a postulated loss-of-coolant accident has been
identified as a safety issue for pressurized water reactors.1 In
particular, the point of debate is whether or not cladding ballooning and
rupture can lead to coplanar blockage and loss of coolable geometry. If
certain conditions are met, experimental results show that a large amount
of ballooning is possible. For example, circumferential strains have
exceeded 70% during alpha phase ballooning of irradiated test fuel rods in
PBF single rod tests,z while similar ballooning of single simulator fuel
rods in heated shrouds at low heating rates have resulted in
circumferential strains of over 100%.3 Circumferential cladding strains
of 65% may cause complete flow blockage in a PWR rod bundle.

The understanding of the phenomena involved in cladding ballooning is
vital in a calculation of the extent of coolant channel blockage caused by
ballooning. Fuel rod ballooning and rupture behavior is primarily
dependent on: (a) cladding temperature distribution; (b) cladding heating
rate; and (c) amount of cladding oxidation. The effect of these variables
on cladding ballooning is calculated by Hagrman's model for baHoom‘ng.4
This model, named BALON2, is a best-estimate mechanistic model that
considers all of the important phenomena taking place during ballooning.
This code is a part of the FRAP-T6 code,s which predicts the transient
response of a light water reactor fuel rod during hypothetical accidents.

The BALON2 code computes the extent and shape of the cladding
deformation. The cladding is modeled as a network of membrane elements
subjected to a pressure difference across the wall. The equations for the
model in the code are derived from the equation of equilibrium and
geometric constraints. Sdouz has extended BALONZ to & fuel behavior code



named BALO-ZA.6

but does not include fission gas behavior. Sdouz extended BALONZ to

This code covers most of the thermomechanical effects

include azimuthal conduction in the cladding.

This report documents two further extensions to the BALON2 code and
the assessment of the extended code. The first extension consisted of
adding a model to calculate the azimuthal heat conduction in the fuel as
well as the cladding. This model is important because the cladding
azimuthal temperature distribution is a function of the fuel surface
temperature distribution. The second extension consisted of adding a term
in the cladding heat conduction equation that accounts for the heat
generated in the cladding due to the work done by the stress across a
circumferential strain. These extensions of the BALON2 code are described
in Section 2 of this report. Section 3 describes the in-pile ballooning
tests that were used to assess the extended BALONZ code. An assessment of
the extended BALONZ code based on comparison of calculations and test
measurements is presented in Section 4. An in-depth study of the model
extensions is given in Section 5. Conclusions are presented in Section 6.



2. DESCRIPTION OF MODIFICATIONS TO BALLOONING MODEL

The modifications focused on three areas: (a) calculation of the fuel
surface azimuthal temperature distribution; (b) calculation of the work
done on the cladding by internal pressure; and (c) the modeling of
azimuthal heat conduction in the cladding.

The method developed by Nijsing8 for nonconcentric fuel and cladding
was used for the determination of the fuel surface azimuthal temperature
distribution. The infinite series solution that his method 2mploys was
truncated after four terms. The boundary conditions were imposed at five
azimuthal Tocations between azimuthal coordinates of zero to 2 w, which
results in a set of five linear equations with five unknowns. The five
values of the five unknowns were solved by Gaussian elimination. The
resulting equation for fuel surface temperature distribution was used in
place of the original BALON2 assumption of a 100 K difference between
minimum and maximum fuel surface temperature.

The rate of heat generation by the work of internal pressure on the
cladding was calculated by the equation:
W =27 (circumferential stress)(circumferential strain rate)(average

cladding radius)(initial cladding thickness)exp(radial strain)

where

stress is in units of N/mz, strain rate in units of s-1

radius and thickness in units of m.

, and

The heat conduction in the azimuthal direction in the cladding was
solved by using an explicit finite difference equation.



3. DESCRIPTION OF TESTS USED FOR ASSESSING THE BALLOONING MODEL

A total of four in-pile experiments on fuel rod ballooning were used
to assess the extensions made to the ballooning model in FRAP-T6. Each of
these experiments was performed in a different reactor. The four
experiments were: (a) PBF LOC-3 experiment in the USA;9 (b) KfK FR2 LOCA
experiment in the FRG;10 (c) International Standard Problem 19 LOCA
experiment in France;11 and (d) TREAT FRF-2 experiment in the USA.12

3.1 PBF LOCA Test (LOC-3)

The PBF LOC-3 test was carried out in the Power Burst Facility (PBF)
at the Idaho National Engineering Laboratory. The test aimed to:
(a) determine the effects of the internal fuel rod pressure and prior
irradiation on the deformation behavior of fuel rods that reach cladding
peak temperatures in the a-p phase of zircaloy; (b) evaluate the
possibility of coplanar blockage and subsequent loss of coolable geometry
that may result from cladding ballooning during a LOCA; and (c) provide
data to benchmark the out-of-pile ballooning and rupture data that have
been used to establish cladding strain to failure criteria. The test rods
were typical of PWR design except for a smaller length (0.91 m) and higher
enrichment (12.5%). The fuel rod design is shown in Table 1. The axial
power profile is shown in Figure 1. Transient coolant conditions were
typical of the blowdown phase of a LOCA. Coolant pressure, mass flux,
quality, and temperature at the midplane of the fuel rods are shown in
Figures 2 to 5. Fuel rod power was typical of decay heat. The average
power history is shown in Figure 6.

3.2 KfK FR2 G3 LOCA Experiment

An in-pile test on an array of fuel rods was carried out at the KfK
Laboratory in Karlsruhe, W. Germany. The objectives of the test were:
(a) provide qualitative and quantitative information on possible effects of
a nuclear environment on the mechanisms of vtel rod failure under LOCA



TABLE 1.

DESIGN OF TEST FUEL RODS FOR PBF-LOC-3 EXPERIMENT

Characteristic

Active fuel length (m)
Fuel rod outer diameter (cm)

Radius of pellet shoulder (mm)
Depth of pellet dish (mm)

Height of pellet (cm)
Pellet diameter (cm)

Pellet density (% theoretical)
Radial gap width (mm)

Number of coils in the plenum
Height of plenum spring (cm)

Outer diameter of spring (mm)
Spring wire diameter (mm)

Plenum volume (cm3)
Fill gas

Fill gas pressure (MPa)
As fabricated fill gas temperature (K)

Value

0.8788
0.993

3.3
0.343

1.524
0.8534

94.4959
0.108

17
6.032

8.622
1.02

4.7
Helium

5.066
294
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Figure 1. Axial power profile for PBF-LOC3 Test
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Figure 5. Coolant bulk temperature as a function of time for PBF-LOC3 _

10



Fuel! Rod Ave Power (kW/Rr)

1 AVFRPOI10000

40

20

Tine (s)

Figure 6. Average power as a function of time for PBF-LOC3
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conditions; and (b) identify possible additional failure mechanisms. The
test rod was a typicai German PWR fuel design except for a smaller length
(0.5 m) and a slightly higher enrichment (4.7%).

The rod was irradiated to a high burnup before the test. The fuel rod
design is shown in Table 2 and the coolant pressure, cladding temperature,

average power and axial power profile are shown in Figures 7 to 10.

3.3 The International Standard Problem (ISP 19)

An experiment on a 5 x 5 array of fuel rods was carried out in the
Phebus reactor at Cadarache, France and presented as a potential standard
problem in June 1984. In this test a bundle of nuclear fuel rods were
subjected to a fast transient corresponding to a large break accident in a
pressurized water reactor. The test rods had a typical PWR design except
for a shorter length (0.8 m). The fuel rod design is shown in Table 3 and
the axial power profile, coolant temperature, coolant pressure, surface
heat transfer coefficient and the average power are shown in Figures 11
to 15.

3.4 TREAT FRF-2 Fuel Rod Failure Test

Tris test was carried out in the Transient Reactor Test Facility
(TREAT) at IMEL using a seven-rod bundle of 0.635 m long fuel rods in a
flowing steam atmosphere. The design of the test rods is shown in
Table 4. The LOCA accident was simulated by operating the TREAT reactor so
that the fission heat in the UO2 pellets caused the Zircaloy cladding
temperature to increase at a rate of 24 k/s to a maximum temperature of
approximately 1590 K. The fuel rods were initially pressurized with helium
to a pressure of 0.45 to 0.52 MPa to simulate accumulated fission gases.

The coolant buik temperature, pressure and mass flux are shown in
Figures 16 to 18, the average power is shown in Figure 19 and the axial

power profile is shown in Figure 20.

The specification of the boundary conditions for the four tests are
summarized in Table 5. '

12



TABLE 2.

DESIGN OF TEST FUEL RODS FOR KfK FR2 EXPERIMENT

Characteristic

Cladding

Material

Cutside diameter, mm
Inside diameter, mm
Wall thickness, mm

Fuel Pellets

Material

Diameter (nominal gap), mm

Diameter (small gap), mm

Length, mm

Burnup, Mwd/t

Enrichment (active zone), %

Enrichment (end pelilets), %

Heignt of pellet stack (active zone), mm

Density, G/cm3
Theoretical density, %
‘nsulating Pellets

Material

Diameter, mm
Length, mm

Void Volumes

Dishing per pellet, mm3

Gap volume (nominal gap), cm3

Total plenum volume (including pressure transducer), cm3

Fill gas composition
Fi1l gas pressure (MPa)

Value

Zircaloy-4
10.75

9.3

0.725

UO2

9.11
9.15
11
32,000
4.7
0.3
500

10.35
94.4

A1203

9.15

16
1.57

28.12
100% helium
5
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TABLE 3. DESIGN OF TEST FUEL RODS FOR PHEBUS TEST

Fuel rod length (m)
Fuel rod outer diameter (cm)

Height of pellet (cm)
Pellet diameter (cm)

Pellet density (% theoretical)
Radial gap (mm)

Number of coils in the plenum spring
Spring height (m)

Outer diameter of spring (cm)
Wire diameter of spring (mm)

Fill gas
Fi1l gas pressure (MPa)

As fabricated fill gas temperature (K)

oo
w0

0.819

%4
0.85

20
0.2

0.82
Helium
8.88
298

18
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TABLE 4. DESIGN OF TEST FUEL RODS FOR TREAT TEST

Active fuel length (m) 0.635
Quter diameter of cladding (cm) 1.43
Radius of pellet shouider (cm) 0.415
Pellet height (cm) 3.048
Pellet diameter (cm) 1.256
Pellet density (% theoretical) 95

0/U ratio 2
Radial gap width (M) 61.5
Number of coils of the plenum spring 20
Height of the spring (cm) 6.032
Diameter of the spring (cm) 0.902
Diameter of the spring wire (cm) 0.1042
Fill gas Helium
Fill gas pressure (MPa) 0.52
As fabricated fill gas temperature (K) 298

27
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TABLE 5. METHOD OF SPECIFYING BOUNDARY CONDITIONS FOR THE FOUR TESTS

Test

PBF LOC-3

KfK G3

Phebus 291

TREAT FRF-2

Methods of Specifying Boundary Conditions

Input of the local coolant conditions (pressure, mass flux,

quality) that were calculated by RELAPS!3 code. FRAP-T6
calculated the local heat transfer coefficients.

Input of measured cladding surface temperature and coolant
pressure.

Input of the local heat transfer coefficients, coolant
temperature and pressure that were calculated by RELAPS.

Input of measured inlet steam temperature, mass flux and
bundle pressure. FRAP-T6 calculated the local coolant
conditions and heat transfer coefficients.

33



4. ASSESSMENT OF BALLOONING MODEL

Each of the four ballooning experiments described in Section 3 was
calculated with the FRAP-T6 code using the extended BALONZ model.
Comparisons were then made of the calculated and measured characteristics
of ballooning. The characteristics that were compared included: (a) time
of cladding rupture, (b) maximum cladding hoop strain, and (c) axial
profile of cladding hoop strain.

The FRAP-T6 code allows the code user to specify the boundary
conditions for fuel rods by several different methods. At one extreme, the
inlet coolant conditions can be specified and the code will calculate the
transient conditions of the coolant surrounding the fuel rod and the
transient cladding temperature. This method can only be used when the
inlet coolant conditions are changing slowly, such as for the TREAT FRF-2
test. At the other extreme, the measured cladding temperatures are input
and no calculation is made of the coolant conditions or the cladding
temperature. Since cladding ballooning is sensitive to cladding
temperature, the boundary conditions for each experiment were specified by
the method that provided the smallest discrepancy between measured and
calculated cladding temperature. If cladding temperatures were measured at
almost all elevations of the fuel rod, then the measured cladding
temperatures were input. Otherwise, the coolant conditions were either
input to the code or calculated by the code and then the cladding
temperatures were calculated. The method used to specify the boundary
conditions for each of the four experiments is summarized in Table 5.

4,1 Effect of Extensions to the Ballooning Model on the Rupture Time

The calculated values of the rupture time are compared in Table 6 to
the measured values. The calculated times include those with and without
the extensions ballooning model. It can be seen that in the case of
PBF LOC-3 test, the error in rupture time calculation was reduced in case
of the extended model.

34



TABLE 6. EFFECT OF BALLOONING MODEL EXTENSIONS ON CALCULATED RUPTURE TIME

Rupture Time

(s)
Measured
Measured Heating Calculated
Rupture Rate at

Temperature Rupture Without With
' Test (K) (K/s) Measured Extensions Extensions
PBF LOC-3 1057 21 10.13 12.16 10.42
KfK 1076 3 70 62.7 62.7
Phebus 1326.4 56.25 12.76 10.93 10.93
TREAT FRF-2 1462 42.86 31.9 32.43 32.43

35



For the other cases, the model extensions had no effect on the rupture
time. Since the cladding temperatures were input for the KfK test, an
azimuthal variation in temperature would not be calculated and thus the
mode] extensions would not have an effect on the calculated time of
rupture. But for the Phebus and TREAT tests, the cladding azimuthal
variation was calculated yet the model extensions had no effect on the
calculated time of rupture. The absence of an effect for these two tests
is considered to be due to the fact that the cladding ruptured while in the
beta phase (temperature greater than 1250 K). Cladding rupture is not as
sensitive to temperature variation in this phase as it is in the alpha to
beta transition phase, which was the case for the PBF LOC-3 test.

4.2 Effect of Model Extensions on Transient Cladding Ballooning

Transient cladding ballooning cannot be directly measured. Instead,
the transient ballooning is inferred from measurements of fuel rod internal
pressure. The reciprocal relationship of gas volume to internal pressure
is used to estimate transient cladding ballooning.

The measured internal pressure as a function of time is compared with
the calculated pressures for the four tests in the Figures 21 to 24. In
the case of PBF LOC-3 test, the comparison shows that the calculated values
with the model extensions improved the agreement with the experimental
data. For the other tests, the model extensions had no effect on the
internal pressure behavior,

4.3 Effect of Model Extensions on Cladding Temperature

The cladding temperature at the rupture node is shown for the four
tests in the Figures 25 to 28. The results show that for the PBF LOC-3 the
model extensions cause the cladding oxidation to occur earliier (point 0 in
Figure 23). This earlier oxidation results in a temperature difference for
a short period of time (-3 seconds) between the calculated temperatures
with and without the model extensions. The temperatures before and after
the oxidation period are nearly the same. For the other tests, there is no
influence of the model extensions on the cladding temperature.

36
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4.4 Effect of Model Extensions on Permanent Hoop Strain

The measured hoop strain with and without the model extensions are
compared with the experimental data in Figures 29 to 32. For the PBF-LOC-3
test (Figure 29), the calculated values are underestimated at the rupture
location. The figure illustrates alsc that the location of rupture
calculated by the code is higher than the actual rupture location. The
calculated rupture location without the model extensions coincides with
that calculated with the model extensions, but the calculated hoop strains
without the model extensions are greater than those calculated with the
model extensions. For both cases, the calculated and measured deformation
profiles are in good agreement except for being offset about 0.05 m in
elevation. As to the TREAT test (Figure 30), the calculated values with
and without model extensions are nearly the same. In both cases, the
calculated deformation is in good agreement with the measured deformation
except for the calculated rupture location being about 0.05 m higher than
the actual location. For the Phebus test (Figure 31), there is no
difference between the values calculated with and without the model
extensions. The measured rupture hoop strain varied between 4% and 35% and
the measured rupture elevation varied from 0.2 and 0.4 m, and it is evident
that the calculated values are within these ranges. The cause for the wide
variation in experimental results is not known. In the KfK test
(Figure 32), both the values calculated with and without the model
extensions are coincident. The calculated rupture strain is about half of
the measured value but the calculated rupture location is in good agreement
with the measured location.

Both the calculations and the experimental results show that coplanar
blockage does not occur during conditions typical of a large break LOCA.
Blockage does not occur unless cladding hoop strains exceed 65% over
several cm of length. None of the experimental results show that blockage
occurred. The cladding hoop strain was calculated to exceed 65% only for
the TREAT FRF-2 experiment. But even for this case, the calculated hoop
strain exceeded 65% over a span of elevation so small that coplanar
blockage could not occur.
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5. IN-DEPTH STUDY OF MODEL EXTENSIONS

In order to investigate the effect of the various parts of the
extensions to the ballooning model, the fuel rod experiments were
calculated by FRAP-T6 with only parts of the model extension employed. The
work done term and azimuthal heat conduction were studied using the PBF
LOC-3 test. The effect of all these parameters on the internal pressure is
shown in Figure 33 and the effect on the rupture time is shown in Table 7.

Comparisons of the calculated rupture times presented in Table 7
reveal that the work done term had no effect on the calculated rupture time
and that the modeling of cladding azimuthal heat conduction had only a
minor effect. The major effect on the calculated rupture time was the
model extension that calculated the temperature distribution on the surface
of fuel pellets.

The effect on the cladding temperature at Node 5 is shown in
Figure 34. From the internal pressure and the cladding temperature it can
be said that the work done term has no influence and the cladding azimuthal
heat conduction contribution is small.

The following analysis shows why the work done term and the modeling
of cladding azimuthal heat conduction did not influence the calculated time
of rupture.

The work done is equal to:

2 #[(circumferential stress)(circumferential strain rate)(average
radius)(initial thickness)][exp(radial strain)]

For the PBF LOC-3 test at the rupture location at a time, just before
rupture,
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TABLE 7. EFFECT OF WORK DONE TERM AND AZIMUTHAL HEAT CONDUCTION ON THE
RUPTURE TIME

Rupture Time

Case (s)
Measured 10.13
Without any model extensions 12.16
A1l model extensions except work done and azimuthal heat 10.86
conduction in the cladding
A1l model extensions except work done 10.42
A1l model extensions 10.42
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Stress = 4 x 107 N/mz,
Strain rate = 0.023 per s,
Strain = 0.1037

0.53x 103 m

Wall thickness

Average radius = 0.52 «x 10-2 m

n)[4 107(2.3 x 1079)(5.3 x 1074

Work done = (2
(5.2 x 1073)[exp(0.1037)]

= 18.26 W/m

The azimuthal heat conduction at the Node J is equal to:

T Ty)
(T.-T7
j__j+l1

R O ) [O.S(hj + hj+1)] O.S(Kj * Kje1)
T = cladding temperature (k)
r = cladding radius (m)
h = cladding thickness (m)
k = cladding thermal conductivity (W/m - k)
Ej = heat transferred into element j by azimuthal heat

conduction (W/m)
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For Nodes 7, 8, 9:

T, = 1133 Tg = 1110 Ty = 1099

ry = 4.9836 x 1073 rg = 5.3053 x 1073 rg = 5.6478 x 10
h, = 5.43798 x 10°* hg = 5.48642 x 107 hg = 5.525 x 1074
K=22Wmsek

Eg = 398 W/m.

The heat transferred from the fuel, Ef is given by the equation

Ef =2 mx Tf X hgap x (fuel radius)

Tf = 1130 K; hgap (gap heat transfer coefficient) = 1.47 x 103

Thus,

3 3

Ee =2 w x 1130 x 1.67 x 10° x 4.935 x 10°
= 0.350526 x 10° W/m

The azimuthal temperature variation for the fuel and cladding are shown
Figures 35 to 39.
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6. CONCLUSIONS

The FRAP-T6 code was extended to calculate: (a) fuel surface
azimuthal temperature distribution; (b) work done on cladding by internal
pressure; and (c) azimuthal heat conduction in the cladding. The
extensions were assessed by comparing calculated and measured cladding
ballooning characteristics for four in-pile fuel rod tests. The assessment
showed that the calculation of the fuel surface azimuthal temperature
distribution improved the calculations of cladding ballooning during the
alpha to beta phase transition. The modeling of the work done on cladding
and azimuthal heat conduction in the cladding had an insignificant effect
on the calculation of cladding ballooning for beta phase cladding and LOCA
conditions. The assessment also showed that FRAP-T6 calculations of
cladding ballooning using the BALON2 model are in good agreement with
experimental results. Both calculations and experimental results indicate
that coplanar blockage due to cladding ballooning is unlikely during a
large break LOCA.
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