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Abstract

Effects of particle and energy losses on the velocity distribution function

of minority ions heated by ICRH are considered. An approximate model,

including such losses, is derived for the stationary pitch angle averaged

distribution function. Energy losses are shown to be important when the

energy confinement time is of the same order or smaller than the slowing

down time for ion-electron collisions. The criterion for when particle

losses are Important is shown to be more complicated. It does not only

depend on the slowing down time but also, among other things, on the ap-

plied RF-power. Effects of a velocity dependent particle confinement time

are also studied.
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Introduction

The evolution of the ion velocity distribution function, f, in the presence

of ICRH driven, quasi-linear, velocity space diffusion is determined by the

Fokker-Planck equation [l-10]

§f-« C(f) + Q(f) (1)

where C(f) is the collision operator and Q(f) is the quasi-linear ICRH-

diffusion operator.

Extensive computer studies have been made of the Fokker-Planck equation

describing ICRH-driven, quasi-linear velocity space diffusion [l-5J. How-

ever, the numerical codes needed to obtain a full 2D solution to the

Fokker-Planck equation are cumbersome and demands large computer resources.

Approximate models that provide a short computational procedure and con-

tributes to the physical understanding can therefore be of particular

interest. Analytical and/or semi-analytical [6-10] investigations have

resulted in approximate solutions for the steady-state velocity distribu-

tion function of the RF-heated ions.

On the other hand, most analytical investigations of eq. (1), e.g. Refs

[6-10], have neglected particle and energy losses, i.e. the particle (̂ 0)

and energy (t„) confinement times of the heated ion species are assumed to

be infinite. Nevertheless, steady-state solutions of eq. (1) are still

consistent since the necessary energy sink is provided by collisions with



- 3 -

the background plasma particles. The RF-power collisionally transferred to

the background plasma particles is then assumed t<-> be balanced by the

losses of these background particles.

When investigating the effect of finite particle and energy confinement

times of the heated ion species eq. (1) should be augmentet with loss terms

representing particle and energy transport. In a previous numerical in-

vestigation, [l], it has been shown that the inclusion of such loss terms

can have a significant effect on the velocity distribution.

Qualitatively one expects the form of the velocity distribution function to

be significantly affected by the loss terms when x and -c,, are of the same
P k

order or smaller than the slowing down time, t . The main effect of the

inclusion of particle and energy loss terms should be to suppress the high

energy tails created by ICRH.

The purpose of the present paper is to study the effect of finite particle

and energy confinement times on the pitch angle averaged distribution F(v),

where

, 1
F(v) - j j f(v,u)dn

1 -1

The pitch angle averaged distribution, F(v), is an important quantity to

evaluate, since many physically significant velocity space averages, like

collisional power transfer to background plasma particles, fusion reac-

tivity etc, only depends on F(v).
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2^ Fokker-Planck equation

The Fokker-Planck equation, including loss terms, for the heated ions can

be written as

II = C(f) + Q(f) - L + S (3)

where L represents losses and S is a source term.

The analysis will be restricted to minority heating, i.e., heating of a

minority ion species at the fundamental ion cyclotron frequency. Self

collisions between ions of the heated species can then be neglected com-

pared to collisions with the background species. Furthermore, the back-

ground plasma is assumed to be almost Maxwellian with a given temperature,

which implies the presence of an energy sink, as discussed in the intro-

duction. The collision operator for a test particle distribution

tbermalizing against a Maxwellian background can thus be used.

With the notation used by Stix, [6], the collision operator can be written

« » - 7 h f-°«"'2f + ife [ec)»2']i+ ̂  h t'1""2' f 1 ( 4 )

where v is the velocity and \x - v /v is the cosine of the pitch angle. The

collision coefficients a, p and y describe dynamical friction on the back-

ground species, energy diffusion and pitch angle scattering respectively,

[6],
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The RF-diffusion operator will be taken in the following form, cf [6,8]

(5)

where

+ AJ* (vx) (6)

- / 2 2
Further notation is as follows: v - K.v./u . = K v /1-n /w ,, A = |E_| /

2
I E.I where E. and E_ are the left and right hand polarized components of

2

the RF-wave and K is a constant proportional to |E+| . For further nota-

tions see Refs [6,7]. The effect*? of a finite aspect ratio, in the form of

trapped particles, are not included in the analysis- This is a reasonable

approximation if the RF-power is deposited near the centre of the plasma,

where the inverse aspect ratio e is small. Furthermore, in ref. [5] the

influence of a finite aspect ratio has been shown to be small on weighted

velocity space averages of the distribution function. The RF-operator eq.
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(5) has been further simplified by assuming that the effects due to finite

E and K can be neglected. It is justified to neglect E since typically

|E | « |E |, |E_|. Effects due to finite K can be neglected if a>/K «

v , cf [6j. This condition is easily satisfied, in the velocity range of

interest, for most ICRH scenarios, [7].

In order to account for radial particle and energy transport, the following

loss terms have been used in several numerical studies of the Fokker-Planck

equation

L = -i- + A,!-M-v
3f

where x and t are the particle and energy confinement times for the
P E

heated ion species respectively. The first term in eq. (7) represents the

loss of ions by diffusion and charge exchange. The second terra, which is

particle conserving, represents the loss of energy by thermal conduction.

In general, T and x_ will be velocity dependent, but they are often ap-
p E

proximated as constants, cf [l,2J.

Since the first term in eq. (7) represents particle losses a source term is

needed in order to achieve a steady-state distribution. The source terra is

taken in the following form

S Kv '
O S ,a \

e (8), 3/2 3
2u v

s

where S is the number of ions created per unit time, and v is the
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"thermal velocity" of the created ions. This source term should be a

reasonable approximation for Ions created by ionization of a background

neutral gas.

The particle source term and the loss term must balance each other in

steady-state, i.e.,

1 ? 2dv - 1
o p

Thus, if T is approximated as constant, S and T are related, in steady-

state, by

n = S T (10)
o p

where n is the density of the heated species.

Approximate models for F(v)

We write the distribution function, f, as

f(v,n,t) =• F(v,t)[l+g(v,n,O] < u>

where F(v,t) is the pitch angle averaged distribution and g(v,u,t) accounts

for the anisotropy. The function g(v,u,t) satisfies the' condition

1
J g(v,u,t)du - 0
-1



Inserting eq. (11) into the Fokker-Planck equation (3), and averaging the

resulting equation over the cosine of the pitch angle, u, one finds

2

p 2it v s

where

A - - <xv2 + \ ^ (pv2) + ^ v3 + KvR2(v,t) (14)
E

B - j pv2 + Kv2[G(v) + Rx(v,t)] (15)

1 l 2 -
G(v) = y / (lV)H(v )du (16)

1 L ? -
R ( v ) - y J (lV)H(v.)g(v,n,t)dn (17)
1 L 1 x

\ ^ (l-,2)H(^)[v M | ^ l l - , ̂ ^ - ] d , (18)

Furthermore, in steady state we obtain

% ) + 77 r «p H^ll1 /



This equation can be split up into two coupled ordinary differential equa-

tions, viz.

f 7TT (20)

- ^- F
P

0 and

where l(v) is the number of particles lost per unit time with velocities <

v.

If the particle confinement time can be approximated as constant we obtain

+ (21)

F 4nv2 , n(0) = 0 and n(v + -) •* n

where n(v) is the density of particles with velocities < v.

In applications where the effect of a finite particle confinement time can

be neglected one obtains the following formal solution

F(v) - F(0) exp[- / | dv]
o

(22)

The problem with equations (2), (21) and (22) is that we do not know the

function g(v.u-). In principle, g(v,u) can be determined from the Fokker-
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Planck equation, but it has been found very difficult to obtain an analytic

solution which can be used to evaluate R^v) and R,(v). We are therefore

forced to consider approximate models.

3.1 "Isotropic" approach

A widely used approximation is to neglect the influence of anisotropy by

assuming g(v,n) = 0. This approximation is valid in the limit of weak

anisotropy, i.e., it should be reasonable for velocities below v , where v
Y Y

is the characteristic velocity associated with the pitch angle scattering

[ö]. In Ref [8] this approximation has been shown to provide useful and

accurate results for calculating most of the physically meaningful velocity

space averages, including such high energy characteristics as power

transfer to electrons and fusion reactivity. Furthermore, the losses con-

sidered in this work will tend to suppress the anisotropic high energy

tails. Thus, the neglect of g(v,n) can be expected to be a reasonable

approximation in the present context, in particular for calculating vel-

ocity space averages.

If we neglect g(v,u) then R ^ v ) - 0 and R?(v) = 0. The system of first

order differential equations (20) or (21) is then fairly easy to solve

numerically, and provides a short computational procedure. The computa-

tions become particular simple if the solution eq. (22) is applicable (i.e.

x -* • ) . Furthermore, the function G(v) can be calculated analytically to
P

the required accuracy by using the following expansion.

)
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(2n+2k)! (2k+2)!! _2(k+n)

k»0 2
2(k+n)[(n+k)!]2 (2n+k)!k! (2k+3)!!

3.2 Approximate solution in the high energy range

It is possible to derive an approximate solution of eq. (19) in the high

energy range. This solution gives a hint about how the losses affect the

tail of the distribution. In order to derive this solution we write the

pitch angle averaged distribution as

2
v „

F(v) - FA exp[- / h(v')dv' ] (24)

The function h(v) gives a measure of the local temperature, i.e. h(v) is

equal to the slope of JlnF(v) against v , and FA is a constant.

In the high energy range one can now approximate the particle loss and

source terms as follows (v » v )
s

/ L- v2 dv - !o {erfc(2-) - i. 2- exp[-(v_)
v p s s s

" F + / d V ( i n T - ) F d v ' + 2 h T - F a s v + < B ( 2 5 )

p v

The asymptotic expression Is valid when
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Substituting eq. (24) into eq. (19) and using the asymptotic expression eq.

(25) one finds

This expression will be analyzed in section 4. It is convenient for com-

putational reasons to use eq. (27) for the evaluation of the solutions of

eq. (20) or eq. (21) in the velocity range where eq. (26) is satisfied.

If the effects of finite x can be neglected we obtain (valid for all v)

h(v) - 3^- (28)

i.e., this is the same as eq. (22) as expected.

Although the isotropic model discussed in 3.2 provides useful and accurate

results for most velocity space averages, it cannot be expected to give an

accurate description of the anisotropic high energy tail. In the high

energy tail, where pitch angle scattering is weak (v > v ), the distribu-

tion becomes strongly anisotropic even for moderate RF-powers, and g(v,n)

can no longer be neglected. For v > v the distribution function will be

peaked around \i • 0, since the T.CRH primarily increases the perpendicular

velocity of the heated ions. The function g(v,n) will then have the

following asymptotic property, cf [9],
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(29)
-1

Using this approximation H. (v) and R?(v) simplifies to

k v
R l ( v ) " H(j7^ " G ( v ) (30)

ci

R 2 ( v ) = < ^
ci

We can summarize as follows: The isotropic approximation, as discussed in

sec* 3.2, is particularly useful for calculating velocity space averages.

However, the detailed form of the anisotropic high energy tail is more

accurately described if the approximate forms (30) and (31) are used.

4_. Comparison and results

It is possible to qualitatively understand how the losses affect the high

energy tail by analysing the asymptotic expression eq. (27). If we use the

high energy approximations for a and p given by Stix [6], we obtain from

eq. (27)

h(v) - i 5 . v
** e\ f\ J !•

VT
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v3+Vg+2t K 2 j [GCvJ+R^v)] v 2 I I 1 / 2

V_ T T
1+2 r — ^ E 2 ]

v3+v3+ 2|- v3+tsKvR2(v) v3+v3+ £- v3+tsKvR2(v)
E E

t l 111

TP 2 t. v3 t..KR,<v>
v

E v

(32)

where v « 2KT /m (m is the mass of the heated species) and h(v) is
T e i i 1 a<°

P

h(v) when the particle confinement time is infinit.

4.1 Energy losses

The energy loss term acts like a friction term, and if x_, is constant it

affects the tail in the same way as collisions with electrons do. Eq. (32)

shows that t /[2(l+v /v )] is the characteristic time with which x_ should

a E
s

be compared, i.e. if xo >> t /2 then the effects of energy losses can be
E S

neglected. This also shows that energy losses mainly affect the high

energy t a i l , unless T i s increasing with v, i . e . unless the energy

confinement of the high energy particles is good.

These points are illustrated in Fig. 1, where the relative difference in

power transfer to ions and electrons for finite (constant) t_ as compared

to the case T - « is shown. In deriving the results in Fig. 1, as well as

in the subsequent analysis, the following parameter values have been used:

3
minority heating of He in a deuterium background plasma, -.u * 0.05 n ,

He
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1 3 cm"3 T = T - 5 k V k 0 5 "13.10 cm , TD = Te - 5 keV, k± - 0.5 cm"
1, |E_|/|E+| - 7 (estimated

from eq. 15) in Ref. [6]). Note that PM denotes the RF-power absorbed by

an equivalent Maxwellian with density, n3 and temperature T . These

parameter values are representative for the plasmas in present-day large

tokamak experiments, e.g. the JET plasma.

The differences in Fig. 1 become significant when T_ ^ t , as expected.
t s

Furthermore, we note chat the difference in power transfer to background

ions is much larger than the difference in power transfer to ions. Since

the power transfer to background ions is mainly determined by the low

energy part of the distribution whereas power transfer to electrons is more

influenced by the high energy tail, the main effect of a finite xE is to

suppress the high energy tail.

4.2 Particle losses

Eq. (32) shows that the effects of particle losses on the high energy tail

become important when

t l 5 (33)
P , t v t KR,(v)

E v

Thus, the importance of particle losses depends sensitively on both t and
s

h(v) . Since h(v) decreases for increasing RF-power, r.he influence

P P

of particle losses in the form of the velocity distribution function be-

comes stronger for increasing RF-power. This point is illustrated in Fig.

2, where the relative difference in fusion reactivity for xp - tg as
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compared to the case x = » i s shown. Furthermore, Fig. 3 shows that the
P

main effect of particle losses is to suppress the high energy tail.

Since the confinement of high energy particles can be expected to be rather

poor during ICRH, it is not realistic to approximate x as constant. In-
P

stead one would expect x to decrease with velocity in the high energy

tail. Eq. (33) shows that a decreasing x can have a significant effect on

2
the high energy tail, in particular if x decreases as 1/v or faster. In

order to investigate this point x has been assumed to have the following

velocity dependence:

x

X V <
po

p

(34)

x (—) v > v.

Shown in Fig. 4 is the relative differpace in fusion reactivity for x
P

according to eq. (34) as compared to T * x • const. Since the velocity

variation of the particle confinement, x , is not known, the parameters n

and vÄ have been varied to show the effect of different scalings. The

result in Fig. 4 shows that losses of high energy particles can have a very

significant effect on the fusion reactivity.

4.3 Effects caused by anisotropy

It is very difficult to treat the problem with anisotropy analytically.

However, it is possible to get a qualitative understanding of how ani-
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sotropy, as compared to the isotropic approximation in 3.2, affects the

pitch angle averaged distribution, F(v).

We know the asymptotic expressions for the functions R. (v) and R«(v): In

the low energy range where the distribution is almost isotropic, cf [6,7],

we have R, (v) * C and R2(v) = 0, whereas in the anisotropic high energy

tail R. (v) and R_(v) approach the expressions eq. (30) and eq. (31) re-

spectively. There will be a gradual transition between these limiting

forms for R1 (v) and R~(v) in the intermediate velocity range. This transi-

tion should occur in a velocity range where the pitch angle scattering

starts to become weak, a very rough estimate of this velocity range might

be v - 0.5 v , cf [6,9].

The anisotropy will influence F(v) as compared to the isotropic model, in

two different ways, (i) The diffusive RF-term, i.e., Kv [G(v) + R,(v)] in

eq. (15), will increase when the distribution function becomes anisotropic.

(ii) The anisotropy introduces an extra "friction" term, KvR-(v), in eq.

(14). These two effects tend to cancel. The first effect will dominate

over the second in the high energy tail, i.e., the local temperature in the

tail will be higher than predicted by the isotropic model. However, the

extra "friction" term, R-(v), can be important in the transition region

between bulk and tail distribution. In particular, it can lead to a de-

crease in the local temperature in this region, cf [9]. The success of the

isotropic model in calculating velocity space averages can, at least part-

ly, be understood from the fact that these two effects work against each

other» Thus, although the isotropic model does not describe the detailed

form of the anisotropic part of the distribution correctly, it
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should be a good approximation when the distribution is averaged over vel

ocity space.

5^Conclusions

Än approximate model that provides a short computational procedure has been

derived for the pitch angle averaged in velocity distribution, F(v), in the

presence of ICRH. The model includes losses caused by particle and energy

transport. Effects of these losses on F(v) have beea analysed, and they

are shown to mainly affect the high energy tail. Furthermore, criteria for

when these losses are important have been given.

The confinement of high energy particles can be expected to be poor in the

presence of ICRH. Effects of a velocity dependent particle confinement

time have therefore been analysed. It is found that the effects of a

velocity dependent particle confinement time can be important, in

2
particular, if the particle confinement time decreases as 1/v or faster.

The approximate model for F(v) is based on the assumption that the in-

fluence of anisotropy can be neglected. The neglect of anisotropy has

previously, [8], been shown to provide useful and accurate results for most

physically meaningful velocity space averages calculated from F(v). How-

ever, this approximation cannot be expected to describe the detailed form

of the anisotropic high energy part of the distribution correctly. The

influence of anisotropy has therefore been discussed qualitatively, and an

expression for F(v) has been given in the limit of strong anisotropy.
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Figure captions

Fig. 1. Relative difference in power transfer to ions and electrons for

finite x_ as compared to t_ * <• with t " • and P =0.2 W/cm ,
E E p M

where P denotes the RF-power absorbed by an equivalent Max-
M

wellian with density, n , and temperature T . The "iso-
He e

t r o p i c " model has been used in t h i s c a l c u l a t i o n , i . e . R^v) •

R 2 ( v ) - 0. ( ) APi/Pi - [P^Tp - - W 1 ] / P i ( )Pe/Pe [Pe(xp

» -)-Pe]/Pe-

Fig. 2. Relative difference in fusion reactivity for x » t as com-
P s

pared to T * « with v = 0.5 V and x_ * « . The "isotropic"p s i t ,

model has been used in this calculation. ( ) A<ov>/<ov> -

[<ov>(x = »

Fig. 3. Relative dirrerence in power transfer to ions and electrons for

finite T as compared to r = • with t_ a «°, v • 0.5 V and
p p b s l

P = 0.2 W/cm . The 'iasotropic" model has been used in this

calculation.

( ) APi/Pi - [P^t - -)-P1]/P1

Fig. 4. Relative difference in fusion reactivity for x given by eq.

(34) as compared to x m x • const with x_ M °>, v • 0.5 v ,
P Po E s T

x - Is (t - 0.32) and P.. »0.2 W/cm . The "isotropic" model
po s M
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has been used in this calculation.

A<0V>/<0V>(x »>)-<0V>]/<0V>
P

( ) n-1, ( ) n=2, ( . . . . ) n=3, ( - . - . - ) n=4.
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