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It is shown that the ultmelativiatic growth of bubbles
of new phase in the course of false vacuum decay givéa rige to
e.rfective fading of residual oscillations of fields around the
stable values in the. new phase. The damping rate corresponds
to constant total energy of the oscillations inside the bubble.
It is argued that as a possible consequence of this behavior
under certain assumptions about phase transition in QCD the
amplitude of the coherent invieible axion wave can be at present
much lese than it is usually estimated. As & result the upper
bound for the axion constant can be relaxed from {.,5 1012 gev

up to f,s 3+10° gev.
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In the course of its expansion and cooling the universe
underwent & succession of phage transitions in which non-trivial
vacuum gtructures on different scales were foruwed, i.e. the con-
finement phase transition on the scule of the stirong interaction
/1QCI)’ formation of'the electroweak symmetry breaking conden-
sate on the Fermi scale and, possibly, analogous transitions at
higher temperature induced by new hypothetical interactions. In
the process of such a transition fields ere approaching their
new:equilibrium position-by oscillations which then fade out
due to various mechanisms. Conseguences of these oscillations at
least in some of the past phase trensitions can in principle be
observable et present. For instance, in the so-called " new infla-
tionary scenaric" /1/ daumping of the scalar field oscillations
by particle creation was considered as a mechanism for re-
heating /1/ and as a possible sourse of baryon asymmetry of the
universe /2/. Another interesting theoreticel subject of this

kind is the bound /3/ on the constant 7&_ of invisible axion:
3{4, £ 102 gev (1)

which is obtained from considering energy density associated

with coherent oscillations of the axion field induced in the QCD

" aanfinemant +eansdtdan .
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The main goal of thia paper is to point out one more
mechanism of fading of the residual oscillations, which
somehow was ignored so far. This mechanism operative at least
in the firast order phase transitions driven by quantum rather
then thermal fluctuations is due to ultrarelativistic growth of
bubbles of the new phase. Under the assumption that the con-
finement transition in QCD is of this type (and thus goes in
the early universe with suificient supercooling) the bound (1)
can be gubstantially relaxed. As & result the present energy
density of the coherent axion wave would not exceed the critical

one under a much looser than (1) condition

{4‘ < 3410'® Gev (2)

We start with reminding the reader few points of the theo-
ry of false vacuum decay. The initial state before the decay is
the metastable vacuum in which mean values of the flelda 1b[
are qb, and correspond to a local rather than globel minimum
of the potential (or of the effective potentisl if some of the '
fields ¢; are composite, as in case of the phase transition
in QCD). Such a state decays /4/ through nucleation due to
quantum fluctuations of bubbles ingide which fields are near
the lower minimum of the potential and subsequent growth of
thise bubblea. To start expanding the bubble has to have a fi-
nite critical aize at which the energy spent on creation of the
bubble wall is compensated by the gain in the volume energy.

One can find the profile of the fields in the critical
bubble simultaneously with the quasiclassical action Lgo
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which enters in the exponentiel factor exp( - S,, ) in the
probability of the criticael bubble nucleation. To this end

one should conaider /5/ the Buclidean version of the theory,

Sefun(LS0g) e V89), o

end find & solution %(X/u) (called bounce /5/) to the
equations of motion which satisfy the followibg two conditions:
i) when IX,.I-no the fields ;‘ (xr) tend to their values

in the false vacuum ¢+ ., 1i) the second variastion of the
action (3) around the configuration f[l,.) should have exactly
one negative mode. Then the WKB exponent is given by S,'—‘ S[&].
(Effects of gravity are neglected for a while).

The profile of the fields in the Minkowski space in the
moment of bubble nucleation and during ite subsequent classical
growth is determined from the Buclidean solution f (x) vy
analitycal continuation. ‘

For what follows the most essential property of the golu-
tion J[X} is its 0(4) symmetry /5/. In the absense of gravity
this symmetry property is proven in the paper /6/, while with
account of gravity no general mathematical proof of this behavior
is given so far. However, phygical arguments for the 0(4) sym-
metry of bounce are quite transparent. Namely, whea continued
to the Kinkowski space the 0(4) symmetry transforms into
0(3,1), which implies that the expanding critical bubble looks
the same for any moving observer (moreover its center is at
rest in any Kinkowski frame). If this were 'not true one should
have to sum nucleation probability over velocities of the

bubble when calculating the false vacuum decay
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rate.). i.e. to integrate over the nqp-compact group 0(3,1)
which would give physically senseless infinite probabilitye.
Clearly this argument is applicable for the cese of 0(3,1)
syunetric gravitational background of the false vacuum, in
particular for tunneling from the De Sitter spacg:

The symmetry 0(4) implies that the fields '%d are functions
of the variable xl = rts Ez(where ri !FIL) -+ Therefore in
Minkowski space %:[x;’) become %‘_(,.z_ £%), and the Euclidean
field configuration identically maps on the exterior of the
light cone, i.e. on I and t such that I > t o (The coordi-
nate system corigin is obviously placed in the center of the
bounce). Notice also that the T =0 spatial cross section of
the bounce gives the initial contiguration of the critical
bubble in Ninkowski space (at £=0 ), and that the coordinate s
system origin in the Euclidean spuce (**T*=0) maps on the
whole light cone (#*- £’=0 ). Thus the value of the fields
are constant on the light cone and provide the boundary condiw
tions for evolution of the fields inside the light cone which
containg the expanding region of the stable phase with thé
regidual oscillations around new vacuum mean ;;lues. It can
also be mentioned that we do not use here the so-called thin
wall approximation /4,5/, i.e. the difference between éﬁ(b)
end the new equilibrium values ¢i is not assumed to be amall
80 that apriori the oscillations could be large.

Since the boundary conditions are defined on the ‘Lorentz

1

% is thia integration which was erroneously suggested in
ref./4/. To evoid infinite result an artificial cutoff was
introduced.



xur/éce
invariant the golution inside the light cone depends only on

. ‘
the invariant f:(fl'r’) /2. The equatioi§ of wotion in ;

look as follows

L X 4
——

®
3 -+ 0
#; + 3 ¢, 24 (4)
where the dot denotes derivative over ; . The teru 3¢/§
clearly implies energy dissipatione. In the luarge g asympto-
tics when one can use linear approximation for Dyﬁf‘ neur
the equilibrium position 95. , the amplitudes &, o devia-

tions of tue fields from 95_ are given by the Begasel fuuction

2: ¢ J,(m5)[5 (5)
where M is the mass matrix:

2 .
This uweans, that average over the periocd amplitudes of oscille-
tions fede as §— :: In other words all-“;nergy excess OC(V(¢+)
- V(?S_)) £3 is spent on ecceleration of the bubble
walls, i.e. this energy flows near the light cone Fr = f N
while the tciul energy of the residual gscillations inside the
cone f‘<(f—i)f with arbitrary spall positive £  tends to
. 2 3
& constant value o4 [f}f when f‘ goes up to infinity.
Notice that the volume occupied by the siable phase grows
as fs and apriori one would expect that energy of oscillations
constitutes gome finite fraction of the latent heat, i.e.
that it also grows as l‘s o Ye see however that his fraction
in fact goes to zero.

We prcceed now to a discussion of gravity effects on the

residual oscillations, in which we restrict ourselves with the
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realistic case when the transition occurs from the De Sitter
space to the same gpace with a smeller cosmological constant
or to the Minkowdki one, i.e. we assume that V(<P,) 20 and
V(¢._) > O . The equations governin,; critical bubble nuclea-
tion were obtained in ref./7/. They read us follows.
In the Euclidean space:

0(4) invarient wetrics -

l:(/fz'*fz(f)C/‘(Z; ; (6)

2
vihere c/Q).; is the squared length element on unit sphere % H

equation for the scuale factor -

o BEa (1T 4TV

where C is the Newton's gravity constant; equaticns of motion

of the fields f,,‘ -

9*‘* 75 f‘ = 0. (8)

In the linkowdki space:

0(3,1) invariant metrics -
2
2 L ‘
dst=ds - 975) 4 L4 (9)
LA
where cJ 'QH is the metrics of unit hyperbcloid;

Fore BTG,

N E_é',,»?._l/._
¢+ 29 T3

(11)
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The light cone on which the Euclidean solution matches
the Minkowski one is defined by f(g) =0 . Obviously, by
shifting $ one can make this cone to correspond to §= 0.
Notice that the scale factor § plays the role which § plays
in the gravity - less case. Indeed if £ = 0 in eq.(7) or
(10) one finds §=7¥.

Equation (11) formally coinsides with that for a spatial-
ly uniform scalar field in expanding universe, where the
friction term is 33%; and H is the Hubble constant. However,
this correspondense is not literal since f‘ has the meaning
of time only locally at ¥ = 0, and the fields ¢q are
not uniform. The df&inction from the uniform case is that the
friction is induced not only by the Hubble expansion but also
by the growth of the bubble.

One can readily see from eq.(11) that in the large 3
asymptotics when linear approximation for ??”?49f%° is jus~-
tified, the average energy of the réaidual oscillations in

the Comoving volume tends to a congtant, i.e.

.P(—Z" + V(ft) V[f—))—’ansz‘ (12)

.f —3 oo

It should be underlined that this equation refers to the
energy of only the oscillations, i.e. the vacuum energy
density V[f-} ia subiracted, since the total energy
associated with a possible non-zero coamological constant
in the final state, naturally, grows as @3 .

Thua, one arrives at the conclusion that the quantum
decay of metastable vacuum is accompanied by clasaical

creation of only finite number of particles. This conclusion
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complements the result /8/ about strong suppression of
quantum creation of particles in the course of false vacuum
decay. This behavior is naturel for physical reasons. Indeed,
the exponential factor exp( - S,, ) in the rate of the decay
ia determined by ballance of the gain in the volume energy
and the loss in the surface energy of the budble, Copious
parti&le creation would have reduced energy gein and thus
suppresged the decay rate.

Haturally the relevance of the conclusion about classgical
fading of the residual oscillations depends on details of
gpecific transition, since it may be that the fading is
slow on the relevant time scale. Por instance, creation by
the oscillating fields of secondary particles can be more
efficient, or if the decay rate is sufficiently large the
bubbles are copiously nucleating and start coaslesce before
the oscillations fade out. In what follows two examples are
considered in one of which the mechanism discussed here sgseems
to be irrelevant while in the other one, i.e, in the case of
the axion coherent wave, this mechanism can substantially
affect estimates of the axion constent.

. The term with friction in eqs.(4) and (11) is efficient if
f’ is large at small .; s lee@e if the value of ;;(0) emer-
ging from the Euclidean golution is such that the derivative
79‘;/@%?& [* (o) is sufficiently large, so that already at
small j’ the fields approach the equilibrium position ¢..» 95.
in which asymptotic relation (5) or (12) is justified. An
example when this is not true is the tunneling in epproxima-

tely Coleman -~ Weinbery potential:
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with /y"zc )72 . (Tunneling in such potential was considered
/1,2/ in the "new inflationary scenario®.) In this case ;(o),v
a2, 4 (39*/p?)  and the fie1d £(5) slowly rolls domn
the flat part of the potential before it reaches the oscilla-
tion region /1’37 . As a result the oscillations start at
large ; at which friction is already small. Of course in this
cage the asymptotic behavior (12) also sets in, which
corresponds to finite, but in this case very large number of
created particles. However with the parameters considered in
refs./1/ and /2/ (effectively these correspond to /‘4 ~
~ 1078 )\4/27 ) oscillation damping due to production of
secondary particles /2/ is far more effective than due to the
bubble growth.

Let us proceed to discussion of the coherent axion wave,
The standard scenario /3/ is the following (see also in ref.
/9/). Before the confinement phase transition in QCD the axion
field 2(X) 1is massless and its spatial average value &, is
arbitrary, and is naturally assumed to be of the order of the
axion constant #,_ (recall that the Hamiltonian is periodic
in a with the pericd 2¥ ﬁ )e After the phase trangition
non-perturbative QCD generate tunpemtm-dependen't axion mass
which grows in th® process of cooling from zero at 7;“’/‘&61:
to p~myfr/fa ot T>0 . It ia aswumed that the phase
transition occurs uniformly in _the space d 7= 7; » and
the relaxation of the average wvalue a,/f) to the position
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corresponding to minimum of the mass term (chosen as & = 0)

is governed by the standard equation

————

d%a da tila =
Tirt3HFE L pEaz0,

(14)
where A/~ T’/f//m” is the Hubble constant ( Mg ~ C!"/ 2
~10'% GeV ia the Planck mass). Once /./U becomes larger than

H /f‘/ adiabatic regime of oscillations starts off (before
that the field does not go fer away from &, /3/). In the
adiabatic regime one has |

a (¢)att) R(£)= const, (15)

-f
where X/Z) is the scale factor, K2} o¢ J&) ', As found in
refs./3/, this regime in fact sets in at a temperasture close
to /. , 8o that at that moment Pl /¢) ia given by

/1(0 ~ Ha CZ/MP( ~ Aa?::b /’"k . (16)

Thus, from eq.{15) one can eastimate the pregent energy density
aspociated with oscillations of the axion field:
_ 3
713 m }’ 7
f‘ =f(la.lt/‘/(.do/7:/~' FIrTr a'z
14
¢ fa. MP(AOCD

(17)

where | is the present temparature: T 2 3K, Therefore,
agsuming that &, ~ ﬁ and requiring that the density ¢, does
not exceed the critical one: Leprf = 2'10-29g.cm-3
10746 Gev4, one finds the bound (1) for ;ﬂ; .

This standard estimate is considerably modified under the
aggumption that the confinement phase transition proceeds
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"
with a certain supercooling. If one assumes that the probabili-

ty V of critical bubble nucleation per unit volume per unit
time is such that

H < W"/", (18)

where /L/ "'A;p/ﬁf” is the Hubble constant corresaponding to

8 cold metastable deconfinement phase, then the Hubble expan-
sion will not have enough time to drag growing bubbles apart
and the transitinn will be completed after the time tp"w-,/‘!
by collision of bubbles, In this case the overcooling factof
exp( /‘/f, ) can on one hand be not too large so that
additional entropy will not dilute the baryon asymmetry, and
on the other hand if the inequality (18) is close to equality,
the overcooling will be gufficient to prevent temperature from
approaching T; arfter reheating. Therefore the axion mass can
be taken as /wﬂyﬁ,i-v const both inside the bubbles end after
their coalescense, '

The condition #« Mpy implies then fhat ,.»H , and also
under the assumed strength of inequality (18) Iu» V'/" R
According to eq.(5), the average axion amplitude inside a
growing bubble behaves at Z >>/‘l ! as

a‘l) ~ &'/ ut)? . (19)
%

When the bubbles coalesce i.e. at io“ [ 4 the resulting avera-
ge 'amplitude arigsea from superposition of axion waves from
different bubbles, therefore this resulting amplitude can be
‘eatimated from q.(19) with £ % 75

a':' ~ & /‘/:yy//’s .

(20)
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Since in the discusaed scenario /ﬂfz)x conat, the present
energy density of the axion field can be estimated as follows

. WY z Wy"r 3
ﬁz-:/ﬁa ~ ,_,__ /"’ ”"z‘f{r —7—.:} (21)

With o~ 72 » W%’»v//'v/‘ac:b /MP( and 7, < T.~Agep
(notice, that T ~ T exf (- H/w'/') < 7; ) one finds

Aacp T3
§a 2 ,,4”) PT

Therefore the condition jaa <.fcri£- is satisfied if the
bound (2) on {;_ is fulfilied.

0f courge the scenario discussed here involves special
assumptions about the confinement phase transition in QCD. In
particular, it aasumes that & metastable cold deconfinement
phase ié possible, which to my knowledge, is by noc means
ruled out. On the other hand, this scenario demonsirates
that in some cases the fading of residusl oscillations can
be quite essential.

Thus, to surmarize, the main conclusion of this paper
is that the ultrarelativistic growth of bubbles of stable
phase in a phase transition by itself gives rise to fading of
regidual oscillations of the fields inside the bubble., The
damping rate corresponds to finite energy of oscillations
ingide an unlimitedly growing bubble. This fading can be
essential for considering consequences of at least some of
the phase transitions through which our universe has passed

I thank A.D.Dolgov end K.G.Selivanov for usefull discuse.

sions.
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