пучки редких изотопов с внутренней мишени Синхрофазотрона ОИЯИ И.А.Голутвин, С.Н.Доля, А.В.Зарубин, В.А.Свиридов Объединенный институт ядерных исследований, Дубна

При релятивистских энергиях процесс фрагментации ядер имеет особенность, позволяющую формировать пучки вторичных /в том числе радиоактивных, в естественных условиях не существующих/ ядер: фрагменты ядра-снаряда сосредоточены в узком угловом конусе в направлении импульса родительского ядра и имеют скорость, близкую к его скорости. Вторичные пучки открывают уникальную возможность исследования свойств нестабильных /в том числе экзотических/ ядер /сечения взаимодействия, электрические и магнитные моменты, спектры переходов и др./. Первые результаты по формированию вторичных пучков изотопов Не, Li, Be, и C с помощью ускоренных ядер ¹¹ В и ²⁰Ne, взаимодействующих с бериллиевой мишенью, и экспериментов с ними были сообщены на конференции в Висбю ^{/1,2/}.

В данной работе представлены результаты эксперимента по выводу с внутренней мишени синхрофазотрона по тракту канала медленного вывода фрагментов родительского ядра фтора (19 F) 12 B, 14 C, 16 N и др., а также даны оценки верхней границы выхода фрагментов с дробным зарядом (Z = 7,7) и сечения перезарядки 19 F $_{-}^{19}$ O. Измерены характеристики распределения фрагментов по импульсам. Импульс первичных ядер 19 F \sim 4 ГэB/с нукл.

Схема эксперимента

Эксперимент выполнен на синхрофазотроне ЛВЭ ОИЯИ. Режимы работы ускорителя, обеспечивающие вывод на экспериментальную установку вторичных ядер, рассчитаны и приведены в ^{/3/}.

Схема эксперимента представлена на рис.1. Мишень из тонкого /10 мкм/ алюминизированного лавсана с размером по радиусу ускорителя 5 мм в конце цикла уско-

Рис. 1. Схема вывода частиц из ускорителя. 1 - траектория ускоренного пучка, 2 - траектория пучка фрагментов.

рения ядер вводилась в рабочую зону вакуумной камеры синхрофазотрона. Радиальное положение мишени в ускорителе могло устанавливаться с точностью 1 мм, интервал измерения радиальной координаты - _ДR =

> ного пучка с мищенью, проходят в магнитном поле ускорителя около 18 м и выводятся по каналу медленного вывода на установку "Аномалон"^{/4/}/рис.2/.

Рис. 2. Схема транспортировки пучка и аппаратура установки "Аномалон". МВ - канал медленного вывода, S и C - сцинтилляционные и черенковские счетчики, XUV - 3координатные пропортиональные камеры, Н - магнит.

Таким образом, магнитное поле синхрофазотрона в этом эксперименте одновременно используется для прецизионной магнитной спектрометрии, т.е. для точного измерения у продуктов фрагментации ядра-снаряда величины р.А/2 (р-импульс фрагмента в ГэВ/с нукл.). Поскольку при фрагментации ядра-снаряда скорости /импульсы на нуклон/ фрагментов и налетающего ядра близки, фрагменты можно анализировать по изотопному составу (по величине А/2).

Режимы работы ускорителя и спектр фрагментов, которые могут быть введены в канал, приведены на рис. 3.

Рис. 3. Номограмма, показывающая соотношение между полем ускорителя, радиусом мишени и током выводного магнита, необходимое для транспортировки фрагментов с заданным А/Z по каналу медленного вывода. Мишень расположена на азимуте окна № 20.

Результаты

Формирование вторичных пучков различных нуклидов определяется выбором соответствующего режима работы ускорителя. На рис. 4 приведены зарядовые спектры

Рис. 4. Зарядовый спектр сигналов черенковских счетчиков при режиме вывода изотолов: а/ азота ¹⁶N, б/ углерода ¹⁴C, в/ бора ¹²B.

сигналов черенковских счетчиков при режимах работы ускорителя, соответствующих выводу изотопов азота $^{16}{\rm N}$ (рис.4а), углерода $^{14}{\rm C}$ (рис.4б) и бора $^{12}{\rm B}$ (рис.4в). Примесь в пучке, рассчитанном на определенный нуклид, его соседних изотопов оказывается незначительной. Это особенно хорошо видно на примере изотопов азота $^{16}{\rm N}$ (лис.4а) и $^{17}{\rm N}$ (режим вывода $^{17}{\rm N}$ близок к режиму вывода $^{12}{\rm B}$, рис.4в). В промежуточном между ними режиме (рис.4б), где могут выводиться "хвосты" в импульсных распределениях обоих изотопов, выход фрагментов азота мал (рис.5).

Рис. 5. Выход изотопов бериллия и азота при различных режимах работы ускорителя /в процентах по отношению к сумме всех фрагментов с Z ≥ 3/.

Характерной особенностью всех пучков является заметная /до 25%/ примесь легких ядер лития и бериллия, связанная с относительно бельшим разбросом импульсов, приобретаемых ими в процессе фрагментации. Поэтому изотопы берил-

лия разделяются магнитной оптикой хуже изотопов азота /рис. 5/, несмотря на то, что режимы вывода изотопов ⁹Ве и ¹⁰Ве по величине А/Z разнесены в 1,75 раза больше, чем для изотопов азота ¹⁶N и ¹⁷N. Большой вклад изотопа ¹⁴С объясияется относительно большим сечением его образования.

Режим вывода	⁷ Li	⁹ Be+ ¹⁰ Be	¹² B	¹⁴ C	16 _N	17 _N	¹⁸ 0
$16_{\rm N}$ (A/Z = 2,286)	16,2	9,8	6,6	35,6	29,6	_	2,2
^{14}C (A/Z = 2,333)	18,4	3,4	6,8	69,5	1,9	-	0,1
^{12}B (A/Z = 2,400)	23,2	5,8	33,3	8,2	-	29,5	-

Таблица. Нуклидный состав /в процентах/ вторичных пучков в режиме вывода ядер 16 N, 14 C, 12 B

На внешнюю сторону синхрофазотрона могут быть выведены только нейтронно-избыточные фрагменты. В данном эксперименте мишень была расположена в окне № 20, возможно также размещение мишени в окнах № 18 и № 22. При этом диапазон величин А/Z для фрагментов, вводимых в канал, может изменяться от 2,09 (²³Na) до 3 (³H, ⁶He, ⁹Li, ¹²Be, ¹⁵B, ¹⁸C и пр.). На рис. 6 показана номограмма для мишени, расположенной в окне № 22.

Рис. 6. То же, что на рис. 3, но для мишени, расположенной по азимуту окна № 22.

Характерная величина захвата фрагмента в канал медленного вывода – порядка 10^{-2} , парциальное сечение образования нуклида 14 С $5 \cdot 10^{-3}$ от полного, ожидаемый в канале медленного вывода поток фрагментов 14 С составляет $5 \cdot 10^{-5}$ от интенсивности внутреннего пучка ускорителя

(ядра ¹⁹ F), что оказалось близко к эксперименту.

<u>Оценка сечения перезарядки ${}^{19}F - {}^{19}O$ </u> и верхней границы для выхода ядер с дробным зарядом Z = 7,7 сделана на основании данных, представленных на рис. 7а (результаты экспозиции мишени в режиме вывода ${}^{19}O$, где A/Z = 2,375) и на рис. 7б (результаты экспозиции в режиме, соответствующем величине A/2 = 2,378). Оценка

сечений может быть сделана двумя способами: из сравнения выхода искомых ядер с потоками изотопов 12 В или 14 С (сечения образования последних известны $^{/5,6}$)

Рис. 7. Зарядовый спектр сигналов черенковских счетчиков при режиме вывода: а/ изотопа ¹⁹0, б/ ядер с A/2 = 18,3/7,7 = 2,378.

нии прямым расчетом, поскольку интенсивность прошедших через мишень ядер ¹⁹F и светосила установки известны. В предположении, что импульсные и угловые характеристики искомых ялер и ядер ¹²B и ¹⁴C близки, получены значения сечения перезарядки (¹⁹F \rightarrow ¹⁹O) = $3 \cdot 10^{-29}$ см² и верхней границы сечения образования ядер с зарядом Z = 7,7 и A ~ 18,3: $\sigma < 3 \cdot 10^{-31}$ см².

Импульсное распределение фрагментов ядер ¹²С и ¹⁶О, ускоренных до энергии 2,1 ГэВ/нукл., изучалось в работе ⁷⁷⁷. Экспериментальные результаты данной работы /рнс. 8/ позволяют получить информацию о параметрех импульсного распределения иуклидов ¹⁴С и ¹⁹О, образованных при взаимодействии с мишенью ядер ¹⁹F с импульсом - 4 ГэВ/с.иукл. В обоих опытах изучаются фрагменты, вылетающие в узком конусе углов в направлении падающего ядра /в нашем случае раствор этого конуса 1 мрад,

Рис. 8. Распределение нуклидов ¹⁹0 и ¹⁴С по переданному на нуклон импульсу.

вклад аппаратурного разрешения в импульсное распределение фрагментов $3 \cdot 10^{-3}$, точность измерения среднего импульса фрагментов $\frac{\Delta \rho}{\rho} = 10^{-3}/.$ Как и при меньших энергиях^{/7/}, ширина импульсного распределения в системе

Как и при меньших энергиях⁷⁷⁷, ширина импульсного распределения в системе координат падающего ядра нуклида, образованного в реакции перезарядки, б (19 O) = =(49+9) MsB/c, меньше, чем соответствующая ширина продукта фрагментации 14 C б(14 C)=(185+20) MsB/c. С другой стороны, сдвиг среднего значения импульсного распределения относительно нулевого импульса в системе, связанной с падающим ядром, для 19 O больше, чем для фрагментов 14 C, (-127+15) MsB/c и (-32+14) MsB/c. Ширина импульсного распределения фрагментов углерода **б** = 185 MsB/c превосходит найденную в 777 . Однако следует учесть, что в данном опыте углерод получается из ядраснаряда фтора /в работе 777 - из O¹⁶/, и увеличение числа взаимодействующих нуклонов ядра-снаряда, по-видимому, приводит к возрастанию импульсного разброса фрагментов.

Рассмотрим возможность вывода на экспериментальные установки кумулятивных частиц. Под кумулятивными мы будем понимать нуклоны, импульс которых больше среднего в X раз. Эта возможность основана на том, что в данной схеме опыта выводятся частицы с импульсом на единицу заряда большим, чем у ускоряемого ядра.

Наиболее подходящим для вывода кумулятивных частиц является ускоряемое ядро He^2 , имеющее импульс р = 6 ГэВ/с на нуклон. Протоны с X = 1,5 /кумулятивное число/ будут вращаться в ускорителе по той же траектории, что и исходное ядро. Кумулятивные протоны с X = 1,56-2,13 могут быть выведены из ускорителя, если мишень расположена в окнах 18, 20 или 22.

В области X ≤ 2 наряду с кумулятивными протонами будут выводиться некумулятивные дейтроны, образующиеся в результате срыва протона из ядра He_3^2 и имеющие такой же импульс на единицу заряда. Кумулятивные протоны с X > 2,1 могут быть выведены из ускорителя и при ускорении других ядер.

Заключение

Изучение вторичных ядер, образованных на внутренней мишени синхрофазотрона и выводимых по каналу медленного вывода, позволило определить зарядовый состав и интенсивность пучков вторичных ядер: в режиме вывода фрагмента С¹⁴ его парциальная интенсивность составляет 70%, выход в канал ядер С¹⁴ на одно первичное ядро ¹⁹ г составляет 3·10⁻⁵. Сделана оценка сечения перезарядки ядра фтора в кислород: б'(¹⁹ г → ¹⁹0) ≈ 3·10⁻²⁹ см². Ядер с дробным зарядом не найдено на уровне 3-10⁻³¹см². Характеристики импульсных распределений фрагментов при импульсе 4 ГэВ/с нукл. близки к измеренным в Беркли при энергии 2 ГэВ/нукл.

Литература

- Taniata J. et al. In: Proceeding of the II Intern. conf. on Nucleus-Nucleus Collisions, Visby, Sveden, 10-14 june, 1985, Vol.1, p.32.
- 2. Taniata I. et al. ibid. p.33.
- 3. Василишин Б.В., Доля С.Н. ОНЯИ, Р9-85-283, Дубна, 1985.
- 4. Вереш И. и др. В сб.: Краткие сообщения ОИЯИ, У 4-84, Дубна, 1984, с.10.
- 5. Heckman M.N.-Phys.Rev.Lett., 1972, Vol.28, No.14, p.926.
- 6. Olson D.L. et al.-Phys.Rev.C., 1983, Vol.28, No.4. n.1602.
- 7. Greiner D.E. et al.-Phys.Rev.Lett., 1975, Vol.35, No.3, p.152.

156