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ABSTRACT

The density limit observed in tokamak experiments is thought to be que
to a radiative collapse of the current channel. A transport code coupled. with
an MHD equilibrium routine is used to determine the detailed, se{f—consnstent
evolution of the plasma profiles in tokamak discharges with radiated power
close to or equalling the input power. The present work is conﬁ.ned to ochmic
discharges in steady state. It is found that the shape of.the density profile can
have a significant impact on the variation of the maximum electron density
with plasma current, Analytic calculations confirm this result.
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I. Introduction

The limit on density cbserved in present tokamak experiments is not of
much interest except as a parameter space boundary that is to be avoided.
However, in a burning plasma it represents a limit to the amount of fusion
power that can be produced; that is. it restricts the value of ntg (n is the
plasma density, 7 is the energy confinement time) that can be achieved. In
fact, transport simulations of two recent reactor designs' and the Compact
Ignition Tokamak®3 (CIT) do not predict ignition with an L-mode* scal-
ing for 7g when the density is required to remain below that predicted by
present expressions for the density limit. Several formulas for the density
limit are now in use, and most match recent data very well. However, when
extrapolated to high fields and significantly noncircular cross sections, their
predictions vary considerably. In an a‘tempt to reduce the uncertainty in the
density limit scaling law, we will use the 1-1/2-D BALDUR®® transport code
to simulate high density tokamak discharges. Hopefully, this will lead to a
model of the density limit with a predictive capability. If the procedure is
successful, the resulting model could be used to optimize the design of future
ignition devices. In this paper we will describe the first step in the develop-
ment of such a simulation model and will show results for ohmic discharges.
Later work will include detailed comparisons with experiments.

The first scaling law for the maximum density in tokamaks was proposed
by Murakami et al.” They noted that 7; ., « By/R, where fI; is the line-
averaged electron density, By is the toroidal magnetic field, and R is the
plasma major radius. This scaling was later refined to include 2 dependence
on the plasma current through the safety factor, g; namely,® 7; ... < Br/Ry.
A density limit expressed in this form is often referred to as the Hugill limit.
The Murakami limit is then the maximum density for all values of the plasma
current.

It is not clear how to extend the scaling law for the Hugill limit to include
tokamaks having elongated cross sections due to the wide variety of analytic
expressions for g and its cylindrical equivalent, g,y. Greenwald has recently
made an attempt to consolide the data from machines of various shapes
and sizes.®!° He concluded that a tokamak with a high power density, low
impurity level, and efficient central fuelling is limited to a density #i; ; =
#J x 10%m 3, where & is the plasma elongation and J is the average plasma



current density (in AJ.4/m?). Compared to present Hugill-type scalings, this
expression tends to be more favorable for highly elongated reac:or designs.

Unfortunatejy, the range of « covered in the present data base is not suffi-
cient to rule out clearly the Hugll-type scalings. For example, the maximum
density observed in the Joint European Torus (JET)! is 7 .. = 2B7v/ Ry.,
where ¢, = 5u?xBr/ R, is referred to as the engineering safety factor. Nute
that we express Bt in T, a (the plasma minor radius) and R in m, and
I; (the plasma current) in MA. Given the uncertainties in the experimental
measurcments and the limitation to £ < 1.7 in the JET device, it is diffcult
to discern between this and the Greenwald expression. Yet, the values they
predict differ significantly at elongations of £ > 2, typical of reactor designs.
The more theoretical approach of transport simulation could provide one
means of bridging this gap in the data base.

Most of the explanations proposed to date for the density limit rely upon
impurity radiation-induced profile changes as the primary cause of the dis-
ruption.'*”'" However, one of the conclusions drawn by Greenwald is that
the maximum density obtainable for a given current is determined not by
radiation, but by a deterioration of the particle confinement in the plasma
core. Due to the lack of detailed models for this pracess, transport cades can
do little to clarify the situation except to provide a means for carrving out
the arduous task of preparing complete simulations of particular discharges.
We can, however, examine with relative ease many of the consequences of
impurity radiation. Therefore, we confine our attention in the present work
to discharges dominated by impurity line radiation.

The model used for this radiation is of great importanr-.. Most of the the-
oretical work carried out so far has employed the coronal equilibrium model'®
due to its relative simplicity. However, the model is known to yield radiated
power levels that are far below those found in actual experiments.!® On the
other hand, by using an empirically determined scaling for the radiation in
JET, Campbell et al.?° were able to derive a reasonable expression for the
density limit simply by balancing the radiated power and the total input
power. There are limitations on the parameters for which this expression is
applicable; hence, there is a need for more theoretical input. Computer codes
capable of accurately modelling the radiation in systems deviating from coro-
nal equilibrium are presently being used in the analysis of tokamak data.?!
Hopefully, these same techniques can be applied to studies of the density



limit.

With a 1-1/2-D transport code, we can investigate self-consistent. time-
dependent profile effects. We have complete freedom in the specification of
transport models and plasma compasitions, Plasma fuelling by gas puffing
and pellet injection can both be modelled. In addition to ohmic heating,
auxiliary input power from neutral beam injection or other sources can he
included. By coupling the transport cade to an equilibrium code, we can
investigate MHD effects in detail. For example, sawtooth oscillations and
tearing modes (currently being installed in the BALDUR code??) will have
a significant impact on the discharges we investigate,

The present work is limited to steady-state simulations of chmic dis-
charges; a TFTR geometry is used.?® In particular, we focus on density
profile effects. The most important difference between flat and peaked den-
sity profiles is that, for a given volume-averaged density, a flat profile has a
higher density near the edge. It is in this low temperature edge region that
the impurity line radiation {proportional to the local product of the electron
density and the impurity density) peaks. The higher density in the flat pro-
file case leads to a greater contribution to the overall radiated power. Hence,
flat profile cases are restricted to lower average densities than peaked profile
discharges with the same input power.

V/hat is more surprising is that in simulations with centrally peaked den-
sity profiles (edge density much less than central density) there is a significant
variation in the eritical Murakami parameter with g.,, as observed experi-
mentally (i.e., the Hugill limit). On the other hand, with flat profiles (edge
density slightly less than central density), the critical Murakami parameter
is almost independent of g.y. We show analytically that these results are a
consequeace of the effect changing g« has on the sawtooth mixing radius,
{(in our model) the electron temperature profile, and safety factor profile.

In Sec. 11, we specify the simulation model we will be using. We give our
nurnerical results in Sec. l1I. The analytic calculations will be described in
Sec. IV. Finally, a discussion and summary is presented in Sec. V.

II. Simulation Model

We now describe briefly our transport code and discuss the models and
assumptions used in the simulations. We emplay the 1-1/2-D BALDUR
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transport code; details on it have been given elsewhere.® It integrates in
time a set of flux-surface-averaged transport equations on a radial grid of sur-
faces of constant toroidal flux. Their shape is provided by a set of moments
equilibrium routines that are interfaced with the transport code. The trans-
port equations solved describe the diffusion of density, energy, and magnetic
field:
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There are separate equations for the density, n(£,t), of each ionic species.
The electron density is computed from quasi-neutrality. Separate energy
equations are solved for jons and electrons; the temperatures, T(¢,¢£), of all
ionic species are taken to be equal. The quantity appearing in Eq. (3) is
actually a normalized poloidal flux gradient:

Otbpot/ p
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In the limit of a circular cylinder geometry, this B, reduces to the actual
poloidal magnetic field. Note that p is a flux-surface Jabel defined by p =
(d;,,,,/rrBDREp) 2. Borer and Rorgr are a fixed reference magnetic field
and major radms, respectively. The equations have been transformed into a
coordinate system with arbitrary flux surface label §. The toroidal (poloidal)
fluxes are denoted by ¥y (¥} The volume inside flux surface £ is V/(&,¢);
V/ = §V/B€. An overdot indicates a derivative with respect to time . The
particle and heat fluxes are designated as I', and g,. The subscript p signifies
that they are defined relative to surfaces of constant toroidal flux. Volume
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sources of particles (energyv] are contained in § (Q). Finally, in the magnetic
diffusion equation, Eq. (3). R is the major radius. n is the plasma resistivity.
and I{§) = RBr, where By is the toroidal magnetic field. We show fur
completeness contributions from beam-driven current (Juam) and bontstrap
current (Jyoot). although we do not make use of either in these simulations.
In all cases. the angle hrackets denote a Aux-<uarface average.

We will keep the expressions for the fluxes relatively simple in order to
focus on the effects of radiation in the power balance. The expression we use
for the heat flux is

' 12
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where the subscript j denotes electron or ion thermal flux. In this particular
version of BALDUR, the flux-surface label, £, is taken to be the square root of
the normalized toroidal flux, £ = (:p.o,/;b,,,,,,)"z, where Yjorq is the toroidal
flux at the plasma boundary.

The thermal diffusivities are based upon the INTOR mode).?* They should
give rise to a neo-Alcator type scaling for the energy confinement time, as is
appropriate for an ohmic discharge. One could argue that this is not suitable
at the highest densities where a saturation of the energy confinement time
with density is usually observed.?® In the interest of simplicity, however. we
use the following model for all of the simulations discussed here. We set

Xe = 2.6/n10(€) + %', (6)

and
Xi = 1.3/n.15(£) + xFH. (7)

The units on both are m?/sec; ne,19(€) is the local electron density in units of

10'®* m~3. The neoclassical contribution computed by Chang and Hinton®

is included as x ¥. The neoclassical electron thermal diffusivity x¥C is

also included; see Ref. 5 for the detailed expression. The overall constants in

Eqgs. (6) and (7) have been chosen to yield reasonable central temperatures in

a steady-state, ohmic TFTR discharge { ~ 2.5 keV, see for example Rel. 27).
The particle flux of ivnic species j is written as

5 7 neo -'v :
(£, V¢, = (*‘DJ‘E';—(IVEI)T“J‘UJ’ -0 ) ((—\V-EE%’ (8)
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and we assume

r is a generalization of the minor radial coordinate. Here, r is defined as
half of the width (the half-width) of a given flux surface on the midplane.
It is thus a flux surface quantity. The neoclassical flux, ['}*°, includes the
Ware pinch for the hydrogenic components. The complete expressions are
given in Ref. 3. These values for D and v are based loosely upon the TFTR
simulations performed by Redi et al.?” We have increased D by a factor
of 5 to reduce the simulation time required for the profiles to reach steady
state following an increase in density by gas puffing. We have also removed
the impurity neoclassical contribution te I} so as to obtain centrally peaked
impurity density profiles soon after impurity influxing. The resuiting steady-
state profiles are consistent with those found in simulations not emploving
impurity influxing.

This transport model leads to centrally peaked electron density profiles
when combined with an edge density that is much less than the volume
average. Flat density profiles are obtained by removing the anomalous inward
pinch (v = 0) and raising the pedestal boundary condition for the hydrogenic
species to a value close to the volume.averaged density.

The only source term we will describe here is the impurity line radiation.
It appears as a sink in the electron energy balance equation. The other
contributions to Egs. (5) and (8) are given in Rel. 5. For low temperature
( < 2 keV'), impure plasmas, the primary contribution to the radiative losses
is from impurity line radiation. At low densities ( n, < 10°2 m™2), the plasma
is transparent to its own radiation. Under these conditions, the electron
collisional ionization rate can be balanced with the total recombination rate.
Such systems are said to be in coronal equilibrium.'®?® The result is an
expression for the radiated power per unit volume of the form

Prad = n:n:L:(Te)a (9)

where = indicaies a particular impurity species. In addition to the function
L.(T.)}, one also obtains {Z) and {Z?) as functions of the electron temper-
ature, T,, only. These are the average values of the impurity charge and



its square in coronal equilibrium. In these simulations we will employ sepa-
rately a high-Z impurity, titanium, and a low-Z impurity, carbon. We show
in Figs. | and 2 plots of the formulas used'®?® for L.(7.) and (Z).

In general, coronal equilibrium is thought to be a good approximation
when the plasma is stable in time, the neutral density is small. and the
transport time scales are long relative to jonization and recombination time
scales, Although these conditions are not likely to hold for a typical TFTR
discharge, we utilize the coronal equilibrium model in the present work for
simplicity. In preparing for detailed comparisons with experimental results
in future worx. we intend to upgrade the BALDUR code to account for some
of the expected deviations from coronal equilibrium.?

Sawtaath oscillations in BALDUR are modelled using a Kadomtsev re-
connection picture.?®3® Of course, for there to be a reconnection, the safety
factor on axis must be less than unity. When it is, the code periodically flat-
tens the density and temperature profiles out to the mixing radius; there is
no (direct) alteration of the exterior portion of the plasma, The value of the
mixing radius is computed from the Kadomtsev theory.® It is typically 20
to 40% larger than the radius of the g = 1 surface. Since detailed models for
the periodic trigger rnechanism of the sawtooth oscillations are not available,
the user is required to speci'y the period on input. For all of the simulations
discussed here, it is fixed ac 0.04 sec, typical of TFTR discharges exhibiting
sawtooLh oscillations.?”

We wish to use this simulation model to fill out a Hugill diagram; that
is, a plot of the maximum density attainable (rormalized to Br/R) as a
function of 1/g,. Here, we use gy = 5a®Br/Rl,, where ¢ and R are in m,
Brisin T, and I, is in MA. We start each simulation with parameters such
that the radiated power is well below the ohmic input power. After allowing
a short period of time for the plasma to come to steady state (typically 2
sec), we make a small change in some parameter. Following this, we ailow
another second of simulation time for the system Lo return to a steady state.
The parameter is then altered again, and so on until the code fails. In most
cases, these failures are the result of exceeding a specified number of time
steps. The time steps shorten considerably as the profiles contract.

In order to isolate the effects due to varying sawtooth mixing radii, we
choose to scan 7 B/ Br at constant go4. We use one of two procedures to
carry out the scan. The easiest is to decrease I, and Br at constant [,/ By,



AR, and n;. The other is to raise 7, by gas puffing. In order to keep n./n,
constant, we also influx an appropriate amount of the impurity species. In
this way, Z,.¢y remains approximately constant. We define

2
Zujy = M, (10)
nﬂ
where the sum is over all ionic species: their densities and charges are desig-
nated as n; and (Z3), respectively. We will consider elsewhere the effects of
allowing n./n, to vary.?

For all of the simulations described here, the initial boundary condi-
tions on the electron and ion temperatures at the plasma edge are of the
pedestal type; typically, T = 20 eV. As the Murakami parameter, 7y R/ Br,
is increased, the amount of radiation relative to the input power increases,
making it more difficuit to maintain the edge plasma. At some point, the
temperature of the computational zone just inside the boundary falls below
the specified pedestal value. The presence of this positive gradient causes
the code to switch to a zero energy flux boundary condition. Then, the edge
temperature as a whole begins to fall, and the profile starts to contract.

We find that if 7R/ By is held fixed with a contracted profile, the plasma
remains in a steady state. This mode of operation is reminiscent of the
detached plasma experiments performed on TFTR.323 At the edge of the
computational boundary, one finds that the total radiated power equals the
input (chmic) power. In other words, the conducted and convected powers
at the edge are effectively zero since T = 0 and dT/dr = 0 there.

Because the present BALDUR code does not contain a detailed mecha-
nism for identifying the conditions under which the plasma should disrupt,
we must use a more arbitrary criterion for defining the density limit in our
simulations.

Of course, the simplest limit is the smallest 7, R/ By for which the ra-
diated power equals the input power. This would provide some interesting
results, but would not tell the whole story. Namely, it is known that this is
not a sufficient condition for a density limit disruption.'6?"3233 Restricting
aurselves to this limit would also prevent us from utilizing some of the key
features of a 1-1/2-D transport code. Namely, we would not be able to in-
vestigate the process of forming the contracted profiles, nor would be able to
consider separately their stability (through the built-in equilibrium data).
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The shape of the current profile in the vicinity of the ¢ = 2 surface
determines the stability of the m = 2. n = 1 tearing mode. This mode is
thought to be instrumental in causing the observed disruption.'®%02% §o, a
reasonable disruption criterion can be based upon the degree to which the
profiles near ¢ = 2 are altered from their low radiation counterparts. For
clarity, we choose to define a limit as that value of the Murakami parameter
for which T, = 20 eV at the ¢ = 2 surface. In this way, virtually no current
is flowing outside of the ¢ = 2 surface,'%?35 [t appears that a larger value
for this critical temperature may be more appropriate,®®

Another approach would be to plot the value of the internal inductance,
¢;, against g as the simulation evolves. Cheng, Furth, and Boozer® have
computed stability boundaries in this space for external kink and tearing
modes in circular cross section cylinder geometry. Their results could be used
to define a more Ltheoretically precise disruption limit. However, without
more calculations of the same sort for elongated geometries, it would be
difficult to generalize this criterion to CIT and the various reactor designs.
Furthermore, only recently has an appropriate diagnostic for ¢; been installed
in BALDUR. Most of the simulations discussed in this paper were performed
prior to this upgrade.

In the future, a saturated tearing mode package,” currentiy being in-
stalled in BALDUR, will be utilized. By looking at the widths of the islands
present, we might be able to arrive at a physically reasonable disruption
limit. For now. we find it most convenient to define the density limit as
occurring when T, = 20 eV at the g = 2 surface. In addition to the above
reasons, we prefer this procedure since it allows a precise definition of the
critical Murakami parameter. However, it was necessary to use T, = 200 eV
in the carbon impurity runs in order to compare uniformly all of the data.
Some of these terminated prior to satisfying the original criterion.

In all of our simulations, we employ a TFTR geometry: R = 2.57 m and
a = 0.82 m. For our baseline parameters, we take I, = 2.2 MA, Br = 4.7
T, and 7i; = 4.7 x 10*® m~3. These values are typical of TFTR low-q, chmic
discharges.?” The actual plasma current, magnetic field, and electron density
will vary from simulation to simulation.

The initial gas fill is mostly deuterium and hydrogen in a 9:1 ratio. In
each run we use either titanium or carbon as the impurity species. When 7,
is held fixed (or increased), gas puffing of the hydrogenic species in the 9:1
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ratio offsets diffusive losses. The code is set up with a zero flux boundary
condition on the impurity species so that their number is conserved in the
ahsence of user-specified influx.

I11. Results

In Table I, we show the various parameters for each of the runs and the
line-averaged electron density, plasma current, magnetic field, and Murakam
parameter at the time the disruption criterion is satisfied. All of the runs in
the 02 and 03 series employ a titanium impurity. Carbon is used in 05 and
06, Because the changes in the temperature affect the average charge state
of the impurity, it is difficult to assign a precise value of Z.; to each run.
For the runs with titanium, Z.;; =~ 1.1 — 1.2; with carbon. Z,;; ~ 4 - 5.
Less titanium can be tolerated as a result of the bigger and broader (in
ternperature) peaks in the L(T,) cutves shown in Fig. 1.

The runs 02d, 02f, 02g, and 02h form a gy scan with peaked density
profiles. Similarly, 02, 02, 02k, and 02! form a g, scan with flat density
profiles. For all other situations, just two different values of gy are used
to determine the scaling of the critical Murakami parameter. We show our
results graphically in Fig. 3, where we plot 7 /By vs. 1/q.u x I,R/Br.
The primary result is that with flat profiles iR/ Br depends weakly on g,
whereas just the opposite is true for the peaked profile runs. We also display
in Fig. 3 lines given by the scalings & = Br/Rq~ and 7y = 287/ Rgyu.
Many of the present day estimates for the density limit scaling fall between
these two lines (see, for example, Reis. 10 and 11).

As an example of how the electron temperature profile varies with sim-
ulation time (i.e., with the Murakami parameter), we show T,(r,¢t) from
simulation 02h in Fig. 4. The contraction with incremental increases in the
Murakami parameter (due here to decreases in Br and [,) is clear. The cen-
tral temperature drops steadily as well. Some variation in the center due to
sawtooth oscillations is apparent in Fig. 4, but the profiles remain relatively
flat inside of the mixing radius at all times. At ¢ = 8.0 sec in 02h, T, = 35
eV at the g = 2 surface (r >~ 0.55 m). By the end of the run, the electron
temperature at that radius is well below 10 eV. The critical parameters of
Table I are obtained by interpolating between these two steady states, so that
there is no set of profiles corresponding exactly to our disruption criterion.
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In Fig. 5. we plot the toroidal current density as a function of time and
radial half-width for simulation 03d. Note that since this run is a density
scan, the total plasma cutrent is held fixed at 2.2 MA. As the temperature
profile contracts, so does the current profile. The effect of each incremental
addition to the density is evident as the edge of the current profile moves
further in. The relatively frequent sawtooth oscillations cause the current
density to be more or less flat in the center throughout the simulation. Note
that at the end of this run, the ¢ = 2 surface is near » = 0.6 m. and the
sawtooth mixing radius is approximately » = 0.4 m. Figure 3 clearly shows
that virtually all of the current is inside the g = 2 surface by the end of
the simulation. indicative of an unstable profile. Our disruption criterion is
actually met prior to this point. In particular, 7, =~ 30 eV at t = 6.5 in
this run. Again, the value of 7z, given in Table | is obtained by interpolating
between this state and the one found at the end of the simulation.

[n Fig. 6, we present typical eleciron density profiles from two runs using
a titanium impurity. The peaked profile comes from 02h. and the flat one
is taken from 02l. In both cases, the sawtooth mixing radius is ~ 0.3 m.
We should point out that even with the inward pinch, the variations in the
density profile during the sawtooth rise are relatively minor. Furthermore.
when the titanium impurity is used, the changes in its overall shape as other
parameters (/,, Br, and 7;) are varied are minimal. This is true even for
states with severely contracted temperature profiles.

Figure 7 contains a plot of the electron density as a function of time and
radial half-width for simulation 06e. This is a flat profile I, Br scan with
carbon impurity. Note that as the contraction proceeds the central density
increases to maintain constant 7. The carbon density profile remains flat
thrrughout. The contraction is the result of the reduction in {Z) of carbon in
the outer zones as the local electron temperature falls with time (see Fig. 2).
This effect is not apparent in the titanium runs because of the much lower
contribution to n, made by the impurity, (Z)n.. Note that with Eq. (10),
(Z)n, = (Zegy — 1)/{{Z) = 1). Se. there is less electron density due to the
impurity in the titamium runs than in the carbon runs because of the lower
Z.z5 and the higher (Z).

The radiated power per unit volume fi.e., Eq. (9)] as a function of time and
radial half-width for simulation 02h is displayed in Fig. 8. The contributions
from the primary (low temperature) and secondary peaks of L(T;) are clear
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{see Fig. 1). Note that even with constant line-averaged electron density the
magnitude of the primary peak increases as the contraction progresses. This
is just due to the higher electron and impurity densities at the smaller radii.
One effect that is not clear in Fig. 8 is the change in the radial width of
the peaks as the temperature protile steepens. In particular. a steeper (more
contracted) temperature profile leads to a narrower peak in the radiated
power since the width of L(T,) it temperature space is fixed. The total
radiated power is given by:

Py = 1228 f * rdrnen, L{T,(r).. (11)
0

In this expression, a steeper temperature profile leads to a smaller dr for 2
given dT,. Furthermore, because of the contraction, the factor r is smaller
as well. Thus, in the contracted state the reductions in the volume element.
rdr. corresponding 1o a given peak in L(7,) can counteract to some extent
the increased densities. and the total radiated power does not vary so much.
These effects are critical to understanding why the maximum Murakami pa-
rameter for the simulations scales as shown in Fig. 3. We will clarify these
poiats in Sec. IV.

As pointed out in Sec. II, the flat profile runs are obtained by removing
the anomalous inward pinch from the particle transport model and setting
the edge density close to the volume average (e.g., Fig. 6). This implies that
».n. in the low temperature (T, < 100 V) region is much larger than it is
for peaked profiles with the same volume-averaged density. Consequently, if
all other factors are the same, the total radiated power is greater with flat
profiles. In choosing the initial conditions for the flat profile tuns, we took
this into account. With titanium, we just lowered the impurity concentration
relative to that used in the peaked profile ‘cases. In 06c and 0Be, the two
carhon runs with fat profiles, we reduced #;, as indicated in Table 1. In
Fig. 8, the radiated power per unit volume increases as the contraction of the
temperature profile progresses due to the peaked profiles. With flat profiles,
however, the radiated power per unit volume remains approximately constant
as the simulation proceeds. This is demonstrated in Fig. 9, taken from 02j. In
cases such as this, the total radiated power tends to decrease with increasing
AMurakami parameter due to the volume element shrinkage noted above.

We feel that these effects are connected directly to the scaling of the
critical 7; R/ Br with goy noted in Fig. 3. The crucial puint is to realize that
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as gy is increased, the ¢ = 2 surface moves closer to the magnetic axis and.
thus. to regions of higher density, assuming a fixed, peaked density profile.
At our defined point of disruption, the radiation peaks near the ¢ = 2 surface.
For the higher g, runs, the radiation per unit volume at this point is larger
simply because the density is larger. In some sense, this requires a higher
ohmic heating power to maintain thermal equilibrium. Since Fpy increases
with Br/R, this requirement translates to a smaller maximum Murakami
parameter.

We should also point out that the initial points for the runs comprising a
ey SCan are, in the 02 series for example, Jp = 2.2 MA and 77, = 4.7 x 10"?
m™2, with By computed from g,y. For the peaked profile runs in this series, it
is clear that Poy/ Praq increases with g.u while Poy remains almost constant.
Again, the reason for this is the eflect of the density profile shape on Pqq.
Hence, our reasoning does not apply just to conditions at disruption.

This analysis can easilv be generalized to the case where the volume-
averaged density is allowed to vary for fixed current and toroidal field if the
density profile remains fixed. We will quantify these arguments in the next
section.

IV. Analytic Calculations

We now attempt to demonstrate analytically how the scalings noted in
Fig. 3 might arise. These calculations will be carried out within the confines
of our model, the limitations of which have already been noted. Previous
theoretical studies have yvielded scalings for the maximum Murakami param-
eter independent of current,'” as well as a scaling of the maximum density
with current (i.e., a Hugill limit} by the introduction of various physical ef-
fects.12141620 Rebut and Green,!® for example, relied in part on the scaling
of neoclassical transport coefficients to obtain a variation in the Murakami
parameter with ¢. Ohyabu®® found a g scaling via its eflect on the tempera-
ture in ohmic equilibrium. The result presented by Campbell et al.® employs
an empirical scaling for the radiation that has g, dependence in the volume
of the radiating layer (and implicitly through the input power). The work
presented in Ref. 16 perhaps most closely resembles that discussed in Sec. I1I.
Roberts'® included the effects of a density gradient when computing the radi-
ation. The contracted current profiles were examined for tea. ng mode stabil-
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ity in arder to identifyv disruptive conditions. As in our Fig. 3. Roberts found
that the critical Murakami parameter increased with decreasing q,;. Their
calculation lacked, however. self-consistently computed current and density
profiles, and did not explicitly include the effects of sawtooth oscillations.

We will show how the presence of a density gradient can lead to a variation
of the Murakami parameter with g.; for these purposes, gy = 5a’Br/RI,,
where A and a (the full simulation minor radius) are in m, Br isin T, and I,
is in M A. Since the sawtooth oscillations are instrumental in determining the
radial transport in these simulations, we find it necessary and even conve-
nient to include their effects here. In general, the line of reasoning used in our
calculations is motivated by the detailed results of our simulations. While
this limits us to the models assumed therein, it also allows us to check inter-
mediate expressions. insuring a thorough understanding of the phenomena
appearing in the simulations.

In order. we will present formulas for the central electron temperature,
the radiated power and the ohmic heating power. Then, by equating the
radiated power to the ohmic heating power under the corditions assumed to
hold at disruption (T, = 20 eV at g = 2}, a scaling for the critical density can
be ohtained. Unless otherwise specified, all units are MKS, and temperatures
are in keV.

We will assume circular flux surfaces and steady state in what follows.
Consider first the interior portion of the plasma where the radiated power is
negligible. Then, integrating the radial power balance out to the sawtooth
mixing radius, we obtain:

dT, dT;
r neXtE ht nixi&:

where poy = nyJ? is the ohmic heating power density. Ve have applied
the boundary condition dT/dr(r = 0) = 0. The paralle] resistivity can be
writien as

= f,m.rdrpom (12)
o

Tmiz

= 1.65 x 107°Z,;; In Ayne T2, (13)

with In A representing the Coulomb logarithm and 4nc¢ the neoclassical re-
sistivity enhancement.®

In Eq. (12), the toroidal current density is denoted by J. Due to the
action of the frequent sawteeth, both J and 7, are approximately constant
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over 0 < r < rpy (see Figs. 4 and 3). In particular, we can use for J its
value at the magnetic axis.

_ 2Bp
poRgo’

J=Jy (19)
Furthermore, we will assume from here on that the safety fzcior on axis is
unity, go = 1.

To evaluate the gradients on the left-hand side of Eq. {12) in general. we
need to know the profile shape. With the sawtooth oscillations, we expect a
scaling like

dT,

dr

where T,q is the central temperature. We then assume
dT, _Todl.
dr - TeO dr ’

(r>r,,.,<,):—(—'—rf"———), {15)

C — Tmiz

As in our simulations, we use an electron thermal diffusivity

_ 2.6 x 10"

L= (17)
with x; = xe/2.
Given these assumptions, Eq. (12) vields
2/5
1T — Tmir B s
T.o =0.76 rp—%’?‘vcze‘” InA (—T) , (18)
(1+325) R
where 9
Tve =g [ Tdranc(r) (19)

accounts for the principal radial variation of the ohmic heating power density
out to the mixing radius. Egnation (18) does a good job of reproducing the
values for the central temperature found in the simulations provided the
minor radius, a, is taken to be the radius at which T, = 20 eV. This is
necessary Lo obtain a reasonable estimate of the temperature gradient found
in Eqy. (12). Some inaccuracy is allowable here due to the weak dependence

of T,y on dT,/dr.
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In general, the total radiated power is given by Eq. (11). Once the plasma
is detached, the low temperature peaks of L(T,) should provide the largest
contribution to Puq (see Fig. 1). This is true for both the low-Z and the high-
Z impurities we consider here. So, it is reasonable to approximate L(T.) by

Ly, 1 <T, < Ty
LT)=4 Lo T<T. <7, (20)
0, otherwise,

where T} < Ty < T3 < Ty and Ly > L,. We define corresponding radii,
r; = r(T5) for j = 1,4. We include two peaks in Eq. (20) in order ‘2 improve
the quantitative accuracy of the resulting expression. With just one peak,
however, the fundamental scaling obtained will be essentially the same. In
fact. the prucedure could be extended to include an arbitrary number of
peaks, but we find that Eq. (20) suffices for present purposes. Looking at the
plut in Fig. 1, we estimate T, = 20 eV, T, = 100 eV, T = 300 eV, T, = 600
eV. L, =2.5x 10 IWm?, and L, = 5.0 x 10 Wm? for titanium.

These peaks are relatively narrow in terms of electron temperature. With
non-zero temperature gradients, they correspond to small intervals in radius.
We can thus reasonably approximate the total radiated power by

Praa 2207 R{ Lo {71 — 2} [mne(ri)na(r)) + rane(ra)n.(r2)]
+ Ly(r3 = ry) [rane(ra)n.(ra) + rane(rs)na{ra)}} . (21)

The total ohmic input power is given by
a
Poy = 47r2Rf rdr*]“Jz‘ (29
o

If the parallel electric field, Ey = .. is constant over the minor radius,
Poy = (2rR)Eyl, = IViop, Where Vi is the loop voltage. We already
know 7 and J at r = 0. Inserting these expressions into Eq. (22) yields a
viable scaling for Pogy. However, the combination of neoclassical resistivity
and our mode] for the sawtooth oscillations leads to variations in Ey=qJ
over 0 < © < Pmiz- Namely, if both J(r) and 7.{r) flatten in this region
following a sawtooth crash, £y « ync(r). Since the sawtooth period is
much less than the resistive skin time, Ej remains peaked off-axis at all
times,* On the other hand, for r > rmiz, Ejj is approximately independent
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of radius in our simulations. Inserting a correction factor to account {or
the variation of 4y inside the sawtooth mixing radius and using Eq. (13).
Fg[{ x (Q‘ITR.)Eq(T‘ = 0)!,, _\'ields

Poy = 0.0165 Zey s In A 0.99we (P ) [ Br T2 ). (23)

The factor of 0.9 represents an attempt to calibrate this formula using data
from our simulations. The resulting e-.pression predicts the ohmic heating
pawer under all couditions to within about 10% (using the observed T.o).

In order to estimate the various radii appearing in Eqs. (18), (21). and
{23), we now specialize to the conditions at disruption; namely, T, = 20 eV
at the g = 2 surface. This corresponds to a highly contracted current profile,
J=0frr>rn,. But,J =~ Jy for 0 < r < ryyz. Since we know the total
current, we can ~rite

fto LR\

e 2 094 (B2 25) (24)
the factor of 0.94 arises from matching with the simulation results (i.e.. al-
lowing for a slightly broader current profile in reality).

{n general, the temperature profile in a contracted state flattens dramat-
ically for r > ry = r(T, = T)) because of the relatively small amount of heat
flow past the primary radiation peak. So, we can reasonably characterize the
temperature profile by setting the plasma minor radius a = 7;. As noted pre-
viously. this a just serves to estimate the temperature gradient in Eq. {18).
For titanium, we take T} = 20 eV, so that r, = r(g = 2) = »{T, = 20eV)
when the disruption criterion is satisfled. We suggest that this equality will
hold for a general impurity as long as T, <« T.o. Even if this requires a
redefinition of the disruption criterion in order to be consistent (such that
T. = T) at ¢ = 2, for example), the following scalings shonld stil) be valid.

Given that the assumption of J = 0 for r > rp,, works well in Eq. (24),
it should work even better in caleulating r(g = 2). In a circular eylinder
geametry, the equalities suggested above lead to

NG
a:r1=r(q=")=(?—5;) . (23)
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Tou abtain the other radii appearing in Eq. (21). we need to further specify
the temperature profile. We will assume

T‘eOi 0 <r< Trmazs
e ={ G- () T rrca D)
Then.
en T,-T. Ve
fT) =a- (- rma) () - (27)

If we define the edge temperature. T, = T.(a), to be equal to T} as would
follow from the above discussion. this formula holds for 7 = 1 as well as
j = 2—4. For simplicity, we will neglect T, relative to T.g in using Eq. (27).

We expert in general that the temperature profile exponent ar will be in
the range 1 - 2. Using dT./dr near the edge (i.e., between r, and r;) from
several simulations to estimate a7, we find ar ~ 1.1. However, we retain ar
in the following expressions for completeness.

Setting Prad = Poy, and making use of Eqs. (18), (24), (25), and (27),
we obtain

3__1 2

4. '7NC/7NC(rm|'=} Poert

el Ry
ar~i

x [-ch(rmi,)Z,H lnA]—s( =T ) {(LATrn.n.). (28)
where I, is now in MA. We have defined
(LATrnn.) =L, (Te — Tea) VT [rane(r)n.(m) + rane(r2)n.(re))
+ L, [(Ty - T)/or — (T - Ta) Vo]

X [rane(ra)n:(rs) + rane(ra)n:(rs)]. (29)

The only thing remaining to do is to determine the scaling of (LATrn.n.).

We will assume n
(LATrn.n;) o ﬁ;zfqu‘; (30)
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we need to estimate the exponent p. The g, scaling comes in not only
through the factors r; through r, ‘c.g.. as in Eq. {23j . but also through the
density profile, as discussed in Sec. I[l. Namely, as g, is raised. the contrac-
tiun must proceed to smaller radii in order 1o satisfv the disruption criterion.
At these radii. the electron and impusity densities are higher (for peaked pro-
files). Hence. the density factors appearing in /LATrn n,} increase with g.,.
As pointed out in Sec. III, the overall shape of the profile in the cases with
titanium impurity does not vary much when the plasma current and/or the
toroidal field are changed. So, for the purposes of estimating p, we suppose
that the density profiles are fixed.

From Eqgs. (24) and (25), we know rp;,, a q:y:/z; we assume for sim-
plicity that this scaling is dominant in Eq. (27), r; ~ ‘7.;:/2- Then, we see
that with flat profiles (no gy scaling for the density factors}, {LATrn.n.; x

n—ez(n: I,ne)qc-yt /z‘

In the case of peaked profiles, write n,(r;)n.(r,) x q':;l, then

d 7
—nn, x £—n,n:. (31)
dGeyt Feut
Taking a profile shape analogous to Eq. (26), with exponents &, and a- for
the electron and impurity density profiles. respectively, we obtain

. (el = - dr; ca n(r,)n.(r;) ”
E;."e(ﬁ)ﬂ:( i)l = dqw:(a' :)__—_(an—rj) . (32)

Because there is no contraction of the density profile. we employ a, here, the
initial plasma minor radius in the simulations. Using rj ~ q;y:/z as suggested
and referring to Eq. (31), we can determine a local eflective exponent,

,  Qe+a

p fa ) z -
2 a-ry

Ti

(33)

We expect a. ~ a, ~ 1. The scaling is likely to be dominated by that of the
radii of the low temperature peaks, i.e., #; and r.. Since these never get as
small as ao/2 during our simulations, it is reasonable to take r;/{ao—r;) > 1;
we use rj/{ao — ;) ~ 3/2 for clarity. Thus, p’ ~ 3 With r; ~ qc—y;/z‘ we
finally obtain

(LATrn.n.) x 720 %qqﬂ (34)
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for peaked profiles.
Expressing g., in terms of /, and Br/ R. and considering just the overall
scaling, Eq. (28) vields at fixed n.,n,

9 I ]
Br\®~%az~z -f-g-~t _
e erit X (?) I T (35)

Then, inserting ar = 1.4, and p = —1/2 for flat profiles, p = +1 for peaked
profiles,

0.84
(%”-) 17018, flat profiles,

Tl crit (36)

(%;)0.09 13%2,  peaked profiles.

In Table. IT and I, we apply this scaling to the results given in Table L.
For comparison, we include in these tables the simplest scalings apparent in
Fig. 3. For the peaked profile runs. it looks as though something like the
familiar Hugiil limit, iz o I, should apply, while for flat profiles fi; x By
appears to be appropriate.

For the peaked profile cases, Eq. {36) works very well (i.e., the constant of
proportionality in Table I does not vary much). Neither of the scalings listed
in Table I1I does as good a job of explaining the flat profile data. One of
the problems is that the density profiles are not completely flat (see Fig. 6).
Furthermore, in the high g.u cases, the length of the scan is considerable.
The number of points along the scan 1s fixed by code limitations, so that the
error in estimating of the critical density is larger for these runs.

The preceding calculations should heold for the runs with carbon impurity
as well apart {rom the estimated g, scaling of (LATrn.n,). Because of the
changes in the electron density profile accompanying the temperature profile
contraciion, it is not clear how this scaling can be determined. On the other
hand, the trends apparent in Fig. 3(c) are similar to those found in the
simulations with titanjum impurity. Namely, with peaked density profiles,
Te.crie Still scales approximately like the total current; but with flat profiles,
the scaling is reduced. We suspect that the effects responsible are similar,
but obscured by the contraction of the electron density profile.



V. Discussion and Conclusions

In this section, we comment on how our results relate to experimental
observations. But, first, it is appropriate to peint out the shortcomings of
the present model and to indicate how they impact our results. For instance,
ihe fact that the data of Fig. 3 fall well within the range of present empirical
scalings (for example,'' 7y < 2B7/Rqqu) is somewhat coincidental. This is
because we have taken no step: to determine self-consistently the impurity
concentration in these simulations. In all cases it is specified arbitrarily on
input. Since the radiated power is directly proportional to the impurity
density, we could extend our results to larger Murakami parameters just
by lowering n./n., as has been noted previously.>1%'%!7 The effect is offset
somewhat, but not completely by the increase in the ohmic power with Z,;;
as is evident in Eq. (28).

Our model is also inadequate in that coronal equilibrium is known to
under-predict the radiation in actual experiments.'® By assuming coronal
equilibrium, we omit effects such as charge exchange recombination of impu-
rities?* (significant in the presence of high neutral density) and transport
of individual impurity charge states on time scales shorter than those over
which coronal equilibrium is established. Roberts® points out that including
the latter effect leads to smaller critical Murakami parameters, particularly
for low Z impurities. Heuristic corrections to the coronal equilihrium model
would improve the accuracy of our results to some extent, but would not aid
in formulating the general, predictive model that we seek.

Lastly, our disruption criterion is arbitrary. It may not be inadequate,
however, especially for the present scaling arguments. Our guideline is effec-
tively the same as that used by Perkins and Hulse.!” They define the density
limit as the point at which P..q = 0.8Ppy when evaluated at ¢ = 2. Since
most of the radiation in our runs comes from the low temperature part of
the profile, T, < 100 eV, we do not satisfy their condition until the temper-
ature profile contracts inside of g = 2. However, at this point our disruption
criterion (T, = 20 eV at ¢ = 2) is nearly satisfied. Preliminary indications
are that use of the stability boundary in £; vs. g space given by Cheng et
al.¥ yields nearly equivalent results.

The procedure used by Roberts'® represents the next level of sophistica-
-tion. In Ref. 16, the profiles resulting from an electron energy balance are
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analyzed for tearing mode stability, vielding saturated island widths. The
disruption mechanism discussed there most closely resembling the criterion
we employ is due to the interaction between the 2/1 tearing mode and the
cold plasma outside the radiating boundary. It appears that the widths of
the islands in their work do not change greatly as conditions are varied. If
this really is the case, then improving our disruption criterion involves only
redefining the surface ( g > 2 ) that must be reached by the cold plasma. The
basic scalings arrived at above should still hold. The tearing mode package
heing installed in BALDUR?? will be able to not only calculate saturated is-
land widths, but will also treat self-consistently the effects of localized current
profile flattening. _

For the purposes of identifving the basic scaling of the density limit in
ohmic discharges, our model should be adequate. In particular. the effects
of density gradient and sawteeth we treat here do lead to interesiing results
that are not likely to be affected by the above-mentioned shortcomings.

We now compare our results with some specific experimental observations.
First, we consider the density limit formula presented in Ref. 20:

P 1/2
—JET =135 x 1019 Geui . (37)

n! Cri
il (Zegs — 1)Rra®(gey — 2/k)

where P is the total input power in MW, and x is the plasma elongation
(£ =~ 1 for a TFTR geometry). This relation is obtained by equating an
empirical scaling for the radiated power with the input power. Equation (37)
applies only if Z_;; is not close to one and if light impurities (e.g., oxygen and
carbon) dominate the radiated power. All of our runs with carbon impurity
fall into this category. Inserting P = Poy and Z.; for a particular time
during each simulation, we find that on the average 7./ n_,":f,f ~ 2, where 7,
is taken as in Table L. Because of the variations in Pog and Z.;; during our
runs, 7. 757 cannot be uniquely determined. It is fairly clear that 7ie JET does
not exhibit the same current scaling as displayed in Fig. 3(c). Namely, for
each pair of runs with carbon impurity (05b and 05c, for example), the 77 at
the two different values of g.; in Table I is either similar, or defined to be the
same (I,, Br scans). Yet, their formula predicts a noticeable variation with
9o in all cases, as is clear from Eq. (37). The source of this discrepancy is
uncertain.

The fact that the critical densities predicted by our model are about a
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factor of two below those found with Eq. (37) indicates that the magnitude
of the radiation obtained using coronal equilibrium is approximately four
times smaller than that observed experimentally e.g.. see Eq. (28). This
is consistent with the calculation presented in Ref. 19, where the coronal
equilibrium radiation is a factor of five to ten smaller than that computed
from the radiation data.

In gas-fuelled, ohmic discharges, TFTR has obtained Murakami param-
eters up to®® . R/Br = 3.2 x 10'°, In present TFTR shots, the dominant
impurities are carbon and oxygen. From Table I, we see that the maximum
value in our runs is BoR/Br = 5.66 x 10'? (from 062). This discrepancy is
again consistent with our underestimatirg the radiation by about a factor
of four. On the other hand, pellet injection into TFTR. yields much higher
densities, 71, = 1.4 x 10" and % R/Br = 6.5 x 10'*. This indicates the
importance of fuelling and recycling effects;?® they will be the focus of future
investigations.®

The detached plasmas studied in TFTR¥2 are very similar to the steady-
state contracted plasmas investigated here. Because these TFTR discharges
remain in the detached state for many energv confinement times without
disrupting, they serve as a source of experimental data with which we can
compare and calibrate our model. For now we would just like to point out
some of the similarities between the simulations presented here ard the ex-
periments discussed ‘n Refs. 32 and 33. Much as we have done, the detached
plasmas in TFTR are produced by ramping down the current at constant
line-integrated density. It is convenient for us to also ramp down the toroidal
field in order to maintain a constant g.y.

Experimentally, the resulting detached plasma has a contracted temper-
ziure profile (T, < 50 €V in the cold edge region), bounded by a radiating
layer. The electron density profile also appears to be somewhat contracted.®
The power balance calculations reported by Strachan et al.®® indicate that
all of the ohmic power appears as radiated power; that is, there is little
or no heat conducted or convected to the limiter. All of these features are
consistent with our simulations employing a carbon impurity.

There are several other trends mentioned in Ref. 33 that are reminiscent
of behaviors found in our simulations. First, a decrease in the effective minor
radius (defined via the temperature profile) can be brought about hy either
increasing the central electron density or decreasing the plasma current. An
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experimental scaling for this has been determined:
ax Ig,uio.osnz(o)-o.azo.o-l_ (38)

The data with carbon impurity we have presented are not extensive enough to
allow a detailed comparison with this expression, but preliminary indications
are that our simple model yields a weaker current scaling than this.

Secondly, the total radia’ © powes end the tadialed power per unit voruau
increase with central electron density both in the experiments and in our
simulations. We cannot say anything definite about how these guantities
vary with plasma current in our runs because of the increases in central
density that are required during the profile contraction to maintain constant
line-averaged density (see Fig. 7) in the I,, Br scans, We do note that in
run 0be, the total radiated power decreases with plasma current, despite an
increase in n,(0) (see Fig. 7). In Ref. 33 it is noted that the central electron
temperature falls as the central density is increased. This is also the case for
our two density scans with carbon impurity (05b and v3<).

Finally, Strachan et al.® point out that the safety factor at the effective
edge of the plasma decreases with increasing n,.(0), down to about ¢'= 2,
Further attempts to increase the central density lead to disruption. This
is another indication that our disruption c "‘erion, T, = 20 eV at g = 2. is
reasonable. Future work will attempt to make more quantitative comparisons
between the simulations and experiments.

In summary, we have developed a relatively simple transport model that
vields qualitatively correct scalings for the density limit in chmic tokamak
discharges. The emphasis here has been on effects of the density profile.
In particular, we have pointed out that at constant line-averaged electron
density, a flat profile generates more radiated power than a peaked profile
just due to the higher edge density.

The profile shape also impacts the current scaling of the critical electron
density. Namely, with peaked electron density profiles, the location of the
g = 2 surface moves inward to regions of higher density as gy is raised.
This leads to an effectively higher radiated power than at smaller g, in the
maximally contracted state where the peak of the radiation is near g = 2.
This is also true of the initial, uncontracted states used in our simulations.
The end result is a2 decrease in the allowable Murakami parameter as q. is
increased. Of course, the argument does not hold for flat profiles, and very
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little scaling of the Murakami parameter with g.. is noted in those cases.
These trends are clear in Fig. 3 and have been confirmed by our analytic
calculations.

These two density profile effects suggest that if all other factors (impurity
concentration, average density, etc.) are the same, discharges with peaked
profiles will vield larger critical Murakami parameters than those with flat
profiles. So, in an actual experimental data base consisting of a large number
of shots produced under various conditions, the ones yielding the highest
Murakami parameter at a given g, will be the ones with the most peaked
profiles.

It has been observed experimentally that Z.;; decreases with increasing
densitv.® We have not taken this into account in our simulations (we keep
Z.ss approximately constant as the density is varied). It would act to enhance
the g, scaling of the maximum Murakami parameter shown in Fig. 3. For
example, if we write instead of Eq. (30)

(LATrnen.) « Ton.qo, (39)

and hold n, constant, the exponents in Egs. (35) and (36) double. Then, the
scaling of 7i; ., with current is stronger, but still close to linear. In this way,
our relatively simple model can account for the overall shape of the Hugill
diagram.

The eflects of pellet injection and auxiliary heating will be examined in
the near future.® The importance of profile shape indicates that the central
fuelling that can be provided by pellet injection allows higher line-averaged
densities to be attained., This result is clear in present experiments,!®123
Peaked profiles are of even greater importance in a reactor due to their im-
pact on the fusion power output.’® Tt is also known that auxiliary heating
can increase the maximum allowable Murakami parameter.®'! Clearly, our
model will yield this result since it is based upon a radiative power balance.
Greenwald®!? has proposed that mechanisms insensitive to input power and
impurity concentration may actually be responsible for the current scaling of
the density limit. Future work will attempt to clarify this picture.

Our next step in developing a predictive model for the density limit will
be improving the radiation model in the BALDUR code, allowing it to treat
effects such as charge exchange recombination‘® and transport of impurity
charge states.?! Attempts will also be made to treat the scrape-off layer and
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boundary conditions in a more rezlistic fashion (see. for example, Ref. 41).
These steps will be undertaken with guidance from experimental data.
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run z scan profile ' gy Re 19 Iy Br e 19R: Br
0xd , 22 L, Br peaked ' 2.8 1.70 1.50 3.20 3.7
o2 |, 22 b, Br peaked | 3.4 4.70 142 3.7 3.26
02g | 22 . I,.Br peaked i 3.9 ' 470 © 141 422 2.86
02h | 22 ' I,Br peaked : 44 | 470 ;. 129 138 2.76
, 02 ;22 L,Br ! flat | 28 . 470 | 113 | 241 5.01
-0y | 22 ‘ InBr | fat ‘ 34 ‘ 470 | 082 ' 248 187
{ 02k | 22 | LBr | flat 39 | 470 | 092 240 5.03
Io21 ’ 2 | L,Br | flat 44 | 470 0 078 262 161
{ 03c | 22 | m | peaked | 28 | 630 ! 220 ; 470 3.4
t 03d | 22 ' @ . peaked | 3.9 | 660 ! 220 ' 6.60 2.57
103 | 6 1 m peaked | 28 | 100 | 220 ¢ 470 5.47
. 05c | 6 | @ | peaked | 3.9 | 990 | 220 ! 660 1.86
| 06a | 6 | I Br ! peaked | 238 | 800 ‘ 1.70 . 3.63 5.66
| 06b | 6 | L.Br | peaked | 39 | 800 | 166 : 199 412
| 06c | 6 | L,Br ; flat 28 | 600 | 175 ° 3.74 112
| 06e | 6 | L.Br | flat 3.9 I 6.00 | 147  4.40 3.50

Table I: Simulation parameters; Z indicates impurity atomic number. Flat
and peaked describe the density profile. Units are 7i_,g: 10" m™3. Br : T.
I, : MA, and A =257 m.

-

!

run | n_e.lg/(B?‘”fg'”) e 19/ I,
02d | 3.33 3.13
02f 3.41 3.31
02 3.38 3.33 |
02h ‘ 3.53 3.64
03¢ 3.43 2.86
03d | 3.51 3.30

Table 11: Constant required in Eq. (36) and in %; o« [, by data in Table L


http://lp.Br

run ﬁ:.ls/(B%M-’;D‘m) i Me,9/Br

[ 229 © 1.9
02; ! 213 190
02k 223 {196
021 - 2.01 A

Table III: Constant required in Eq. (36) and in 7i; x By by data in Table L
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Figures

FIG. 1. Dependence of the radiated power per unit volume. divided by the
impurity and electron densities on electron temperature. for (a) titanium
and (b) carbon computed from results of Refs. 18 and 28, respectively.

FIG. 2. Dependence of the average charge in coronal equilibrium on electron
temperature for (a) titanium and (b) carbon computed from results of
Refs. 18 and 28, respectively.

FIG. 3. Plot of the data from Table I in Hugill space. Lines for @, =
Br/ Rg., and 7i; = 2Br/Rq,, are included for comparisor. In (a) and (b)
we show data from runs with titanium impurity; in (c), carbon was used.
Open (closed) markers indicate peaked (flat) density profiles. Also I,, Br
scans are denoted by square markers, and 77 scans by circular markers.

FIG. 4. Electron temperature as a function of time and radial half-width for
simulation 02h.

F1G. 5. Toroidal current density as a function of simulation time and radial
half-width for run 03d.

FIG. 6. Electron density as a function of radial half-width for 02h and 02]. [n
baoth cases. the profiles were taken at the end of the initial (uncontracted)
steady state.

FIG. 7. Electron density as a function of radial half-width and time for sim-
ulation Ofe.

FIG. 8. Radiated power per unit volume given by Eq. (9) as a function of
time and radial half-width for simulation 02h.

FIG. 9. Radiated power per unit volume given by Eq. (9) as a function of
time and radial half-width for simulation 02j.
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