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Five-Point Form of the Nodal Diffusion Method
and Comparison with Finite Difference

Y. Y. Azniy
Oak Ridge National Laboratory, Oak Ridge, TN 37831

Nodal Methods have been derived, implemented and numerically tested for several

problems in physics and engineering. In the field of nuclear engineering, many nodal for-

malisms have been used for the neutron diffusion equation,1'2 all yielding results which

were far more computationally efficient than conventional Finite Difference (FD) and Fi-

nite Element (FE) methods. However, not much effort has been devoted to theoretically

comparing nodal and FD methods in order to explain the very high accuracy of the former.

In this Summary we outline the derivation of a simple five-point form for the lowest order

nodal method and compare it to the traditional five-point, edge-centered FD scheme. iA

The effect of the observed differences on the accuracy of the respective methods is es-

tablished by considering a simple test problem. It must be emphasized that the nodal

five-point scheme derived here is mathematically equivalent to previously derived lowest

order nodal methods.5'6

The first step in the derivation' is to divide the domain of the problem into M two-

dimensional (for simplicity) "nodes", i.e., Cartesian rectangles of the form [ — a.m,+am]

x[ — &„,,+&,„], with constant material properties in each node. The steady-state monoen-

ergetic. external source diffusion equation is averaged over the area of each node, to obtain

a nodal conservation equation relating the transverse-averaged net currents, .7, on node

surfaces to the node-averaged flux, <f>m,

where . / | m = -[Dmd(f>v/du}u=±3m, u = x or y, v = y or x and s = a or b; am and Dm are

the macroscopic removal cross section and the diffusion coefficient in node m, respectively,



Sm is the 772tli node-averaged external source defined in analogy to <pm and <f>v is the v-

averaged (/-dependent iiux. Next, the diffusion equation is transverse-averaged once with

respect to .r and once with respect to y. The two resulting ODE s can be solved exactly

using a complementary function and a pai ticular integral, which introduces two integration

constants in each dimension and requires the only approximation in the whole process,7

namely, expanding the external source and the leakage terms in a local series truncated at

the lowest order. The integration constants can be eliminated in favor of the transverse-

averaged flux evaluated on node surfaces which serve as the variable unknowns here. By

assigning only one transverse-averaged flux to each surface, the continuity of the flux across

node boundaries is automatically satisfied; continuity of the net current is discussed later.

Two processes can be perforined on the resulting in-node solutions, 4>z{y) and 4>y(x):

(1) they can be differentiated with respect to y and a:, respectively, to obtain relations be-

tween the transverse-averaged, surface-evaluated currents, fluxes and source-leakage expan-

sion coefficients. (2) They can be integrated over a node with respect to the independent

variable to yield expressions for the node-averaged flux in terms of the transverse-averaged,

surface-evaluated currents and source-leakage expansion coefficients. These two equations

can be used to eliminate the source-leakage coefficients and obtain a weighted difference

relation:

2

where /;'„ = [tanh(~,r,,<7m ))/-ymam, -y;,, = am/D,n\ an equation analogous to Eq. (2) in the

./•-averaged variables can easily be obtained. Equation (2) is a weighted difference relation

because it relates the variable unknowns in only one direction to the node-averaged flux.

The five-point form of the nodal method follows immediately from substituting Eq. (2)

and its x-averaged analogue in Eq. (1) to obtain,

~~ Pm) ~\ l ~ I'm)

— 4>m — —Sm/am. (3)



This is a generalization of the result presented in Ref. 7.

A necessary condition for a well-posed algebraic problem is that, the number of equa-

tions equals the number of variable unknowns. Thus, for a retangular mesh with I(J)nodes

in the x-(y-) direction, there are IxJ ^-variables, ( I+l)xJ ^-variables and (J-(-l)xI <pr-

variables. Equation (3) represents a set of IxJ equations; in addition, the global boundary

conditions on y(x) = constant surfaces supply 2I(2J) equations. The deficit in the number

of equations is closed by imposing (I-l)xJ and (J-l)xI net current continuity conditions

on .r=constant and y=constant internal surfaces, respectively.

There are three essential differences between the nodal and edge-centered FD five-

point schemes.3'4 First, the unknowns in FD are point quantities representing the flux

at specified mesh points, while in the nodal method they represent averages over node

surfaces or areas. Thus, the FD analogue of Eq. (3) covers four adjacent cells, while for

nodal it is valid within one cell. Second, the spatial weights appearing in the discrete

representation of the second derivatives in Eq. (3) involve hyperbolic functions unlike the

algebraic type weights in FD. Third, in FD the net current is not required to be continuous

across node boundaries: for an IxJ rectangular mesh there are (1+1)x(J+l) unknowns;

the FD analogue of Eq. (3) is required to hold at each interior mesh point thus producing

(I-l)x(J-l) equations plus 21 and 2.1 global boundary conditions.

In order to illustrate the effect of these differences on the accuracy we applied the

two methods to solving a simple test problem: A square region of dimension 1 cm with

vacuum boundary conditions on all sides, and uniform removal cross section, a = lem"1;

quadrant I had a unit source and D = 400, 100. 100, 25 cm for quadrants I, II, III, and IV,

respectively, where II and III are diagonally opposite. The solution obtained on different

meshes was used to calculate quadrant-averaged fluxes as shown in Table I. Infinitesimal

mesh value for each quantity was obtained by h2-extrapolation of the two finest mesh

results for each method; the FD and nodal extrapolated values differ by less than 1/2%.

Based on the number of discrete variables solved in each method, the Ixl nodal calculation



should be compared with 21x21 FD calculation. In quadrant I the nodal method is about

ten tunes more1 accurate, while m II it is three tunes more accurate and m ]Y it is twice

as accurate as FD for the coarse meshes.

We have reduced the final equations for the two-dimensional lowest order nodal diffu-

sion method to a simple five-point scheme comparable in structure to the traditional FD

edge-centered method. The nodal method, which is mathematically equivalent to previ-

ously derived nodal diffusion methods, has been shown to be far more accurate than the

FD method for a test problem with large flux gradients. The high accuracy of the nodal

method results from the hyperbolic-type spatial weights, and imposing the continuity of

the current across node boundaries. The relative importance of these two effects is cur-

rently under investigation. This may suggest a simple modification of conventional FD

methods and codes that would significantlv enhance their accuracy.



Table I

Comparison of the quadrant-averaged fluxes and percent errors calculated

by the nodal and finite-difference methods for the test problem described in

the text. The tr-extrapolated values were obtained from the two finest meshes for each

method. The errors for each method wore calculated relative to that method's extrapolated

fluxes, i.e., e = 100 x 0'7<P£r - 1), ft = nodal, or FD.



Quadrant I Quadrant II Quadrant IV

average flux average flux average flux

(% error) (% error) (% error)

Nodal (4x4) .190160e-2(1.0) .232634e-3(-7.0) 949671e-4(14.)

(8x8) .189161e-2(.49) .242931e-3(-2.9) .8725S7e-4(4.9)

(16x16) .188534e-2(.16) .248030e-3(-.87) .842979e-4(1.4)

(20x20) .188425e-2(.10) .248817e-3(-.56) .83S918e-4(.87)

h2-extrapolated .188231e-2 .250216e-3 .831698e-4

FD (4x4) .110662e-2(-41) .388849e-3(55) .162222e-3(95)

(8x8) .158018e-2(-16) .315226e-3(25) .104S77e-3(26)

(16x16) .178744e-2(-4.9) .272290e-3(8.4) .890755e-4(7.0)

(32x32) .185623e-2(-1.2) .256530e-3(2.1) .846857e-4(1.7)

h2 -extrapolated .187916e-2 .251277e-3 .832224e-4
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