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1 INTRODUCTION

In the standard model of cosmology it is assumed that, on the largest

scale, the Universe can be reasonably represented by a Robertson-Walker

(R-W) spacetime.

When we observe the Universe we usually obtain Information encoded in

the electromagnetic radiation that arrives from the particular observed

object. As we try to study more distant objects we are forced to direct our

attention to earlier times. Thus when we are studying the largest scale of

our Universe we are, for all practical purposes, at future null Infinity of

the observed region.

It is then necessary in the study of the largest scale of the Universe

to have a clear picture of future null infinity of the Robertson-Walker

spacetlmes.

In this article we make a systematic study of future null Infinity for

non-contracting R-W spacetimes.

Some particular examples have been extensively discussed in the

literature ' ' already. We here however develop the techniques that allow

the study of all non-contracting models. In any case we review the MInkowski

and de Sitter examples in the second section, and the dust Friedmann models

In the third section.

In section 4 the general method Is described, and is applied to

characteristic asymptotic behavior.

Section b contains some closing remarks.

In the remainder of this introductory section we will mainly present the

notation to be used.

Let us consider non-contracting Robertson-Walker models. Their line

element can be given by

cis* - dt2 - A(t)2 dL,2 (1.1)

where dL^ can be expressed In several equivalent ways:

dL2 - ~ ^ ~ • ?
" (1 - K iZ)

(1.2)

[1 + K r2

4

(1.3)

(1.4)



where dE2 Is the line element of the unit sphere, which can also be expressed

in a variety of ways, for example

(1.5)

4 df df df df

(i + rF>2

with

P -

finally the function f is defined by

sinh(x) for K - -1

X for K - 0

sin(x) for K - 1

(1.6)

(1.7)

o < X <

0 S x < (1.8)

The range of the coordinate t is associated with the behavior of the function

A(t). When there is an Initial singularity followed by a continuing expansion

one takes 0 < t < «.

By a non-contracting R-W space we mean that the scalar A(t) must satisfy

— a 0 . (1.9)

In the study of future null infinity of asymptotically flat spacetlmes,

the use of null coordinates and/or null tetrads adapted to scri has proved

useful. It is also useful in our case to Introduce a null coordinate u by the

equation

(1.10)

Using this relation to replace dt In the line element one obtains

r , , _•!
du + 2 du dt • f d2T Ids' - A (1.11)

The range of the coordinate u is determined by the asymptotic behavior of the

scalar A(t); that is, for example, If

lira
t —>

dt'

A(t')

(1.12)

then the function u is unbounded from above and its range in the cases K - -1

and K - 0 is -•» < u < ». Instead if the limit is finite then the coordinate u

is bounded from above, let us say u < u ; this can be thought of as the

manifestation of the appearance of cosmic event horizons.

We can also define the coordinate r by the expression

which satisfies

a r a r
S x

A(f) dt'

a r a t . a t 2
a t a x~ d x~

(1.13)

(1.14)

so that

dr - ( A2 - r ) du + A2 (1.15)

where we are using the notation ro • -J- •

Then using r instead of the coordinate x, the Robertson-Walker line

element Is given by

ds2 - (2 r • A2) du2 + 2 du dr - A1 (1.16)

Note that the line element is spherically symmetric, so we do not change the

angular coordinates. The relation between the original non-angular

coordinates and the new ones can be expressed by the following differential

equations

£-•>]--h dr (1.17)

dt — du + -T- dr (1.18)

Let us now introduce a null tetrad adapted to this new coordinate

system. We can deduce from the line element that u — oonit. are null

hypersurfaces, so we take the null vector I to be

I - du (1.19)

Then we have

(1.20)



r 7 r - o (1.21)

and

that 1B r is an affine parameter of the future directed null geodesies In the

null hypersurface u - conit..

Complex null vectors m" and m* are taken such that

A f o
k

with m" . I i P
a r

The last null vector n is defined by

This null tetrad satisfies the usual contraction relations

n 1 • -i i -1

(1.23)

(1.24)

(1.25)

while all other contractions are zero.

Although now the expansion parameter A is a function of u and r, it is

convenient to retain the original functional dependance of A(t). Therefore we

will use ' to denote derivatives with respect to t; Chat is

and evaluate coordinate derivatives of A in terms of A'. They are:

fl A J
d u A

(1.26)

(1.27)

and

We obtain similar expressions evaluating coordinate derivatives of A':

I4'~ ̂ t . (1.29)

and

a A1 A''
5 r A

(1.30)

Using the fact that

the coordinate derivatives of f can be expressed by

and

(1.31)

(1.32)

(1.33)

In terms of the G.H.F. notation the only components of the curvature

tensor which are different from zero are

_ Pv T A " A i\ - — n v \

K + A' - A A' '
A -

4 A'

K + A' - A A"

K + A' + A A'

4 A2
(1.35a),(1.35b)

(1.36)

At this stage It is natural to try to follow some of the techniques that

were used In the definitions of future asymptotically flat spacetimes . These

techniques include the use of a conformal factor 0 which will bring infinity

to a finite distance in the conformally related manifold M with metric

8., (1.37)

We have constructed our null tetrad and coordinate system out of a

family of null hypersurfaces which define for us a null congruence reaching

the asymptotic region under study, Then since the function r is an affine

parameter along these null geodesies, we know that taking (1 proportional to

1/r will bring future null infinity to a finite affine distance.

We will study the consequences of taking il — 1/r In the third and

following sections. But let us first review two of the most celebrated

Isotropic cosmologlcal models.

2 TOO EXCEPTIOHAL CASES, MINKOWSKI AND DE SITTER

Among the R-W family, two spacetimes deserve special treatment; they are

Mlnkowski and de Sitter space. These are the only metrics that can be

expressed in more than one of the forms

-6-



ds2 - dt2 - A(t)2 dL (1.1)

that Is Minkowski can be represented by a line element of this form with

K — 0 and K - -1, while de Sitter can be represented by the three possible

values of K.

MINKOWEKI SPACE

In Minkowski space we have

and

therefore

with solutions

and

0 -

0 -

K + A ( i - A A'

4 A '

K + A ' " + A A'

4 A 2

A' - / - K

A •* constant ~

for

for

K - -1

K - 0

( 2 . 1 )

( 2 .2 )

(2 .3 )

(2 .4 )

(2 .5 )

where without loss of generality we have chosen the arbitrary constant to be

1. So we can express A(t) by

A(t) - - K t + (1 + K) (2.6)

Minkowski space is particularly special among the R-W modes since it is flat;

and obviously asymptotically flat. When K - -1 one refers to it as the Milne

mode1 .

It has been customary to represent the null Infinity of Minkowski space

by its conformal map into the Einstein universe, which is obtained from the

K - 0 form of the metric through the transformation

t' - arc tan(t + x) + arc tan(t - x)

x' - arc tan(t + x) - arc tan(t - x)

with the coordinate range -ir < tr + x' < * a n d -* < t' - x' <

The Minkowski line element can then be expressed by

(2.7)

(2.8)

; (2.9)

where from the last line one can see the conformal relation between the

Minkowski metric and that of the Einstein spacetime. Null Infinity agrees

with the region where the conformal factor is zero; and as is well known It

Is formed by two null hypersurfaces in the Einstein space; they correspond to

future and past null infinity respectively.

Alternatively one could also study future null Infinity of this space

without making any reference to the Einstein universe.

We here end our short characterization of Minkowski space, and go on to

consider other nontrivial cases.

DE SITTER SPACE

If we only require the trace free part of the Rlccl tensor to be zero we

obtain

0 - K + A'2 - A A " ;

and due to the contracted Bianchi identities

K + A' 2 + A A " C
A -

4 A"

where C is a constant. From these equations we deduce

K + A'2

and

A A' '
- c

The solutions of which, for C > 0, are

t - C"1'2 .

or In terns of A(t)

) •

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

m »!(*•*«*.,.: .''*, I* ~&.



A(t) -
i

1

/ 2)

cosh(t

for

for

for

K - -1

K - 0

K - 1

(2.15)

which can also be expressed In one line by

Defining Che function

f - arc tan(sinh(t C1'2))

the de Sitter metric can be expressed by

(2.16)

(2.17)

ds2 - A(t)2 (2.18)

We see that this space is conformal to a portion of the static Einstein

universe with the range of the time coordinate given by - ir/2 < t' < ir/2. One

then takes the conformal factor 0 to be given by A 1. By doing so one finds

that 3 turns out to be a spacelike hypersurfaee In the static Einstein

universe.

As we have observed these two exceptional examples are easily related to

the Einstein space. This suggests we should refer every R-W model to Its

conforraal image in the Einstein universe since "it is a kind of maximal

universal conformally flat spacetime" .

Instead of carrying out this program, in section 4 we will try to follow

closely the techniques used in the study of asymptotically flat spacetimes.

Note that de Sitter space Is particularly easily related to the Einstein

universe because it can be expressed as a line element with K - 1.

3 IS THE FRIEDMANH MODEL ASYMPTOTICALLY FLAT7

One of the key features of the definition of GeFAF spacetimes is the

flatness condition on the Riemann tensor; which In the regular case is

R d - 0 R * + SS. "
abc mbc *bc

where R is a regular tensor at future null infinity and
abc

zero faster than fi.

(3.1)

g o e s t o

In our case, for the Robertson-Walker spacetimes, we expect to have a

generalization of this behavior, that will look like

R d + «R d (3.2)

where now h(n) is some function of 0 that might diverge for O —> 0.

It is amusing In any case to compare equation (3.1) with equations

(1.34-36). Observing equations (3.81),(3.83), (3.85) and (3,86) of reference

[5] we see that this comparison will imply the following relations

4 _
22

A * n A

- A A

» + 5v
22 22

11 11

K U ' • AA" 5 - . ,* w * + S*
DO k 4 00 00

A .

(3.3)

(3.4)

( 3 .5 )

( 3 . 6 )
4 A2

where we are using little to in order to differentiate It from the true

conformal factor 0. It is observed then that this comparison establishes the

following proportional expressions

(K + A'Z - A A' ') a us

(K + A'2 + A A " ) ot u>

Therefore one should have

and

which implies

and

(K + A ' 2 - A A " ) = -j-
A

(K + A' + A A1 ' ) « - i ~

,2 _ § _

A A " - - a :

10

(3.7)

(3.B)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)



for some constants Q and Q' . Computing the derivative of the first

expression, we obtain

' 2 ) '(K + A' )' - 2 A' A' A" - --2- A- (3.14)

so the second equation ia a consequence of the first and in particular we

have that Q' - -Q/2 .

The first equation Is nothing other than the Frledmann equation. It is

then somewhat surprising that by playing around with the idea of R-W

spacetintes which look future asymptotlcaHy flat, we do not find a trivial or

extremely complicated new model, but instead the dust Friedraann model.

It can easily be seen that in the Friedmann model the curvature

components are given by

K + A'2 - A A' ' 3Q
22 " 4 8 A

(3.15)

* -
DO

K + A'2 - A A " 3Q

•* 8 A3

2 A5

4 A*

K + A'4 - A A "

A -
K + A'2 + A A'

(3.16)

(3.17)

(3.18)
4 A' 8 A'

He will now relate these expressions with the family of conformal factors 0

which are proportional to the inverse of the affine null distance, that is

D o t -

It will be useful to note that

dA - -s— du + -s— dr - A' — — d
flu flr A

since then we can express

(3.19)

(3.20)

11

_ f A dA _ f A dA (3.21)

for K - -1

2 AJ for K - 0

5/Q-

It is observed from the last expression that in the limit r » «> one also

has A > <•>; and the leading order of this equation gives:

and

for K - -1

for K - 0

(3.22)

(3.23)

Let us next study the two cases corresponding to the two possible values of

the constant K.

CASE K - -1

In this case we can take the conformal factor f] to be

(3.24)

that is 0 Is asymptotically given in terms of the affine distance r by

a
l
2 r

(3.25)

Let us see what the conformal metric looks like at future null infinity.

From equation (1.16) we obtain

dS2 - (I2 ds2 - A"' (2 r - A2) du2 + 2 A** du dr - A~2 f2 (3.26)

The first two terras of this equation present no problem; however we should

study in detail the asymptotic behavior of the third terra. Using equation

(1,14) asymptotically one obtains

3 r 3 r
3 X " 3 X

- A » 2 r (3.27)

12



from which it Is deduced that for very large r

r = e 2* . (3.28)

Then since for very large x o n e has that f2 ~ e x/h. It is deduced that

asymptotically

.-2

4 A*

So the confornsal metric at future null infinity is given by

- - du dn
ft-o

- -i- d£Z

0

(3.29)

(3.30)

which is a non-degenerate regular metric. This means that the present choice

of Q does the job of bringing infinity to a finite distance and provides us

with a well behaved conformal metric at future null infinity in this case.

It is then reasonable to ask under what conditions on A(t) will the

choice of fl as the inverse of the affine distance along null geodesies have

this property. We will study this In a later section.

The Riemann tensor can now be expressed in terms of f), obtaining

(3.31)

4 -
11

(3.32a),(3.32b)

(3.33)

Equation (3.2) implies asymptotic behavior of the form

4 - h ( f l ) 4 + 5 * ,
22 22 22

(3.34)

* i t - h{fl) £1 * ^ + 44^ , A - h(0) O A + 1» (3 .35a) , <3.35b)

9 - k(a) O * + *4
oo v oo oo

where it can be seen from the last equation that

(3.36)

him - (3.37)

This means that the Riemann tensor diverges as n as one approaches

null infinity. And to avoid any confusion It is convenient to remark here

that the Friedmann K - -1 model is not asymptotically flat, and the scalar w

13

used above does not coincide with the conformal factor 0 which is used in the

construction of the conforntal metric.

Let us now consider the other expanding Friedsiann model.

CASE K - 0

We try now to repeat the sane construction as before by taking the

conformal factor 0 proportional to the inverse of the affine distance; more

precisely we take

ft -
.5/2

The conformal metric Is given in this case by

ds3 - A"5 (2 io - A2) duZ + 2 A"5 du dr • A"3

(3.38)

(3.39)

Studying the asymptotic behavior of A r in a similar fashion, we

obtain

a r 3 r

3 X " 3 x

which means that asymptotically we have

,1/2

V " 5 r1'*

(3.40)

(3.41)

Then for la rge r one obtains

-3 JI , - 3 2 { 5 Q 1 " r -.-6/5 r 2 - |a /s
A r - A x = [ —^-j J ( —z J

,1/2
(3.42)

so the conformal metric obtained In this way turns out to be degenerate at

future null infinity.

Note that traditionally the Friedmann models have been studied through

their conformal representation in the Einstein universe, where this bad

behavior of the conformal metric is absent. This reinforces the Initiative of

relating every R-W model conformally to the Einstein universe. However we

should also note that in this last example the bad behavior of the metric at

future null infinity is associated with the choice of the conformal factor as

the inverse of the affine distance, since It produces complications with the

asymptotic behavior of the angular part of the metric; and so it is clear

14



that these complications will disappear if we choose the conformal factor as

the Inverse of the luminosity distance, although probably at the expense of

introducing other complications.

It is therefore clear that we need a systematic study of future null

infinity in the R-W models. We do this in the next section.

* THE GENERAL CASE

We are therefore confronted with the question of how to choose an

appropriate conformal factor that will make the conforraal metric regular

(meaning at least continuous) at future null Infinity. Of course this Is

associated with the behavior of the function A(t) which Is the only

nontrivlal Input in the metric.

Let us be more precise in our discussion. He will define the manifold 3

to be future null Infinity of a non-contracting c" Robertson-Walker spacetlme

(M,g ) If there exists a manifold M with boundary 3 , metric g and a

function 0 on M such that a neighborhood of 3* in M is dlffeomorphic to a

neighborhood of 3 in the manifold H u J and

a) on M: 0 Is c", fl > 0 and g - (f g ;

b) at J*: 0 - 0, n is C°; at every point of 3* there end future directed

null geodesies of M,' and g is non-degenerate.

Note that we are implicitly requiring the conformal metric to be C at

scri. Also it should be observed that nothing is said about the

differentiability properties of 0 at scri, that Is we only require it to be

continuous.

At this point It is Important to recall that if v is an affine parameter

along the null geodesies contained in the null hypersurfaces u — constant,

but with respect to the conformal metric g^, then it can be related to r by

the equation

Since v is a natural coordinate of ft, it is then clear how the choice of 0

determines the differentlable structure of the conformal manifold.

Due to the present symmetries, the scalar (I is taken to be a function

depending only on u and r; so one can define v to be

- - G(u,r') dr' + v (u)
o

with v - 0 at scri. In this way we will have

dv - - 0 dr + v, - 2 0 6 dr-
J r i J

du

.2)

(4.3)

15

where as before a dot means partial derivative with respect to the coordinate

u; for example

(4.4)

Let us note that the existence of the coordinate v In the conformal manifold

M requires that

r
llm n(u,r')2 dr'

r — - Jr
must exist.

The conformal metric can then be expressed by

(4.5)

di2 - O2 ds2 - O1 (2 rfl • A
2) du2 + 2 fl2 du dr (4.6)

fl2 (2 ro - A2) - 2 2 tl 0 dr' + 2 v I du2 - 2 du dv • dS2

It is crucial to notice that this expression for the conformal metric Is

an Invariant one, that is, it has been geometrically defined; and that du, dv

and dS2 have clear invariant meaning. Therefore the three terms appearing in

the above expression are geometrically well defined and It makes sense to

refer to the asymptotic behavior of each of them. From the last term, in

particular, we observe that the algebraic condition that will make this term

regular at J+ is n2 A2 f2 « constant.

One may ask: is it possible then that by taking Q to be the inverse of

the luminosity distance r the conformal metric Is regular at 3 1

The luminosity distance is a scalar that satisfies

3r
- - p r . (4.7)

The natural choice for r̂  Is

r - A f . (4.8)
L K

So by taking the conformal factor 0 to be the inverse of the luminosity

distance we obtain

n -

and

r A f
L f.

16
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dr' + 2 v du2 - 2 du dv - dS2. (4.10)

It is then clear that for this metric to be regular at scri we should have

the expression

W - n (4.11)

regular at scri.

The last expression can bB further transformed by noting that

1 - K f - + :— p - tl + fi r p

which Implies

w. [ a2

Then using the relation

an
2 3r 0 -

dr'

(4.12)

(4.13)

(4.14)

we can express W by

17

W - dr'

dr' + r 2
(4.15)

This means that we only need to consider the first term in the asymptotic

region in order to determine the regularity of the conformal metric at 3 .

At this stage it is clear that we need a detailed study of the

asymptotic behavior of the functions A and x as r goes to infinity. We have

explicitly mentioned that we consider A' > 0. Next let us observe that the

optical scalar p is given by

(4.16)

and therefore satisfies p < 0; which implies that

3T
> 0 (4.17)

But furthermore, by taking the conformal factor O - l/rL , we are implicitly

assuming that in the limit r • » , we should have 0 ' 0, or equivalently

r > «°. Can we have lim r < «•> ? We will see later that under the
1
 r — • » L

present conditions r —> « as one approaches 3 .

In order to obtain information on the asymptotic behavior of the

coordinate x along the null geodesies contained in the null hypersurfaces

u — const., it is convenient to study the equation

dt

since when u - unit, we have

^ -

Defining

(1.10)

(4.18)

18



*„ - (4.19)

we want to know whether x Is bounded (finite) or unbounded (infinite). We

can then classify the R-W spacetitnes in two classes such that:

Class B corresponds to x^ bounded and

Class U corresponds to x unbounded.

Case B coincides with the appearance for each observer of an event horizon;

since for example an observer traveling along the geodesic x ~ «•«. > X^ •

9 — oontt., and <p — con»t. will never be able to get Information from the

events with t > t and v < v . The case U refers to those models where there

is no event horizon.

CASE B:

Since in this case f (x ) is finite we deduce that a sufficient

condition for W to be regular at 3* is that

lim 0*
r — - I

dr' exists ; (4.20)

which agrees with eq. (4.5), and it is also equivalent in this case to the

condition that

dr' exists for r (4.21)

CASE U:

Since x Is unbounded, we disregard the possibility K - 1, and we

consider the cases K - -1 and K - 0 separately.

CASE I), K - -1:

We now also require that the expression

Jr Jr A*
dr' exists for r (4.22)

i 1

which also coincides with equation (4.5).

CASE U, K - 0:

In this situation it Is required that

I
dr' exists for r (4.23)

I I

which is weaker than the condition for the existence of the function v.

19

It is clear in all cases considered that *L —> <• as r —• «, since at

least A or f is unbounded In this limit, and both satisfy A > 0 and f^ > 0.

We have that the condition of regularity of W in the cases considered

above is satisfied If the function v is well defined, l̂ st us now observe that

In all cases v is well defined.

In case B we have that the integral (4.19) exists; while for v to be

well defined we should have that

dr' exists for r (4.24)

which In this case Is equivalent to the condition that

I dr' exists for r • » (4.25)

This Integral is easily shown to be equivalent to (4,19) since

t A

1 1

Therefore v Is well defined in case B.

In case U one has

dt - •»

and one would like to have

dr' < ">

(4.26)

(4.27)

(4.28)

But let us note that since K can only have the values -1 and 0, one has that

(4.29)

from which one concludes that

20



llm
" nm

dt'

- lira ^ dt' - llm —
t - » J A f 2 x ~ . » I A fc. * X. K

- Jim llm
, z

< » (4.30)

Therefore we see that also in case U the function v is well defined.

Then since the regularity conditions of U are satisfied if v exists, we

conclude that the choice

fl -A f (4.31)

provides us with a construction of 3* for all non-contracting R-W models.

It now remains to be seen when dfl Is regular at 3 , and what type of

hypersurface Is 3*, namely when it is tlmelike, null or spacelike.

In terms of the coordinates (u.v.f,^) of the conformal manifold fl the

differential of Cl is given by

A f'
2 W - v -

o du + fi dv (4.32)

where

(4.33)

Then dfl will be regular at J+ if and only if 0 is regular at 3*;

furthermore at J we have

- n dv (4.34)

If df! is well behaved at J+ the character of the hypersurface 3 can be

studied from the expression

- [ *s J (4.35)

where one can see that since it is the difference of two positive terms, in

principle it could be positive, negative or zero.

In order to have a concrete picture of the different possible behavior

let us consider the following examples:

21

a)

b)

c)

d)

e)

constant

very slow

slow

power law

fast

A -

A -

A -

A -

A -

1

t
t + 1

In t

t" , n>0

cosh t ,

A
A'
A

A'
A

A'
A

A' _

0

1
t (t + 1)

1
t ln(t)

n
t

tanh t

(4.36)

(4.3?)

(4.38)

(4.39)

(4.40)

The first three cases belong to class U. The examples d) with n < 1 are also

of class U, while when n > 1 they belong to class B. Finally the last example

is of class B. So we see that A - t is a boundary case among our examples

which divide them into classes U and B.

Let us now state the value of Q , and g(dn,dn) at J+:

Example

a)

b)

c)

d,n<l)

d,n-l)

d,n>l)

e)

Class

U

V

U

0

u

B

B

K

-1

0

-1

0

•1

0

-1

0

-1

0

-1

0

1

-1

0

1

0
V 5 +

1

1

1

CO

0

2

1

0

0

0

sinh xn

sin *„,

g<dn,dn)

0

0

0

- - -

0

0

- ' -

1

1

1

remarks

Hinkowjtl ipici

* 2/3
A-t is a

FritdmaTiTi model

Minkowski ipici

d ft S i t t n spnct

TABLE 1: v,iu,t of 0^ n d g(dn,dfl) .t
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It is observed that although we are forced to take the conformal factor

as the inverse of the luminosity distance, in order to obtain a regular

metric at scrl, this conformal factor is not suitable for the study of the

nature of scri, since we have seen that dfl Is sometimes zero or not defined

at scrl.

However we can choose the coordinate v such that v - 0 at J by

appropriately defining v (u); and by doing so we can use dv for the study of

the nature of 3 , since obviously v is a regular function at scrl. In fact

one finds that

i(dv.dv) - (4.41)

so scri is non-timelike, and furthermore in case 0 it is null and in case B

spacelike.

We have Just proved the following theorem,

THEOREM:

The future null infinity of non-concracting Robertson-Walker

models is null or spacelike according to the absence or presence

of cosmic event horizons respectively.

This completes the statements appearing in the literature which

claimed, based on intuitive arguments, that when 3* Is null one expects no

event horizons, and when 3 is spacelike each observer will be assigned an

event horizon. It is important to emphasize that although the same intuitive

arguments were used for the nature of past null infinity, which normally

coincides with the Initial cosmic singularity, the analog theorem Is not

true. For example the K - -1 de Sitter model would violate it, since past

null infinity of de Sitter space (which Is spacelike) does not coincide with

the initial null cone cosmic singularity of the K - -1 model (which does not

possess particle horizons).

It was asked previously under what circumstances would the choice of the

conformal factor as the inverse of the affine distance provide us with a

construction of 3 . To see this let us note that

ax - 0 (4.42)

So, since we know that the choice of the inverse of the luminosity distance

as the conformal factor provides us with a construction of 3 , we are sure

that the affine distance will do the Job if

o < a (4.43)
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It is clear then from the above table why in the case K • 0 of the Friedmann

model it Is Inappropriate to take 11 — 1/r.

5 FINAL COMMENTS

We will proceed here with a quick recapitulation of the topics we have

covered, and take the opportunity to insert some comments.

In order to put our work into perspective we have reviewed in sections 2

and 3 what could be considered as the most significant Robertson-Walker

models, namely: Minkowski space, de Sitter space, and the open dust Friedmann

models. We have approached the first two spaces through their standard

conformal representations in the static Einstein universe.

In section 3 we have observed that a naive comparison of the asymptotic

behavior of a regular asymptotically flat spacetime with the Rlemann tensor

of a R-W model leads us to the dust Friedmann models. Actually, as we have

seen, these models are not asymptotically flat. This might seem a little

curious, since for example in the K — -1 dust Friedmann model the scalar A(t)

asymptotically approaches the functional form A w t for large t. And since

Minkowski space can be represented as a R-W model with K - -1 and A - t, one

would be tempted to conclude that the K - -1 dust Friedmann model is

asymptotically flat at future null Infinity. Instead we have seen that this

is not the case; in fact the curvature tensor of this model diverges at

future null infinity. One might however Introduce the notion of timelike

Infinity and argue that the K - -1 dust Fricdmaim model is asymptotically

flat in that region; we instead for the moment concentrate our attention on

future null infinity.

We have also studied the use of the conformal factor as the inverse of

the affine distance and found the following: while in the case K - -1 for the

dust Friedmann model it provides us with a well behaved metric at future null

infinity, in the case K - 0 It produces a degenerate metric at scri.

From the contents of section it we have proved that the choice of the

conformal factor as the Inverse of the luminosity distance permits the

construction of 3 for all non-contracting R-W models. We have also seen that

although this choice is necessary if one wants to obtain a regular metric at

scri, one can not always use the gradient of this conformal factor for the

study of the nature of 3 , since in some cases dfl Is zero or not defined at

scri. In any case tt was proved that in the non-contracting R-W models 3 is

not timelike, and more precisely the theorem of the last section relates its

nature to the appearance or absence of cosmic event horizons.
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