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ABSTRACT 

The density limit observed in tokamak experiments is thought to be due 
to a radiative collapse of the current channel. A transport code coupled with 
an MHD equilibrium routine is used to determine the detailed, self-consistent 
evolution of the plasma profiles in tokamak discharges with radiated power 
close to or equalling the input power. The present work is confined to ohmic 
discharges in steady state. It is found that the shape of the density profile can 
have a significant impact on the variation of the maximum electron density 
with plasma current. Analytic calculations confirm this result. 
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I. Introduction 

The limit on density observed in present tokamak experiments is not of 
much interest except as a parameter space boundary that is to be avoided. 
However, in a burning plasma it represents a limit to the amount of fusion 
power that can be produced; that is. it restricts the value of TITE (n is the 
plasma density, TJJ is the energy confinement time) that can be achieved. In 
fact, transport simulations of two recent reactor designs' and the Compact 
Ignition Tokamak 2 , 3 (CIT) do not predict ignition with an L-mode-* scal­
ing for TE when the density is required to remain below that predicted by 
present expressions for the density limit. Several formulas for the density 
limit are now in use, and most match recent data very well. However, when 
extrapolated to high fields and significantly noncircular cross sections, their 
predictions vary considerably. In an attempt to reduce the uncertainty in the 
density limit scaling law, we will use the 1-1/2-D BALDUR 5 , 9 transport code 
to simulate high density tokamak discharges. Hopefully, this will lead to a 
model of the density limit with a predictive capability. If the procedure is 
successful, the resulting model could be used to optimize the design of future 
ignition devices. In this paper we will describe the first step in the develop­
ment of such a simulation model and will show results for ohmic discharges. 
Later work will include detailed comparisons with experiments. 

The first scaling law for the maximum density in tokamaks was proposed 
by Murakami et al . r They noted that n J i m M oc BTJR, where nT is the line-
averaged electron density, B? is the toroidal magnetic field, and R is the 
plasma major radius. This scaling was later refined to include a dependence 
on the plasma current through the safety factor, q; namely,8 

^e,md* ^ Bf j Rq. 
A density limit expressed in this form is often referred to as the Hugill limit. 
The Murakami limit is then the maximum density for all values of the plasma 
current. 

It is not clear how to extend the scaling law for the Hugill limit to include 
tokamaks having elongated cross sections due to the wide variety of analytic 
expressions for q and its cylindrical equivalent, qtyj. Greenwald has recently 
made an attempt to consolide the data from machines of various shapes 
and sizes. 9 , 1 0 He concluded that a tokamak with a high power density, low 
impurity level, and efficient central fuelling is limited to a density n^G = 
KJ X 10 2 Om~ 3, where *c is the plasma elongation and J is the average plasma 
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current density (in MA/m2). Compared to present Hugill-type scalings, this 
expression tends to be more favorable for highly elongated reac:or designs. 

Unfortunately, the range of K covered in the present data base is not suffi­
cient to rule out clearly the Hugill-type scalings. For example, the maximum 
density observed in the Joint European Torus (JET) 1 1 is nl.max — 2BTIRqc, 
where (/„ = ~]0.2KDT/ RIp is referred to as the engineering safety factor. Nute 
that we express BT in T, a (the plasma minor radius) and R in m, and 
/ p (the plasma current) in MA. Given the uncertainties in the experimental 
measurements and the limitation to K < 1.7 in the JET device, it is difficult 
to discern between this and the Greenwald expression. Vet, the values they 
predict differ significantly at elongations of n > 2, typical of reactor designs. 
The more theoretical approach of transport simulation could provide one 
means of bridging this gap in the data base. 

Most of the explanations proposed to date for the density limit rely upon 
impurity radiation-induced profile changes as the primary cause of the dis­
ruption. 1 5" 1 7 However, one of the conclusions drawn by Greenwald is that 
the maximum density obtainable for a given current is determined not by 
radiation, but by a deterioration of the particle confinement in the plasma 
core. Due to the lack of detailed models for this process, transport codes can 
do little to clarify the situation except to provide a means for carrying out 
the arduous task of preparing complete simulations of particular discharges. 
We can, however, examine with relative ease many of the consequences of 
impurity radiation. Therefore, we confine our attention in the present work 
to discharges dominated by impurity line radiation. 

The model used for this radiation is of great important-'.. Most of the the­
oretical work carried out so far has employed the coronal equilibrium model 1 8 

due to its relative simplicity. However, the model is known to yield radiated 
power levels that are far below those found in actual experiments.1 9 On the 
other hand, by using an empirically determined scaling for the radiation in 
JET, Campbell et a l . 2 0 were able to derive a reasonable expression for the 
density limit simply by balancing the radiated power and the total input 
power. There are limitations on the parameters for which this expression is 
applicable; hence, there is a need for more theoretical input. Computer codes 
capable of accurately modelling the radiation in systems deviating from coro­
nal equilibrium are presently being used in the analysis of tokamak data. 2 1 

Hopefully, these same techniques can be applied to studies of the density 
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limit. 
With a 1-1/2-D transport code, we can investigate self-consistent, time-

dependent profile effects. We have complete freedom in the specification of 
transport models and plasma compositions. Plasma fuelling by gas puffing 
and pellet injection can both be modelled. In addition to ohmic heating, 
auxiliary input power from neutral beam injection or other sources can be 
included. By coupling the transport code to an equilibrium code, we can 
investigate MHD effects in detail. For example, sawtooth oscillations and 
tearing modes (currently being installed in the BALDUR code 2 ') will have 
a significant impact on the discharges we investigate, 

The present work is limited to steady-state simulations of ohmic dis­
charges; a TFTR geometry is used. 2 3 In particular, we focus on density 
profile effects. The most important difference between flat and peaked den­
sity profiles is that, for a given volume-averaged density, a flat profile has a 
higher density near the edge. It is in this low temperature edge region that 
the impurity line radiation (proportional to the local product of the electron 
density and the impurity density) peaks. The higher density in the flat pro­
file case leads to a greater contribution to the overall radiated power. Hence, 
flat profile cases are restricted to lower average densities than peaked profile 
discharges with the same input power. 

What is more surprising is that in simulations with centrally peaked den­
sity profiles (edge density much less than central density) there is a significant 
variation in the critical Murakami parameter with g ^ , as observed experi­
mentally (i.e., the Hugill limit). On the other hand, with flat profiles (edge 
density slightly less than central density), the critical Murakami parameter 
is almost independent of q^i. We show analytically that these results are a 
consequence of the effect changing q^ has on the sawtooth mixing radius, 
(in our model) the electron temperature profile, and safety factor profile. 

In Sec. II, we specify the simulation model we will be using. We give our 
numerical results in Sec. III. The analytic calculations will be described in 
Sec. IV. Finally, a discussion and summary is presented in Sec. V. 

II. Simulation Model 

We now describe briefly our transport code and discuss the models and 
assumptions used in the simulations. We employ the 1-1/2-D BALDUR 
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transport code; details on it have been given elsewhere.5-6 It integrates in 
time a set of flux-surface-averaged transport equations on a radial grid of sur­
faces of constant toroidal flux. Their shape is provided by a set of moments 
equilibrium routines that are interfaced with the transport code. The trans­
port equations solved describe the diffusion of density, energy, and magnetic. 
field: 

8 (nV) = -i(V'(rp • V« - nV'p/p') + V(S), (1) 
dti dC 

3 ^ 
2 at (nT\ • ' ) = - | ( > " ( , . vo-!=£*) 

V'{Q) -nT[V'-(PV'/p'y} 

k\™'k 1{\JB!) 
!2 (^m 

RQREF RoREF 
-pBP (3) 

There are separate equations for the density, ra(£,<)i °f e a c n ionic species. 
The electron density is computed from quasi-neutrality. Separate energy 
equations are solved for ions and electrons; the temperatures, T(£, t), of all 
ionic species are taken to be equal. The quantity appearing in Eq. (3) is 
actually a normalized poloidal flux gradient: 

2irRoREF w 
In the limit of a circular cylinder geometry, this Bp reduces to the actual 
poloidal magnetic field. Not? that p is a flux-surface label defined by p ~ 
{•tptor/nBoREFy^i BOREF and RQREF are a fixed reference magnetic field 
and major radius, respectively. The equations have been transformed into a 
coordinate system with arbitrary flux surface label £. The toroidal (poloidal) 
fluxes are denoted by if>tor {iVpol)- The volume inside flux surface f is V[£,t); 
V' = dVjd^. An overdot indicates a derivative with respect to time . The 
particle and heat fluxes are designated as rp and q„. The subscript p signifies 
that they are defined relative to surfaces of constant toroidal flux. Volume 
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sources of particles (energy) are contained in S (0) . Finally, in the magnetic 
diffusion equation, Eq. (3). R is the major radius, <q is the plasma resistivity, 
and /(£) = RBTl where B-j- is the toroidal magnetic field. We shew fur 
completeness contributions from beam-driven current {J^am) and bootstrap 
current {J\xx,i\, although we do not make use of either in these simulations. 
In all cases, the angle brackets denote a flux-'.urface average. 

We will keep the expressions for the fluxes relatively simple in order to 
focus on the effects of radiation in the power balance. The expression we use 
for the heat flux is 

(9P • V0i = (-.Y>! (UT,) (wi) - \T,{r, • vo,) | ^ , (5) 
where the subscript j denotes electron or ion thermal flux. In this particular 
version of BALDUR, the flux-surface label, 4, is taken to be the square root of 
the normalized toroidal flux, £ = (vw/Vw.a) , where il>iar,a is the toroidal 
flux at the plasma boundary. 

The thermal diflusivities are based upon the INTOR model. 2 ' They should 
give rise to a neo-Alcator type scaling for the energy confinement time, as is 
appropriate for an ohmic discharge. One could argue that this is not suitable 
at the highest densities where a saturation ol the energy confinement time 
with density is usually observed.2* In the interest of simplicity, however, we 
use the following model for all of the simulations discussed here. We set 

X. = 2.6/n e, 1,(fl + xT% (6) 

and 
X, = 1.3/n t, I 9(£) + xf W . (7) 

The units on both are m2/sec; ne,i9(£) is the local electron density in units of 
10 1 9 m~3- The neoclassical contribution computed by Chang and Hinton 2 6 

is included as xfH- The neoclassical electron thermal diffusivity x ^ c is 
also included; see Ref. 5 for the detailed expression. The overall constants in 
Eqs. (6) and (7) have been chosen to yield reasonable central temperatures in 
a steady-state, ohmic TFTR discharge ( ~ 2.5 keV, see for example Ref. 27). 

The particle flux of ionic species j is written as 

<r„ • vo, = (-D^W\) - w - rr) f ^ y . (») 
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and we assume 
D = 0.5 m 2 /sec, 

v = - 2 J > / a 2 ; 

r is a generalization of the minor radial coordinate. Here, r is defined as 
half of the width (the half-width) of a given flux surface on the midplane. 
It is thus a flux surface quantity. The neoclassical flux, F™Q, includes the 
Ware pinch for the hydrogenic components. The complete expressions are 
given in Ref. 5. These values for D and v are based loosely upon the TFTR 
simulations performed by Redi et a l . z r We have increased D by a factor 
of 5 to reduce the simulation time required for the profiles to reach steady 
state following an increase in density by gas puffing. We have also removed 
the impurity neoclassical contribution to D so as to obtain centrally peaked 
impurity density profiles soon after impurity influxing. The resulting steady-
state profiles are consistent with those found in simulations not employing 
impurity influxing. 

This transport model leads to centrally peaked electron density profiles 
when combined with an edge density that is much less than the volume 
average. Flat density profiles are obtained by removing the anomalous inward 
pinch (v = 0) and raising the pedestal boundary condition for the hydrogenic 
species to a value close to the volume-averaged density. 

The only source term we will describe here is the impurity line radiation. 
It appears as a sink in the electron energy balance equation. The other 
contributions to Eqs. (5) and (8) are given in Ref. 5. For low temperature 
( < 2 keV), impure plasmas, the primary contribution to the radiative losses 
is from impurity line radiation. At low densities ( n e < 1 0 H m~3 ), the plasma 
is transparent to its own radiation. Under these conditions, the electron 
collisional ionization rate can be balanced with the total recombination rate. 
Such systems are said to be in coronal equilibrium. 1 8 , 2 8 The result is an 
expression for the radiated power per unit volume of the form 

Prud = nen:L,(Tc), (9) 

where z indicates a particular impurity species. In addition to the function 
i.(r«.), one also obtains (Z) and (Z 2) as functions of the electron temper­
ature, T e , only. These are the average values of the impurity charge and 
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its square in coronal equilibrium. In these simulations we will employ sepa­
rately a high-Z impurity, titanium, and a low-Z impurity, carbon. We show 
in Figs. 1 and 2 plots of the formulas used' 8 ' 2 8 for L.{Tt) and (Z). 

In general, coronal equilibrium is thought to be a good approximation 
when the plasma is stable in time, the neutral density is small, and the 
transport time scales are long relative to ionization and recombination time 
scales. Although these conditions are not likely to hold for a typical TFTR 
discharge, we utilize the coronal equilibrium model in the present work for 
simplicity. In preparing for detailed comparisons with experimental results 
in future wort, we intend to upgrade the BALDUR code to account for some 
of the expected deviations from coronal equilibrium.2 1 

Sawtooth oscillations in BALDUR are modelled using a Kadomtsev re-
connection picture. 2 9 , 3 0 Of course, for there to he a reconnection, the safety 
factor on axis must be less than unity. When it is, the code periodically flat­
tens the density and temperature profiles out to the mixing radius; there is 
no (direct) alteration or the exterior portion of the plasma. The value of the 
mixing radius is computed from the Kadomtsev theory. 3 0 It is typically 20 
to -10% larger than the radiun of the q — 1 surface. Since detailed models for 
the periodic trigger mechanism of the sawtooth oscillations are not available, 
the user is required to speci'.y the period on input. For all of the simulations 
discussed here, it is fixed at 0.04 sec, typical of TFTR discharges exhibiting 
sawtooth oscillations.2 7 

We wish to use this simulation model to fill out a Hugill diagram; that 
is, a plot of the maximum density attainable (normalized to BT/R) as a 
function of l/tfeyj. Here, we use q^i = 5a2 Bj/RIP, where a and R are in m, 
Br is in T, and Ip is in MA. We start each simulation with parameters such 
that the radiated power is well below the ohmic input power. After allowing 
a short period of time for the plasma to come to steady state (typically 2 
sec), we make a smal! change in some parameter. Following this, we allow 
another second of simulation time for the system to return to a steady state. 
The parameter is then altered again, and so on until the code fails. In most 
cases, these failures are the result of exceeding a specified number of time 
steps. The time steps shorten considerably as the profiles contract. 

In order to isolate the effects due to varying sawtooth mixing radii, we 
choose to scan n^Rj Bj at constant q^. We use one of two procedures to 
carry out the scan. The easiest is to decrease Ip and BT at constant IF/BT, 
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R, and n^. The other is to raise n7 by gas puffing. In order to keep n./nc 

constant, we also influx an appropriate amount of the impuritv species. In 
this way, Ztfj remains approximately constant. We define 

where the sum is over all ionic species: their densities and charges are desig­
nated as rij and (Z?), respectively. We will consider elsewhere the effects of 
allowing n./ne to vary.3 1 

For all of the simulations described here, the initial boundary condi­
tions on the electron and ion temperatures at the plasma edge are of the 
pedestal type; typically, T = 20 eV. As the Murakami parameter, n^R/ BT, 
is increased, the amount of radiation relative to the input power increases, 
making it more difficult to maintain the edge plasma. At some point, the 
temperature of the computational zone just inside the boundary falls below 
the specified pedestal value. The presence of this positive gradient causes 
the code to switch to a zero energy flux boundary condition. Then, the edge 
temperature as a whole begins to fall, and the profile starts to contract. 

We find that MUIR/BT is held fixed with a contracted profile, the plasma 
remains in a steady state. This mode of operation is reminiscent of the 
detached plasma experiments performed on TFTR. 3 2 , 3 3 At the edge of the 
computational boundary, one finds that the total radiated power equals the 
input (ohmic) power. In other words, the conducted and convected powers 
at the edge are effectively zero since T ~ 0 and dTjdr ~ 0 there. 

Because the present BALDUR code does not contain a detailed mecha­
nism for identifying the conditions under which the plasma should disrupt, 
we must use a more arbitrary criterion for defining the density limit in our 
simulations. 

Of course, the simplest limit is the smallest n^R/By for which the ra­
diated power equals the input power. This would provide some interesting 
results, but would not tell the whole story. Namely, it is known that this is 
not a sufficient condition for a density limit d isrupt ion. i e , J 0 ' 3 2 , 3 3 Restricting 
ourselves to this limit would also prevent us from utilizing some of the key 
features of a 1-1/2-D transport code. Namely, we would not be able to in­
vestigate the process of forming the contracted profiles, nor would be able to 
consider separately their stability (through the built-in equilibrium data). 
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The shape of the current profile in the vicinity of the q = 2 surface 
determines the stability of the m = 2. n = 1 tearing mode. This mode is 
thought to be instrumental in causing the observed d i s rup t ion . 1 6 2 0 2 i So, a 
reasonable disruption criterion can be based upon the degree to which the 
profiles near q = 2 are altered from their low radiation counterparts. For 
clarity, we choose to define a limit as that value of the Murakami parameter 
for which Tt = 20 eV at the q = 2 surface. In this way, virtually no current 
is flowing outside of the q = 2 surface. 1 6 , 2 0 , 3 5 It appears that a larger value 
for this critical temperature may be more appropriate. 3 6 

Another approach would be to plot the value of the internal inductance, 
•£,, against q as the simulation evolves. Cheng, Furth, and Boozer 3 7 have 
computed stability boundaries in this space for external kink and tearing 
modes in circular cross section cylinder geometry. Their results could be used 
to define a more theoretically precise disruption limit. However, without 
more calculations of the same sort for elongated geometries, it would be 
difficult to generalize this criterion to CIT and the various reactor designs. 
Furthermore, only recently has an appropriate diagnostic for £i been installed 
in BALDtlR. Most of the simulations discussed in this paper were performed 
prior to this upgrade. 

In the future, a saturated tearing mode package, 2 2 currently being in­
stalled in BALDUR, will be utilized. By looking at the widths of the islands 
present, we might be able to arrive at a physically reasonable disruption 
limit. For now. we find it most convenient to define the density limit as 
occurring when Tc = 20 eV at the q = 2 surface. In addition to the above 
reasons, we prefer this procedure since it allows a precise definition of the 
critical Murakami parameter. However, it was necessary to use Tt = 200 eV 
in the carbon impurity runs in order to compare uniformly all of the data. 
Some of these terminated prior to satisfying the original criterion. 

In all of our simulations, we employ a TFTR geometry: R = 2.57 m and 
a — 0.82 m. For our baseline parameters, we take Ip = 2.2 MA, BT = 4.7 
T, and JTt = 4.7 x 10" m " 3 . These values are typical of TFTR low-<j, ohmic 
discharges.2 7 The actual plasma current, magnetic field, and electron density 
will vary from simulation to simulation. 

The initial gas fill is mostly deuterium and hydrogen in a 9:1 ratio. In 
each run we use either titanium or carbon as the impurity species. When fi7 
is held fixed (or increased), gas puffing of the hydrogenic species in the 9:1 
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ratio offsets diffusive losses. The code is set up with a zero flux boundary 
condition on the impurity species so that their number is conserved in the 
absence of user-specified influx. 

III. Results 

In Table I, we show the various parameters for each of the runs and the 
Hne-averaged electron density, plasma current, magnetic field, and Murakami 
parameter at the time the disruption criterion is satisfied. All of the runs in 
the 02 and 03 series employ a titanium impurity. Carbon is used in 05 and 
06. Because the changes in the temperature affect the average charge state 
of the impurity, it is difficult to assign a precise value of Z e / / to each run. 
For the runs with titanium, Ztfj ^ 1.1 — 1.2; with carbon. Zcjj ~ -! - 5. 
Less titanium can be tolerated as a result of the bigger and broader (in 
temperature) peaks in the L{Tt) curves shown in Fig. 1. 

The runs 02d, 02f, 02g, and 02h form a q^ scan with peaked density 
profiles. Similarly, 02i, 02j, 02k, and 021 form a q^ scan with flat density 
profiles. For all other situations, just two different values of qcyi are used 
to determine the scaling of the critical Murakami parameter. We show our 
results graphically in Fig. 3, where we plot n^R/ BT vs. l/qcyi <x IPR/BT-
The primary result is that with flat profiles n^Rj BT depends weakly on q^, 
whereas just the opposite is true for the peaked profile runs. We also display 
in Fig. 3 lines given by the scalings n^ = Br/Rq^i and n7 = iBrlRq^-
Many of the present day estimates for the density limit scaling fall between 
these two lines (see, for example, Refs. 10 and 11). 

As an example of how the electron temperature profile varies with sim­
ulation time (i.e., with the Murakami parameter), we show Te(r,t) from 
simulation 02h in Fig. 4. The contraction with incremental increases in the 
Murakami parameter (due here to decreases in BT and Ip) is clear. The cen­
tral temperature drops steadily as well. Some variation in the center due to 
sawtooth oscillations is apparent in Fig. 4, but the profiles remain relatively 
flat inside of the mixing radius at all times. At t = 8.0 sec in 02h, Te — 35 
eV at the <j = 2 surface (r ~ 0.55 m). By the end of the run, the electron 
temperature at that radius is well below 10 eV. The critical parameters of 
Table I are obtained by interpolating between these two steady states, so that 
there is no set of profiles corresponding exactly to our disruption criterion. 
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In Fig. 5. we plot the toroidal current density as a function of time and 
radial half-width for simulation 03d. Note that since this run is a density 
scan, the total plasma current is held fixed at 2.2 MA. As the temperature 
profile contracts, so does the current profile. The effect of each incremental 
addition to the density is evident as the edge of the current profile moves 
further in. The relatively frequent sawtooth oscillations cause the current 
density to be more or less flat in the center throughout the simulation. Note 
that at the end of this run, the q = 2 surface is near r = 0.6 m. and the 
sawtooth mixing radius is approximately r = 0.4 m. Figure 5 clearly shows 
that virtually all of the current is inside the q = 2 surface by the end of 
the simulation, indicative of an unstable profile. Our disruption criterion is 
actually met prior to this point. In particular. Tt ~ 30 eV at t = 6.5 in 
this run. .Again, the value of ;J7 given in Table I is obtained by interpolating 
between this state and the one found at the end of the simulation. 

In Fig. 6, we present, typical electron density profiles from two runs using 
a titanium impurity. The peaked profile comes from 02h. and the flat one 
is taken from 021. In both cases, the sawtooth mixing radius is ~- 0.3 m. 
We should point out that even with the inward pinch, the variations in the 
density profile during the sawtooth rise are relatively minor. Furthermore, 
when the titanium impurity is used, the changes in its overall shape as other 
parameters (/ p . BT, and n^) are varied are minimal. This is true even for 
states with severely contracted temperature profiles. 

Figure 7 contains a plot of the electron density as a function of time and 
radial half-width for simulation 06e. This is a flat profile Ip, BT scan with 
carbon impurity. Note that as the contraction proceeds the central density 
increases to maintain constant H7- The carbon density profile remains flat 
throughout. The contraction is the result of the reduction in (Z) of carbon in 
the outer zones as the local electron temperature falls with time (see Fig. 2). 
This effect is not apparent in the titanium runs because of the much lower 
contribution to ne made by the impurity, {Z)n-. Note that with Eq. (10), 
{Z)nz ~ {Ztf} - l)/((Z) — 1). So. there is less electron density due to the 
impurity in the titanium runs than in the carbon runs because of the lower 
Zcjf and the higher (Z). 

The radiated power per unit volume [i.e., Eq. (9)\ as a function of time and 
radial half-width for simulation 02h is displayed in Fig. 8. The contributions 
from the primary (low temperature) and secondary peaks of L(TC) are clear 
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(see Fig. 1). Note that even with constant line-averaged electron density the 
magnitude of the primary peak increases as the contraction progresses. This 
is just due to the higher electron and impurity densities at the smaller radii. 
One effect that is not clear in Fig. 8 is the change in the radial width of 
the peaks as the temperature proiile steepens. In particular, a steeper (more 
contracted) temperature profile leads to a narrower peak in the radiated 
power since the width of L{T() in temperature space is fixed. The total 
radiated power is given by: 

Prad -~ 4TZrt I*rdrntn:L\Tz(T)\ (11) 
Jo 

In this expression, a steeper temperature profile leads to a smaller dr for a 
given dTe. Furthermore, because of the contraction, the factor r is smaller 
as well. Thus, in the contracted state the reductions in the volume element. 
rdr. corresponding to a given peak in L(Te) can counteract to some extent 
the increased densities, and the total radiated power does not vary so much. 
These effects are critical to understanding why the maximum Murakami pa­
rameter for the simulations scales as shown in Fig. 3. We will clarify these 
points in Sec, IV. 

As pointed out in Sec. II, the flat profile runs are obtained by removing 
the anomalous inward pinch from the particle transport model and setting 
the edge density close to the volume average (e.g., Fig. 6). This implies that 
ncn: in the low temperature (T c < 100 eVJ region is much larger than it is 
for peaked profiles with the same volume-averaged density. Consequently, if 
all other factors are the same, the total radiated power is greater with flat 
profiles. In choosing the initial conditions for the flat profile runs, we took 
this into account. With titanium, we just lowered the impurity concentration 
relative to that used in the peaked profile cases. In 06c and 06e, the two 
carbon runs with flat profiles, we reduced n^, as indicated in Table I. In 
Fig. 8, the radiated power per unit volume increases as the contraction of the 
temperature profile progresses due to the peaked profiles. With flat profiles, 
however, the radiated power per unit volume remains approximately constant 
as the simulation proceeds. This is demonstrated in Fig. 9, taken from 02j. In 
cases such as this, the total radiated power tends to decrease with increasing 
Murakami parameter due to the volume element shrinkage noted above. 

We feel that these effects are connected directly to the scaling of the 
critical n^RjBT with q^i noted in Fig. 3. The crucial point is to realize that 
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as <j.j,/ is increased, the q = 2 surface moves closer to the magnetic axis and. 
thus, to regions of higher density, assuming a fixed, peaked density profile. 
At our defined point of disruption, the radiation peaks near the q = 2 surface. 
For the higher q^ runs, the radiation per unit volume at this point is larger 
simply because the density is larger. In some sense, this requires a higher 
ohmic heating power to maintain thermal equilibrium. Since POH increases 
with BT/R, this requirement translates to a smaller maximum Murakami 
parameter. 

We should also point out that the initial points for the runs comprising a 
qcyi scan are. in the 02 series for example, Ip = 2.2 MA and n^ = -4.7 x I0 1 9 

m~ 3 , with BT computed from q^. For the peaked profile runs in this series, it 
is clear that POH/Prod increases with qcyi while POH remains almost constant. 
Again, the reason for this is the effect of the density profile shape on PTad. 
Hence, our reasoning does not apply just to conditions at disruption. 

This analysis can easily be generalized to the case where the volume-
averaged density is allowed to vary for fixed current and toroidal field if the 
density profile remains fixed. We will quantify these arguments in the next 
section. 

IV. Analytic Calculations 

We now attempt to demonstrate analytically how the scalings noted in 
Fig. 3 might arise. These calculations will be carried out within the confines 
of our model, the limitations of which have already been noted. Previous 
theoretical studies have yielded scalings for the maximum Murakami param­
eter independent of current, 1 7 as well as a scaling of the maximum density 
with current (i.e., a Hugill limit) by the introduction of various physical ef­
f e c t s . , 3 1 4 1 6 , 2 ° Rebut and Green, 1 3 for example, relied in part on the scaling 
of neoclassical transport coefficients to obtain a variation in the Murakami 
parameter with q. Ohyabu 1 4 found a q scaling via its effect on the tempera­
ture in ohmic equilibrium. The result presented by Campbell et a l . 2 0 employs 
an empirical scaling for the radiation that has q^ dependence in the volume 
of the radiating layer (and implicitly through the input power). The work 
presented in Ref. 16 perhaps most closely resembles that discussed in Sec. III. 
Roberts 1 6 included the effects of a density gradient when computing the radi­
ation. The contracted current profiles were examined for tea. ng mode stabil-
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ity in order to identify disruptive conditions. As in our Fig. 3. Roberts found 
that the critical Murakami parameter increased with decreasing qcyi. Their 
calculation lacked, however, self-consistently computed current and density 
profiles, and did not explicitly include the effects of sawtooth oscillations. 

We will show how the presence of a density gradient can lead to a variation 
of the Murakami parameter with q^ for these purposes, q^i = 5a2Br/RIP, 
where R and a (the full simulation minor radius) are in m, BT is in T, and Ip 

is in MA. Since the sawtooth oscillations are instrumental in determining the 
radial transport in these simulations, we find it necessary and even conve­
nient to include their effects here. In general, the line of reasoning used in our 
calculations is motivated by the detailed results of our simulations. While 
this limits us to the models assumed therein, it also allows us to check inter­
mediate expressions, insuring a thorough understanding of the phenomena 
appearing in the simulations. 

In order, we will present formulas for the central electron temperature, 
the radiated power and the ohmic heating power. Then, by equating the 
radiated power to the ohmic heating power under the corditions assumed to 
hold at disruption (T e = 20 eV at q - 2), a scaling for the critical density can 
be obtained. Unless otherwise specified, all units are MKS, and temperatures 
are in keV. 

We will assume circular flux surfaces and steady state in what follows. 
Consider first the interior portion of the plasma where the radiated power is 
negligible. Then, integrating the radial power balance out to the sawtooth 
mixing radius, we obtain: 

/ dTc dT,\\ p -
r \ncX':~dT ~THXi'd~}\ =J rirvoH, (12) 

where POH = >?||«J2 is t n e ohmic heating power density. We have applied 
the boundary condition dT/dr(r = 0) = 0, The parallel resistivity can be 
writLen as 

m = 1.65 x W-9Zci/ In A-yNCT-3/1, (13) 

with In A representing the Coulomb logarithm and 7JVC the neoclassical re­
sistivity enhancement. 3 8 

In Eq. (12), the toroidal current density is denoted by J. Due to the 
action of the frequent sawteeth, both J and Te are approximately constant 
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over 0 < r < r m i l (see Figs. 4 and 5). In particular, we can use for J its 
value at the magnetic axis. 

J-J0=^-. (1-1) 

Furthermore, we will assume from here on that the safety fe.ci.or on axis is 
unity, qo — 1. 

To evaluate the gradients on the left-hand side of Eq. (12) in general, we 
need to know the profile shape. With the sawtooth oscillations, we expect a 
scaling like 

£<->->=-(—-)• < i 5 » 
where Tca is the central temperature. We then assume 

dr ~" Tt0 dr ' 

As in our simulations, ue use an electron thermal diffusivitv 

(16) 

2-6 x 10 1 9 

with Xi = W 2 . 
Given these assumptions, Eq. (12) yields 

Te0 = 0.76 

where 

[ 1 2 / S J/5 

rmil{a - rmil)_ f BT\ 

~<NC = - j — / rdr-fscir) (19) 

accounts for the principal radial variation of the ohmic heating power density 
out to the mixing radius. Equation (18) does a good job of reproducing the 
values for the central temperature found in the simulations provided the 
minor radius, a, is taken to be the radius at which Tc = 20 eV. This is 
necessary to obtain a reasonable estimate of the temperature gradient found 
in Eq. (12). Some inaccuracy is allowable here due to the weak dependence 
of Tt0 on dTJdr. 
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In general, the total radiated power is given by Eq. (11). Once the plasma 
is detached, the low temperature peaks of L(Te) should provide the largest 
contribution to Prad (see Fig. 1). This is true for both the low-Z and the high-
Z impurities we consider here, So, it is reasonable to approximate L(TC) by 

r i p ) r , < 7; < T 2 , 
L(TC) = I L„ T3 < Tt < TA, (20) 

[ 0, otherwise, 

where 7\ < T2 < T3 < Tt and Lp > L,. We define corresponding radii, 
rj = r(Tj) for j = 1.4. We include two peaks in Eq. (20) in order •o improve 
the quantitative accuracy of the resulting expression. With just one peak, 
however, the fundamental scaling obtained will be essentially the same. In 
fact, the procedure could be extended to include an arbitrary number of 
peaks, but we find that Eq. (20) suffices for present purposes. Looking at the 
plot in Fig. 1, we estimate T, = 20 eV, T, = 100 eV, T 3 = 300 eV, T 4 = 600 
eV. Lp = 2.5 x 10~ 3 1 Wm3, and L, = 5.0 x 10" 3 2 U-'m3 for titanium. 

These peaks are relatively narrow in terms of electron temperature. With 
nonzero temperature gradients, they correspond to small intervals in radius. 
We can thus reasonably approximate the total radiated power by 

Prai ~2;r 2 fl{ Lp{rl - T2) [ r ,n e (n )n z (r x ) + Tin^r^n^)] 

+ L,{r3 - rA)[rsnc(r3)n.(r3) -f r 4 n e ( r 4 )n . ( r 4 ) :} . (21) 

The total ohmic input power is given by 

POH = A^Rfrdr%J2. (22) 
Jo 

If the parallel electric field, E\\ = Tj\\J. is constant over the minor radius, 
POH = (27r/i)E||/p = /pVjoop, where Vteap is the loop voltage. We already 
know 7j|| and J at r = 0. Inserting these expressions into Eq. (22) yields a 
viable scaling for POH- However, the combination of neoclassical resistivity 
and our model for the sawtooth oscillations leads to variations in E^ = rj«J 
over 0 < r < r m « . Namely, if both J(r) and Tc(r) flatten in this region 
following a sawtooth crash, E\\ <x JNC(T). Since the sawtooth period is 
much less than the resistive skin time, E^ remains peaked off-axis at all 
times. 3 9 On the other hand, for r > r m ,» , £|| is approximately independent 
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of radius in our simulations. Inserting a. correction factor to account fur 
the variation of ; v c inside the sawtooth mixing radius and using Eq. 113). 
Poll * C27rR)EH(r = 0 ) / p yields 

POH = 0.0165 ZcU In .\'<l.<hNc{Tmt*)\{BTlPTrtn). (23) 

The factor of 0.9 represents an attempt to calibrate this formula using data 
from our simulations. The resulting expression predicts the ohmic heating 
power under all conditions to within about 10% (using the observed T^o). 

In order to estimate the various radii appearing in Eqs. (18), (21). and 
(23), we now specialize to the conditions at disruption; namely, Tt = 20 eV 
at the q = 2 surface. This corresponds to a highly contracted current profile, 
J ~ 0 for r > rm,x. But, J z= J0 for 0 < r < rmix. Since we know the total 
current, we can .vrile 

—(Iff; 
the factor of 0.94 arises from matching with the simulation results (i.e.. al­
lowing for a slightly broader current profile in reality). 

In general, the temperature profile in a contracted state flattens dramat­
ically for 7" > r*i = r{Tc = T^) because of the relatively small amount of heat 
flow past the primary radiation peak. So, we can reasonably characterize the 
temperature profile by setting the plasma minor radius a = I*J. As noted pre­
viously, this a just serves to estimate the temperature gradient in Eq. (18). 
For titanium, we take Tx = 20 eV, so that rt = r(q - 2) = r(Te = 20 eV) 
when the disruption criterion is satisfied. We suggest that this equality will 
hold for a general impurity as long as T\ <g; Tt$. Even if this requires a 
redefinition of the disruption criterion in order to be consistent (such that 
Tt — Tj at o = 2, for example), the following scalings should still be valid. 

Given that the assumption of J ~ 0 for r > rmix works well in Eq. (24), 
it should work even better in calculating r(q = 2). In a circular cylinder 
geometry, the equalities suggested above lead to 
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To obtain the other radii appearing in Eq. (21), we need to further specify 
the temperature profile. We will assume 

w 
0 < r < rm,x, 

r « ) ( ^ t T T -T<°< r— < r < a 26) 

Then. 

^=-< B--j(^t) 
I /QT 

(27) 

If we define the edge temperature. Tta = Te(a). to be equal to T\ as would 
follow from the above discussion, this formula holds for j = 1 as well as 
j = 2 — 4- For simplicity, we will neglect 7 ^ relative to T^o in using Eq. (27). 

We expect in general that the temperature profile exponent ctr w ' " be ' n 

the range 1 - 2. Using dTt/dr near the edge (i.e., between r, and r4) from 
several simulations to estimate Qr, we find 07- ~- 1.4. However, we retain aj 
in the following expressions for completeness. 

Setting Prad = Poii, and making use of Eqs. (18), (24), (25), and (27), 
we obtain 

44. ' 'm i * / 
( l 4. 2.SlZk\ 

, \ l ^ J™T, D > J 

5 of & 

x hNc(rmix)Zei/lnA]_i(^r) (LATrnenlh (28) 

where Ip is now in MA. We have defined 

(L±Trnenz) =Lp(Tt - TcaflaT [ r ^ n ^ r , ) + r 2 n e ( r 2 ) u z ( r 2 ) l 

+ L, [(T4 - T^Y'or - (T3 - T r a ) ' ^ ] 

x h i ^ f a K f o ) + r 4n < .(r 4)Ti ; t(r 4)]. (29) 

The only thing remaining to do is to determine the scaling of (LJiTmcn.). 
We will assume 

(L&Trncnz) oc nc —<^\ (30) 
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we need to estimate the exponent p. The q^j scaling comes in not only 
through the factors r^ through r4 e.g.. as in Eq. (25j . but also through the 
density profile, as discussed in Sec. III. Namely, as q^ is raised, the contrac­
tion must proceed to smaller radii in order to satisfy the disruption criterion. 
At these cadii. the electron and impurity densities are higher (for peaked pro­
files). Hence, the density factors appearing in ' L A T r n c n . } increase with qcy(. 
As pointed out in Sec. Ill, the overall shape of the profile in the cases with 
titanium impurity does not vary much when the plasma current and/or the 
toroidal field are changed. So, for the purposes of estimating p, we suppose 
that the density profiles are fixed. 

From Eqs. (24) and (25), we know rmix, a <x q~yl ; we assume for sim­
plicity that this scaling is dominant in Eq. (27), ry ~- <j~/ . Then, we see 
that with flat profiles (no qcyt scaling for the density factors), (L^Tmen.i -x 
^2{nJnc)q^n. 

In the case of peaked profiles, write nc(rj)n.{rj) 3C </., then 

d p' 
-—ncn, at — n c n , . (31) 

Taking a profile shape analogous to Eq. (26), with exponents ae and a . for 
the electron and impurity density profiles, respectively, we obtain 

Because there is no contraction of the density profile, we employ a® here, the 
initial plasma minor radius in the simulations. Using r3 ~ q^J as suggested 
and referring to Eq. (31), we can determine a local effective exponent, 

2 a0-r} 

We expect at ~ az ~ 1. The scaling is likely to be dominated by that of the 
radii of the low temperature peaks, i.e., rj and r 2- Since these never get as 
small as a0/2 during our simulations, it is reasonable to take rj/(a0 - r^) > 1; 
we use Pj/(ao — r,-) ~ 3/2 for clarity. Thus, p' ~ | . With r,- ~~ q^L , we 
finally obtain 

(LXrrnenz) xn? — q^ (34) 
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for peaked profiles. 
Expressing q^i in terras of Ip and Bj! R. and considering just the overall 

scaling, Eq. (28) yields at fixed n:.nc 

„ 9 I £ 

( I) 5 

Then, inserting ax — 1.4, and p = —1/2 for flat profiles, p = -"-1 for peaked 
profiles, 

« s 
^ ) ° ' M /p - 0 1 6 , flat profiles, 

(36) 
( 5 f ) 0 0 9 / ° S 9 , peaked profiles. 

In Tables II and III, we apply this scaling to the results given in Table I. 
For comparison, we include in these tables the simplest scalings apparent in 
Fig. 3. For the peaked profile runs, it looks as though something like the 
familiar Hugill limit, fî  oc / p , should apply, while for flat profiles 
appears to be appropriate. 

For the peaked profile cases, Eq. (36) works very well (i.e., the constant of 
proportionality in Table II does not vary much). Neither of the scalings listed 
in Table III does as good a job of explaining the flat profile data. One of 
the problems is that the density profiles are not completely flat (see Fig. 6). 
Furthermore, in the high qcyi cases, the length of the scan is considerable. 
The number of points along the scan is fixed by code limitations, so that the 
error in estimating of the critical density is larger for these runs. 

The preceding calculations should hold for the runs with carbon impurity 
as well apart from, the estimated q^ scaling of (LATm e n- f }. Because oE the 
changes in the electron density profile accompanying the temperature profile 
contraction, it is not clear how this scaling can be determined. On the other 
hand, the trends apparent in Fig. 3(c) are similar to those found in the 
simulations with titanium impurity. Namely, with peaked density profiles, 
n^.cit s t iH scales approximately like the total current; but with flat profiles, 
the scaling is reduced. We suspect that the effects responsible are similar, 
but obscured by the contraction of the electron density profile. 
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V. Discussion and Conclusions 

In this section, we comment on how our results relate to experimental 
observations. But, first, it is appropriate to point out the shortcomings of 
the present model and to indicate how they impact our results. For instance, 
the fact that the data of Fig. 3 fall well within the range of present empirical 
scalings (for example," n^ < 2Br/R<]cyi) is somewhat coincidental. This is 
because we have taken no stepj to determine self-consistently the impurity 
concentration in these simulations. In all cases it is specified arbitrarily on 
input. Since the radiated power is directly proportional to the impurity 
density, we could extend our results to larger Murakami parameters just 
by towering n . / n e , as has been noted previously. 9 , 1 0 , 1 5 , 1 7 The effect is offset 
somewhat, but not completely by the increase in the ohmic power with Zcfj 
as is evident in Eq. (28). 

Our model is also inadequate in that coronal equilibrium is known to 
under-predict the radiation in actual experiments. 1 9 By assuming coronal 
equilibrium, we o;nit effects such as charge exchange recombination of impu­
rities 2 1 ' ' ' 0 (significant in the presence of high neutral density) and transport 
of individual impurity charge states on time scales shorter than those over 
which coronal equilibrium is established. Roberts 1 8 points out that including 
the latter effect leads to smaller critical Murakami parameters, particularly 
for low Z impurities. Heuristic corrections to the coronal equilibrium model 
would improve the accuracy of our results to some extent, but would not aid 
in formulating the general, predictive model that we seek. 

Lastly, our disruption criterion is arbitrary. It may not be inadequate, 
however, especially for the present scaling arguments. Out guideline is effec­
tively the same as that used by Perkins and Hulse. 1 7 They define the density 
limit as the point at which Prmt — OSPOH when evaluated at q = 2. Since 
most of the radiation in our runs comes from the low temperature part of 
the profile, Tc < 100 eV, we do not satisfy their condition until the temper­
ature profile contracts inside of q — 2. However, at this point our disruption 
criterion [Tt = 20 eV at q = 2) is nearly satisfied. Preliminary indications 
are that use of the stability boundary in £j vs. q space given by Cheng et 
a l . 3 7 yields nearly equivalent results. 

The procedure used by Roberts 1 6 represents the next level of sophistica­
tion. In Ref. 16, the profiles resulting from an electron energy balance are 
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analyzed for tearing mode stability, yielding saturated island widths. The 
disruption mechanism discussed there most closely resembling the criterion 
we employ is due to the interaction between the 2/1 tearing mode and the 
cold plasma outside the radiating boundary. It appears that the widths of 
the islands in their work do not change greatly as conditions are varied. If 
this really is the case, then improving our disruption criterion involves only 
redefining the surface ( q > 2 ) that must be reached by the cold plasma. The 
basic scalings arrived at above should still hold. The tearing mode package 
being installed in BALDUR 2 2 will be able to not only calculate saturated is­
land widths, but will also treat self-consistently the effects of localized current 
profile flattening. 

For the purposes of identifying the basic scaling of the density limit in 
ohmic discharges, our model should be adequate. In particular, the effects 
of density gradient and sawteeth we treat here do lead to interesting results 
that are not likely to be affected by the above-mentioned shortcomings. 

We now compare our results with some specific experimental observations. 
First, we consider the density limit formula presented in Ref. 20: 

1/2 

(37) 

where P is the total input power in MW, and K is the plasma elongation 
(K ~ 1 for a TFTR geometry). This relation is obtained by equating an 
empirical scaling for the radiated power with the input power. Equation (37) 
applies only if Zcjf is not close to one and if light impurities (e.g., oxygen and 
carbon) dominate the radiated power. AH of our runs with carbon impurity 
fall into this category. Inserting P = POH and Zc/j for a particular time 
during each simulation, we find that on the average S7/n7^^ ~ 2. where n^ 
is taken as in Table I. Because of the variations in POH and Zejj during our 
runs, n ^ f j cannot be uniquely determined, It is fairly clear that 3r£5T does 
not exhibit the same current scaling as displayed in Fig. 3(c). Namely, for 
each pair of runs with carbon impurity (05b and 05c, for example), the n^ at 
the two different values of q^ in Table I is either similar, or defined to be the 
same (lp, By scans). Yet, their formula predicts a noticeable variation with 
qcyi in all cases, as is clear from Eq. (37). The source of this discrepancy is 
uncertain. 

The fact that the critical densities predicted by our model are about a 
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factor of two below those found with Eq. (37) indicates that the magnitude 
of the radiation obtained using coronal equilibrium is approximately four 
times smaller than that observed experimentally e.g., see Eq. (28) . This 
is consistent with the calculation presented if Ref. 19, where the coronal 
equilibrium radiation is a factor of five to ten smaller than that computed 
from the radiation data. 

In gas-fuelled, ohmic discharges, TFTR has obtained Murakami param­
eters up t o 2 3 T^R/BT = 3.2 x 10 1 9 . In present TFTR shots, the dominant 
impurities are carbon and oxygen. From Table I, we see that the maximum 
value in our runs is n^R/Br = 5.66 x 1 0 t s (from 06a). This discrepancy is 
again consistent with our underestimating the radiation by about a factor 
of four. On the other hand, pellet injection into TFTR yields much higher 
densities, n ; = 1.4 x 10 2 D and n^R/Br = 6.5 x 10' 9 . This indicates the 
importance of fuelling and recycling effects;23 they will be the focus of future 
investigations.3 1 

The detached plasmas studied in T F T R 3 2 , 3 3 are very similar to the steady-
state contracted plasmas investigated here. Because these TFTR discharges 
remain in the detached state for many energy confinement times without 
disrupting, they serve as a source of experimental data with which we can 
compare and calibrate our model. For now we would just like to point out 
some of the similarities between the simulations presented here ar d the ex­
periments discussed ':n Refs. 32 and 33. Much as we have done, the detached 
plasmas in TFTR are produced by ramping down the current at constant 
line-integrated density. It is convenient for us to also ramp down the toroidal 
field in order to maintain a constant q^. 

Experimentally, the resulting detached plasma has a contracted temper­
ature profile (Tc < 50 eV in the cold edge region), bounded by a radiating 
layer. The electron density profile also appears to be somewhat contracted. 3 3 

The power balance calculations reported by Strachan et a l . 3 3 indicate that 
all of the ohmic power appears as radiated power; that is, there is little 
or no heat conducted or converted to the limiter. All of these features are 
consistent with our simulations employing a carbon impurity. 

There are several other trends mentioned in Ref. 33 that are reminiscent 
of behaviors found in our simulations. First, a decrease in the effective minor 
radius (defined via the temperature profile) can be brought about by either 
increasing the central electron density or decreasing the plasma current. An 
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experimental scaling for this has been determined: 

a oc / J -« 4 ± f t f l 5 n , (0 ) - f t 3 s 0 - , > \ , 3 8 j 

The data with carbon impurity we have presented are not extensive enough to 
allow a detailed comparison with this expression, but preliminary indications 
are that our simple model yields a weaker current scaling than this. 

Secondly, the total radja' '. jjuk.^i and the laJiuled power per unit voiumc 
increase with central electron density both in the experiments and in our 
simulations. We cannot say anything definite about how these quantities 
vary with plasma current in our runs because of the increases in central 
density that are required during the profile contraction to maintain constant 
line-averaged density (see Fig. 7) in the Ip, BT scans. We do note that in 
run 06e, the total radiated power decreases with plasma current, despite an 
increase in ne(0) (see Fig. 7). In Ref. 33 it is noted that the central electron 
temperature falls as the central density is increased. This is also the case for 
our two density scans with carbon impurity (05b and Oic). 

Finally, Strachan et a l . 3 3 point out that the safety factor at the effective 
edge of the plasma decreases with increasing nc(0), down to about q = 2. 
Further attempts to increase the central density lead to disruption. This 
is another indication that our disruption c '.erion, T, = 20 eV at q = 2. is 
reasonable. Future work will attempt to make more quantitative comparisons 
between the simulations and experiments. 

In summary, we have developed a relatively simple transport model that 
yields qualitatively correct scalings for the density limit in ohmic tokamak 
discharges. The emphasis here has been on effects of the density profile. 
In particular, we have pointed out that at constant line-averaged electron 
density, a flat profile generates more radiated power than a peaked profile 
just due to the higher edge density. 

The profile shape also impacts the current scaling of the critical electron 
density. Namely, with peaked electron density profiles, the location of the 
q = 2 surface moves inward to regions of higher density as q^ is raised. 
This leads to an effectively higher radiated power than at smaller q^ in the 
maximally contracted state where the peak of the radiation is near q = 2. 
This is also true of the initial, uncontracted states used in our simulations. 
The end result is a decrease in the allowable Murakami parameter as q^i is 
increased. Of course, the argument does not hold for flat profiles, and very 
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little scaling of the Murakami parameter with qcyt is noted in those cases. 
These trends are clear in Fig. 3 and have been confirmed by our analytic 
calculations. 

These two density profile effects suggest that if all other factors (impurity 
concentration, average density, etc.) are the same, discharges with peaked 
profiles will yield larger critical Murakami parameters than those with flat 
profiles. So, in an actual experimental data base consisting of a large number 
of shots produced under various conditions, the ones yielding the highest 
Murakami parameter at a given (jcyt W«U D e the ones with the most peaked 
profiles. 

It has been observed experimentally that ZKjf decreases with increasing 
density. 2 3 We- have not taken this into account in our simulations (we keep 
Ztjj approximately constant as the density is varied). It would act to enhance 
the q^i scaling of the maximum Murakami parameter shown in Fig. 3. For 
example, if we write instead of Eq. (30) 

(LATrntnz) oc *>,<£,, (39) 

and hold nz constant, the exponents in Eqs. (35) and (36) double. Then, the 
scaling of S^ i e r i ( with current is stronger, but still close to linear. In this way, 
our relatively simple model can account for the overall shape of the Hugill 
diagram. 

The effects of pellet injection and auxiliary heating will be examined in 
the near future. 3 1 The importance of profile shape indicates that the central 
fuelling that can be provided by pellet injection allows higher line-averaged 
densities to be attained. This result is clear in present experiments. 1 0 ' 1 1 , 2 3 

Peaked profiles are of even greater importance in a reactor due to their im­
pact on the fusion power output. 1 , 3 It is also known that auxiliary heating 
can increase the maximum allowable Murakami parameter . 9 _ u Clearly, our 
model will yield this result since it is based upon a radiative power balance. 
Greenwald 9 , 1 0 has proposed that mechanisms insensitive to input power and 
impurity concentration may actually be responsible for the current scaling of 
the density limit. Future work will attempt to clarify this picture. 

Our next step in developing a predictive model for the density limit will 
be improving the radiation model in the BALDUR code, allowing it to treat 
effects such as charge exchange recombination'10 and transport of impurity 
charge states. 2 1 Attempts will also be made to treat the scrape-off layer and 
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boundary conditions in a more realistic fashion (see, for example, Ref. 41). 
These steps will be undertaken with guidance from experimental data. 
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run Z scan profile <?cy< " p , 1 9 'P BT rTclgR:BT 

02d 22 IP,BT 
peaked 2.8 4.70 1.50 3.20 3.77 

02f 22 IP,BT 
peaked 3.4 4.70 1.42 3.71 3.26 

02g 09 
— 

Ip.Br peaked 3.9 4.70 1.41 4.22 2.86 
02h 22 IP,BT 

peaked 4.4 4.70 1.29 4.38 2.76 
, 02i 22 IP,BT flat 2.8 4.70 1.13 2.41 5.01 
: 02j 22 lp.Br flat 3.4 4.70 0.82 2.48 ; 4.87 
j 02k 22 Ip,Br flat 3.9 4.70 0-92 2.40 5.03 
! 021 22 IP,BT flat 4.4 4.70 0.78 2.62 4.61 
j 03c 22 w; peaked 2.8 6.30 2.20 4.70 3.44 
! 03d 22 n't peaked 3.9 6.60 2.20 6.60 2.57 

05b 6 n; peaked 2.8 10.0 2.20 4.70 5.47 
05c 6 n; peaked 3.9 9.90 2.20 6.60 3.86 

j 06a 6 Ip.Br peaked 2.8 8.00 1.70 3.63 5.66 
| 06b 6 Ip,BT peaked 3.9 8.00 1.66 4.99 4.12 
1 06c 6 IP,BT flat 2.8 6.00 1.75 3.74 4.12 
1 06e 6 Ip,BT flat 3.9 6.00 1.47 4.40 3.50 

Table I: Simulation parameters; Z indicates impurity atomic number. Flat 
and peaked describe the density profile. Units are TQ l 9 : 10 1 9 m" 3 . BT • T. 
L : MA, and R = 2.57 m. 

run S7, 9/(£rC 5 9) nt,ia/Ip 
02d 3.33 3.13 
02f 3.41 3.31 
02g 3.38 3.33 
02h 3.53 3.64 
03c 3.43 2.86 
03d 3.51 3.30 

Table II: Constant required in Eq. (36) and in n,. oc Ip by data in Table I. 
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run ne .iJ(BQ

T

mi; 0.1fi\ nl^lBT 

02i 2.29 1.95 
02j ! 1 2.13 i 1.90 
02k : 2.23 j 1.96 
021 • 2.01 1.79 

Table III: Constant required in Eq. (36) and in n„ rx BT by data in Table 5. 
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Figures 

FIG. 1. dependence of the radiated power per unit volume, divided by the 
impurity and electron densities on electron temperature, for (a) titanium 
and (b) carbon computed from results of Refs. 18 and 28, respectively. 

FIG. 2. Dependence of the average charge in coronal equilibrium on electron 
temperature for (a) titanium and (b) carbon computed from results of 
Refs. 18 and 28, respectively. 

FIG. 3. Plot of the data from Table I in Hugill space. Lines for Wc -
BjlRqcyi and nl — IBjlRq^i are included for comparison In (a) and (b) 
we show data from runs with titanium impurity: in (c), carbon was used. 
Open (closed) markers indicate peaked (flat) density profiles. Also IpiBr 
scans are denoted by square markers, and n7 scans by circular markers. 

FIG. 4. Electron temperature as a function of time and radial half-width for 
simulation 02h. 

FIG. 5. Toroidal current density as a function of simulation time and radial 
half-width for run 03d. 

FIG. 6. Electron density as a function of radial half-width for 02h and 021. In 
both cases, the profiles were taken at the end of the initial (uncontracted) 
steady state. 

FIG. 7. Electron density as a function of radial half-width and time for sim­
ulation 06e. 

FIG. 8. Radiated power per unit volume given by Eq. (9) as a function of 
time and radial half-width for simulation 02h. 

FIG. 9. Radiated power per unit volume given by Eq. (9) as a function of 
time and radial half-width for simulation 02j. 
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