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It is shown that the ultrarelativistic growth of bubbles

of new phase in the course of false vacuum decay gives rise to

effective fading of residual oscillations of fields around the

stable values in the new phase* The damping rate corresponds

to constant total energy of the oscillations inside the bubble.

It is argued that as a possible consequence of this behavior

under certain assumptions about phase transition in QCD the

amplitude of the coherent invisible axion wave can be at present

much less than it is usually estimated* As a result the upper

bound for the axion constant can be relaxed from +*.£ 10 GeV

up to i<> 3#1O16 GeV.
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In the course of its expansion and cooling the universe

underwent a succession of phase transitions in which non-trivial

vacuum structures on different scales were foriaed, i.e. the con-

finement phase transition on the scale of the strong interaction

, formation of the electrovveak symmetry breaking conden-

sate on the Fermi scale and, possibly, analogous transitions at

higher temperature induced by new hypothetical interactions. In

the process of such a transition fields are approaching their

new equilibrium position by oscillations which then fade out

due to various mechanisms. Consequences of these oscillations at

least in some of the past phase transitions can in principle be

observable at present. For instance, in the so-called " new infla-

tionary scenario" /1/ damping of the scalar field oscillations

by particle creation was considered as a mechanism for re-

heating /1/ and as a possible sourse of baryon asymmetry of the

universe /2/. Another interesting theoretical subject of this

kind is the bound /3/ on the constant f^ of invisible axiom

i. £ 10 1 2 GeV <1)

which is obtained from considering energy density associated

with coherent oscillations of the axion field induced in the QCD
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The main goal of this paper is to point out one more

mechanism of fading of the residual oscillations» which

somehow was ignored so far. This mechanism operative at least

in the first order phase transitions driven by quantum rather

than thermal fluctuations is due to ultrarelativistic growth of

bubbles of the new phase. Under the assumption that the con-

finement transition in QCD is of this type (and thus goes in

the early universe with sufficient supercooling) the bound (1)

can be substantially relaxed. As a result the present energy

density of the coherent axion wave would not exceed the critical

one under a much looser than (1) condition

< 3»1O
16
 GeV (2)

We start with reminding the reader few points of the theo-

ry of false vacuum decay. The initial state before the decay is

the metastable vacuum in which mean values of the fields <p
t
"

are <p+ and correspond to a local rather than global minimum

of the potential (or of the effective potential if some of the

fields d>l are composite, as in case of the phase transition

in QCD). Such a state decays /4/ through nucleation due to

quantum fluctuations of bubbles Inside which fields are near

the lower minimum of the potential and subsequent growth of

thise bubbles. To start expanding the bubble пае to hare a fi-

nite critical size at which the energy spent on creation of the

bubble wall is compensated by the gain in the volume energy*

One can find the profile of the fields in the critical

bubble simultaneously with the quaeiclassical action
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which enters in the exponential factor exp( — Д
с
 ) in the

probability of the critical bubble nucleation. To this end

one should conaider /5/ the Euclidean version of the theory,

i.e. with the action

i

and find a solution <P^ (-^f*) (called bounce /5/) to the

equations of motion which satisfy the following two conditions:

i) when \X*\-**° the fields d>{(Xu) tend to their values

in the false vacuum &+ , ii) the second variation of the

action (3) around the configuration f>(fm) should have exactly

one negative mode. Then the WKB exponent is given by &
V
-S[&j»

(Effects of gravity are neglected for a while).

The profile of the fields in the Minkowski space in the

moment of bubble nucleation and during its subsequent classical

growth is determined from the Euclidean solution y(*) by

analitycal continuation*

For what follows the most essential property of the solu-

tion $(*) is its 0(4) symmetry /5/* In the abeense of gravity

this symmetry property is proven in the paper /6/, while with

account of gravity no general mathematical proof of this behavior

is given ao far. However, physical arguments for the 0(4) sym-

metry of bounce are quite transparent. Namely, when continued

to the Kinxowski space the 0(4) symmetry transforms into

0(3»1)t which implies that the expanding critical bubble looks

the same for any moving observer (moreover its center is at

rest in any Kinkowaki frame). If this were not true one should

have to вшп nucleation probability over velocities of the

bubble when calculating the false vacuum decay
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rate*\ i.e. to integrate over the no/i-compact group 0(3,1)

which would give physically senseless infinite probability.

Clearly this argument is applicable for the caae of 0(3.1)

symmetric gravitational background of the false vacuum, in

particular for tunneling from the De Sitter space.

The symmetry 0(4) implies that the fields «^ are functions

of the variable Xu ~
 г
*~+ t* (where r

l
= \7f) -. Therefore in

Kinkowski spuce ^(xp) become fi(
rl
- t) , and the Euclidean

field configuration identically maps on the exterior of the

light cone, i.e. on Г and t such that Г > t . (The coordi-

nate system origin is obviously placed in the center of the

bounce). Notice а1зо that the T-0 spatial сгозз section of

the bounce gives the initial configuration of the critical

bubble in MinkowoJci space (at t-0 ), and that the coordinate s

system origin in the iSuclidean space (Г*-* Г*» О) maps on the

whole light cone (л*- t^O ). Thus the value of the fields

are constant on the light cone and provide the boundary condi-*

tions for evolution of the fields inside the light cone which

contains the expanding region of the stable phase with the

residual oscillations around new vacuum mean values. It can

also be mentioned that we do not use here the so-called thin

wall approximation /4,5/
f
 i.e. the difference between fo(°)

and the new equilibrium values <JL is not assumed to be email

so that apriori the oscillations could be large.

Since the boundary conditions are defined on the Lorentz

It is thia integration which was erroneously suggested in

ref./4/. Xo avoid infinite result an artificial cutoff was

introduced.
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A
the solution Inside the light cone depends only on

-li-^j • Tthe invariant ^-li-^j • The equationjof laotion in

look as follows

ti * -Jfi ?ft~ > (4)

where the dot denotes derivative over <f . The term Зф/^

clearly implies energy dissipation. In the large £" aayiapto-

tics when one can use linear approximation for fY/oft near

the equilibrium position 4>~ , the amplitudes <£,' of devia-

tions of tae fields from d>_ are given by the Зеззе1 function

d; oc J, (*»?)/%
 f

where fn is the тазе matrix ;

This шеапа, tliat average over the period amplitudes of oscilla-

tions fade as ^ . In other words all euerjiy excess «< ( V(f

~~ r(<f>-)j' t is spent on acceleration of the bubble

walls, i.e. this energy flows near the light cone Г = £ ,

while the totul energy of the residual oscillations inside the

cone Г<(i -() t with arbitrary sn#ll positive £ tends to

a constant value o<£lc£/t when ZT goes up to infinity.

Notice that the volume occupied by the stable phase grows
/3

as Z and apriori one would expect that energy of oscillations

constitutes £onie finite fraction of the latent heat, i.e.
/3

that it also grows as Z • We see however that his fraction

in fact goes to zero.

IVe proceed now to a discussion of gravity effects on the

residual oscillations, in which we restrict ourselves with the
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realistic case when the transition occurs from the De Sitter

space to the same space with a smaller cosmological constant

or to the Kinkowdki one, i.e. we assume that V (<р+) > О and

VСФ-~) Ъ- О • The equations yovernini; critical bubble nuclea-

tion were obtained in ref./7/. They read ua follows.

In the Euclidean space»

0(4) invariant metrics -

where C/-J <-c 1з the squared length element on unit sphere »S,

equation for the scale factor -

( 7 )

where 6- is the Newton's gravity constant; equations of motion

of the fields

In the UinkowdJci space:

0(3t1) invariant metrice -

<=i->Ctfwhere <a->c# is the metrics of unit hyperboloid;

(10)

(11)
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The light cone on which the Euclidean solution matches

the llinkowski one is defined by £($) "= 0 . Obviously, by

shifting Г one can make thia cone to correspond to ^ = 0.

notice that the scale factor f plays the role which g plays

in the gravity - less case. Indeed if £ =• 0 in eq.(7) or

(10) one finds f - f •

Equation (11) formally coinsides with that for a spatial-

ly uniform scalar field in expanding universe, where the

friction term is 3 # ^ and H is the Hubble constant. However,

this correspondense is not literal since £* has the meaning

of time only locally at f = 0, and the fields ^l a r e

not uniform. The divinetion from the uniform case is that the

friction is induced not only by the Hubble expansion but also

by the growth of the bubble.

One can readily see from eq.(11) that in the large

asymptotics when linear approximation for 0*f0ri ie jus-

tified, the average energy of the residual oscillations in

the comoving volume tends to a constant, i.e.

$ -* *°
It should be underlined that this equation refers to the

energy of only the oscillations, i.e. the vacuum energy

density V(f-) is subtracted, since the total energy

associated with a possible non-zero coamological constant

in the final state, naturally, grows &a f3 .

Thua, one arrives at the conclusion that the quantum

decay of metastable vacuum is accompanied by classical

creation of only finite number of particles. This conclusion
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complement/ the result /8/ about strong suppression of

quantum creation of particles in the course of false vacuum

decay* This behavior is natural for physical reasons* Indeed,

the exponential factor exp( - Jbe ) in the rate of the decay

is determined by ballance of the gain in the volume energy

and the loss in the surface energy of the bubble. Copious

particle creation would have reduced energy gain and thus

suppressed the decay rate*

Naturally the relevance of the conclusion about classical

fading of the residual oscillations depends on details of

specific transition, since it may be that the fading is

slow on the relevant time scale* For instance, creation by

the oscillating fields of secondary particles can be more

efficient, or if the decay rate is sufficiently large the

bubbles are copiously nucleating and start coalesce before

the oscillations fade out* In what follows two examples are

considered in one of which the mechanism discussed here seems

to be irrelevant while in the other one, i*e. in the case of

the axion coherent wave, this mechanism can substantially

affect estimates of the axion constant.

The term with friction in eqs.(4) and (11) is efficient if

Y is large at small f , i«e. if the value of fc/eJ emer-

ging from the Euclidean solution is such that the derivative

,' IT / j is sufficiently large, so that already at

small J" the fields approach the equilibrium position f>z> Y-

in which asymptotic relation (5) or (12) is justified. An

example when this is not true is the tunneling in approxima-

tely Coleman - Weinberg potential:
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b
4* Д ъ

г
 • (Tunneling in such potential was considered

/1,2/ in the "new inflationary scenario
11
.) In this case fto)~

JU
Z
/X Ж {by/**-) and the field $>(%) slowly rolls down

the flat part of the potential before it reaches the oscilla-

tion region j> %• Ь .As a result the oscillations start at

large J at which friction is already small* Of course in this

case the asymptotic behavior (12) also sets in, which

corresponds to finite, but in this case very large number of

created particles» However with the parameters considered in

refs./1/ and /2/ (effectively these correspond to f* "*•*

/v io" А Ь ) oscillation damping due to production of

secondary particles /2/ is far more effective than due to the

bubble growth*

Let us proceed to discussion of the coherent axion wave*

The standard scenario /3/ is the following (see also in ref.

/9/)* Before the confinement phase transition in QCD the axion

field &t*} is massless and its spatial average value &
o
 is

arbitrary, and is naturally assumed to be of the order of the

axion constant fa (recall that the Hamiltonian is periodic

in a with the period STfa )• After the phase transition

non-perturbative QCD generate temperature-dependent axion mass

which grow» in tht process of cooling from zero at Т
е
^А^сц

to f4***jV(fii at 7"-» О . It is assumed that the phase

transition occurs uniformly in the space aZ 7"» T
c
 , and

the relaxation of the average value O,l£) to the position
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corresponding to minimum of the mass term (chosen as A — 0)

is gorerned by the standard equation

where H** T*fc?/m
H
 is the Hubble constant ( t*pt ~ С

<*-10 * GeV i« the Planck mass). Once к((:)becomes larger than

H("£/ adiabatic regime of oscillations starts off (before

that the field does not go far away from й>
с
 /3/)> In the

adiabatic regime one has

„ f

where R(i) is the scale factor, Rli) oC TCi) . As found in

refs./3/, this regime in fact sets in at a temperature close

to T
c t

 so that at that moment А/г/ is given by

y*
p
 ^ H ~ T

c
 /М

рг
 *~ A

a
ct> /»!& . (16)

Thus, from eq.(!5) one can estimate the present energy density

associated with oscillations of the axion field:

\ cm

where T is the present teapexature; T 2£ 3K. Therefore,

assuming that &, "* }л and requiring that the density f± does

not exceed the critical one: /Vr«V ^ 2»10~
29
g.c

a
~^

10~
4 6
 Ge7

4
, one finds the bound (1) for ^, .

This standard estimate is considerably modified under the

assumption that the confinement phase transition proceeds
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with, a certain supercooling. If one assumes that the probabili-

ty Ir of critical bubble nucleation per unit rolume per unit

time is such that

where fl ̂ AfcD/^Jy is the Hubble constant corresponding to

a cold metastable deconfinement phase, then the Jiubble expan-

sion will not have enough time to drag growing bubbles apart

and the transitInn will be completed after the time Z,о ~
 п

by collision of bubbles* In this case the overcooling factor

ezp( rlt
o
 ) can on one hand be not too large so that

additional entropy will not dilute the baryon asymmetry, and

on the other hand if the inequality (18) is close to equality,

the overcooling will be sufficient to prevent temperature from

approaching 7^ after reheating* Therefore the axion mass can

be taken as M**^жргм^ const both inside the bubbles and after

their coalescense*

The condition £ ** "^p/ Implies then Uud *»/V , and also

under the assumed strength of inequality (18) to » W1r< .

According to eq.(5), the average axion amplitude inside a

growing bubble behaves at L »A<~ as

. (19)

# ~ *̂  tWhen the bubbles coalesce i.e. at Г
#
~ *̂  th» resulting avera-

ge amplitude arises from superposition of axion waves from

different bubbles, therefore this resulting amplitude can be

estimated from eq*(i9) with £ & to i
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Since in the discussed scenario fli)^ const, the present

energy density of the axion field can be estimated as follows

p 1/ *~

With de^fi* W / У ~ Н*- AUCD /ft1p{ and TA < Tc~Aacj>
(notice, that 7^ *> \ ек*> С" Н/М1/*) < Тс ) one finds

/WD у
3

Therefore the condition £
л
 < ^еж-ib

 i s s a t i s f i e d i f t h e

bound (2) on /
д
 is fulfilled.

Of course the scenario discussed here involves special

assumptions about the confinement phase transition in QCD. In

particular, it assumes that a metastable cold deconfineoent

phase is possible, which to my knowledge is by no means

ruled out. On the other hand, this scenario demonstrates

that in some cases the fading of residual oscillations can

be quite essential.

Thus, to summarize, the main conclusion of this paper

is that the ultrarelativistic arowth of bubbles of stable

phase in a phase transition by itself gives rise to fading of

residual oscillations of the fields inside the bubble. The

damping rate corresponds to finite energy of oscillations

inside an unlimitedly crowing bubble. This fading can be

essential for considering consequences of at l«ast aoiae of

the phase transitions through which our universe has passed

I thank A.D.Doleov and K.G.Selivanov for usefull discus*

sions.
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