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Introduction

Some aspects concerning analytical models for the rewetting of hot surface are discussed.
These include the problems with applying various forms of boundary conditions, com-
patibility of boundary conditions with the physics of the rewetting problems, recent
analytical models, the use of the separation of variables method versus the Wiener-
Hopf technique, and the use of transformations.

The report includes an updated list of rewetting models as well as benchmark solutions
in tabular form for several models. It should be emphasized that this report iz not
meant to cover the topic of rewetting models. It merely discusses some points which
are less commonly referred to in the literature.

1 Compatibility of models

When applying boundary conditions, or assuming a certain form of heat source in the
solid, one must make sure that these are compatible with each other and yield accpetable
physical behavior. Two common points are of special importance.

1.1 Constant dry side heat transfer coefficient

The assumption of regions with constant heat transfer coefficients on the dry side im-
plies that a higher wall heat flux in each such region occurs the farther the location is
downstream of the quench front (since the solid temperature increases downstream away
from the front, while the reference temperature for heat convection is assumed to remain
constant). This behavior is, of course, physically unrealistic. Examples of works which
assumed one or more regions on the dry side with a constant heat transfer coefficient
are: Andreoni (1975) and Elias and Yadigaroglu (1977) with one-dimensional models,
and Salcudean and Bui (1980), Salcudean and Ralunan (1980-81), Sawan and Tem-
raz (1981), Bonakdar and McAssey (1981), and Hsu et al. (1983) with two-dimensional
models. It should be noted that while a model with a single region on the dry side having
a constant non-zero heat transfer coeflicient canuot yield accpetable results, a multi-
region model with regions on the dry side having a constant heat transfer coefficient
in each region can still yield acceptable results, provided the heat transfer coefficient
in the last region downstream of the quench front is set to zero, as was done by Elias
and Yadigaroglu (1977). An approach where the heat flux is specified is recommended,
since for many models, a closed forin solution for arbitrary wall heat flux may easily be
obtained.



1.2 The form of the heat source in the solid

The form of the assumed heat generation has to be compatible with the other boundary
conditions. For example, assuming constant heat generation in the solid is incompat-
ible with the assumptions of zero dry side heat transfer coetlicient and that the solid
temperature far downstream of the quench front approaches a constant value.

2 Heat flux versus convective boundary conditions

Specifying heat flur boundary conditions has all the advantages with respect to the spec-
ification of convective boundary conditions, see e.g. Adiutori (1974). It isn’t possible
to have a closed form analytical solution for convective boundary conditions of general
form (not even for a 1-D model), whereas it is possible to obtain such solutions for a
position dependent heat flux of general form (provided it is compatible with the rest
of the boundary conditions). The latter may be found even for a fuel-and-cladding
configuration.

With a one dimensional quasi steady state model, specifying the heat flux uniquely
determines the rewetting velocity since

P= [ gz) - Qa)lds
where the dimensionless wall heat flux is ¢ and the heat source is @ and

B pcud L b Q2

T
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with the dimensional quantities retaining their usual meaning.

Let us take an example where zero lieat generation is assumed and the heat flux is
assumed to be @, e° on the wet side and Qe " on the dry side. Then from experimen-
tal recults for P and the above relation, one can try to relate the four open parameters
Qu, @4, a, b to, e.g. liquid flow rate, system pressure, degree of subcooling etc. to find
eventually a correlation between the rewetting velocity and system parameters.

A similar procedure may be applied to a 2-D rewetting model. This may be illustrated
through the following example.

Suppose we solve a quasi steady state model for a slab where a wall heat flux ¢(z) is
assumed. Then the mathematical formulation is

9% 9% _ 96
o= o+ 28—
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where s = P/2. The solution of Eq. (1) is sought for the following boundary conditions

0
%0 y=0, —oc<z<m (2)
70 ‘
5 =dlr) y=1, —oco<z<oo (3)
Ay
om0, 8—0 (4)
z - . 01 (5)

Diefine ¢ transformation

ARoy) =1+ 0(z,y)e’” (6)
te itaii, the following new formulation

R ? i)

wiiere s == i°/2. The solution of Eq. (1) is sought for the following boundary conditions
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¢ = o(e™*) as T — - (10)
¢ = U(e™ ™) as r — (11)

Define now the jollowing complex Fourier Transforin and its inversion formula
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= (ay) = [ lr,ydr (12)

1 [ .
dlx,y) = om /_w ®(a,y)e " da (13)

The solution exists for Im |a| < s. The transform of (7) gives

2
%y——~,<1> 0 (14)

where v = (a? + s2)'/2, such that 7 = @ when s = 0.
The solution of (14) which satisfies the transform of conditions (8) and (9) is

coshyy

8a,y) = T8 [7 ey’ (15)

v sinh%y

so that from (13) it iollows that

1 = oo 1 \
$lz,y) = — / q(z") / S22V gial="-%i dady’ (16)
21 J-oo m‘7§lllh‘7

The second integral in (16) may easily be derived by using contour integration, e.g. by
using the residue theorem for a semi-infinite circle in the upper half plane.

Setting ¢ = 0,y = 1in (16) gives a relation between the rewetting temperature 6(0,1) =
#(0,1) — 1 and the dimensionless rewetting velocity 2s.

3 The separation of variables method and the Wiener-
Hopf technique
The two commonly used methods for the solution of analytical rewetting models are

separation of variables and the Wiener-Hopf technique. Each method has its advantages
and shortcomings.
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3.1 The separation of variables method

The solution of multi-region rewetting models with this methed is quite straightforward
for boundary conditions of the first, second, and third kind (homogeneous or inho-
mogeneous). First, a rewetting velocity is assumed. Next, a formal solution for the
temperature distribution is obtained for each subregion, resulting in a series with a set
of, yet, undetermined constants. Then requiring the continuity of the temperature and
heat flux at the boundary between each two adjacent regions. and using the orthogo-
nality properties of the eigenfunctions, the noted constant are determined. Finally. the
temperature at the ‘triple interline’ is evaluated and compared to the prescribed rewet-
ting temperature. If the assumption of the rewetting velocity is correct, the calculated
temperature at the quench front should be close enough to the prescribed rewetting
temperature. If not, different guesses are assumed in an iterative procedure.

It should be emphasized that a fuel-and-cladding configuration can easily be treated
in the same manner by using Yeh’s theorem (see e.g. Yeh (1980)). The theorem shows
for regions with singularities inside {such as a jumnp in the temperature gradient at the
interface between the fuel and the cladding), for which the Sturm-Liouville theorem can-
not be applied, how to derive weight functions with respect to which the eigenfunctions
are orthogonal.

Wherever the boundary conditions are discontinuous the temperature gradient suf-
fers a logarithmic singularity, i.e. the axial temperature gradient is proportional to the
lograrithm of the distance from the point of discontinuity in the boundary conditions,
e.g. Blair (1975) and Olek (1988a). For example, in the two-region model with a con-
stant wet side heat transfer coefficient and a zero dry-side one, the series solutions are
slow to converge when the wet side Biot number or the Peclet number are large. Since
commonly only a limited number of terms in the series is considered, the results for the
rewetting velocity may be inaccurate. This problem can be solved by either using the
Wiener-hopf technique whenever a solution by this method is possible (see next sub-
section), or by the way suggested by Casteglia et al. (1986), who derived an expression
for the rewetting temperature in the form of a quotient of infinite products instead of a
series, which yields accurate results.

3.2 The Wiener-Hopf technique

Employing the Wiener-hopf technique in the solution of rewetting models is less for-
mal than the separation of variables method. Problems may be posed in a single or a
double integral equation formulation, or by using Jones’s direct method. In addition,
the governing differential equation may be transformed into a wave equation through
a known transformation. This yields kernels which are easier to decompose than those
steming from the original heat equation. On top of that, different decomposition meth-
ods may be used like, e.g. using Cauchy’s integral which yields the decomposed + and
- functions in the form of an integral, or when dealing with meromorphic functions the



decomposed functions may be put in the form of a quotient of infinite products. So
under the name Wiener-Hopf technique there hide different methods of formulation and
solution, which don’t necessarily yield the same final form of results. Common to the
different methods is that at some stage of the solution a decomposition is performed of
some complex function into a + function that is regular in one half of the wave number
plane and another - function which is regular in another half of this plane. Since these
functions share a common region of regularity, by analytic continuation they must rep-
resent the same entire function. Using Liouville’s theorem and observing the behaviour
of the noted functions at infinity one finds this entire function. For details see appendix
A.

The advantage of the Wiener-Hopf technique with respect to separation of variables
is that the accuracy of solution is not affected by the discontinuity in boundary con-
ditions and usually a compact expression for the rewetting temperature is obtained,
which involves the model parameters, including the rewetting velocity. This last feature
is obtained according to the suggestion by Levine (1982}, who showed that to obtain a
relation between the rewetting temperature and the other model parameters an inver-
sion of the transformed temperature is not necessary. However, multi-region models are
not easy to address with the Wiener-Hopf technique.



4 Rewetting models

In this section a summary of rewetting models will be given in the form of the tables
prepared by Eiias and Yadigaroglu (1978). In addition, benchinark solutions for several

rewetting models will be given.

4.1 A summary of rewetting models

Table 1: One Dimensional Models

Heat-Transfer

coeflicients, Quench Comments and
Experimental W/(m?*)(°C) temperature,  heat-transfer
Reference data correlated  [Btu/(hr)(ft?) {°F )) °C (°F) coeflicient profile
: , h;
Semeria and  No experimental
Martinet data correlated
(1965) hy
. ) . 6 b,
Yamanouchi Yamanouchi hy=2x 10" — 10 150(302) -
(1968) (1968) [4x 10" —2x10%
II;; =0 h3
Thompson Bennett et al. hy,ha =7 x 1€8 T, + 100°C High-pressure data 6.9 — 69 bars
(1972) (1966) (1.2 x 10%] (T, = 180°F ) abs. (100 — 1000 psia)
(peak values) ha = 3
hy =0 2 = RATS 1 hy
Sun et al. Yamanouchi h, = 570{100)7 260(500) Sputtering 1egion between location
(1974) Duffey and k; = 1.7 x 10*[3000] of incipience of boiling and quench
Porthouse (1973) front n
(only low-flow- hy =0 2
rate data) hy I
hy
Sun et al. Yamanouchi hy; = 1.7 x 10* [3000} 260(500) Precursory cooling included
(1975) (1968)
hy
Duffey and hy = -"h-',lc_o 0% s
Porthouse hj
(1973)
Chun and Case et a). hz = 2.56 x 10*[4500] 260(500) Calculated length of dispersed flow
Clion (1973) hs = 170[30] region and mass carry-over to
(1975) he =0 correlate hy

h
2 ha
—1h




Heat-Transfer

coefficients, Quench Comments and
Experimental W/ (m?)(°C) temperature, heat-transfer
Reference  data correlated  [Btu/{hr)(fe?) (°F )] °C (°F) coeflicient profile
Ishii Bennett et al. hy = hcur 260 — 390 1. Sputtering region between CHF
(1975) (1966) (500 — T740) and quench front
h; = 4 x 10°[7 x 10%) 2. Correlated a pressure range
of 6.9 - 69 bars abs.(100 — 100G psia)
hy =0 3. Defined thermal penetration
length in sputtering region
h;
B
h3
Andréoni Andréoni h;, from Jens-Lottes h,y
(1975) (1975) correlation hy l'_—“
ha, extracted from re- T, + 200°C
wetting data h3
hy, from experimental (~ T, 4 360°F )
data
Chan and  Guerrero et al. Used heat flux approximation
Grolmes (1974) 1. Area under boiling curve
(1975) to CHF for sputtering
2. Radiation madel for dispersed flow
q sputter rad
Tan Tan lloeje 1. Boiling curve from steady
(1975) (1975) (1974) state correlations
2. Thermal non-equilibrinm included
3. Internal heat generation
4. Finite difference wall segments
with varying A
Yao No expetimental Constant internal heat generation
(1976) data correlated included; assumes parabolic

radial temperature proiile
hy

—
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Heat-Transfe.

coeflicients, Quench Comments and
Experuaental W/(m?)°C ) temperzture,  heat-transfor
Reference data correlated  [Btu/(hr)(ft?) (°F )] °C(°F) coefliciert profile
Karyampudi Radiation effects are analized
and Chon
976 4
(1976) RAT. A
Elias et al. PWR FLECHT &, = 170 {30} Not nreeded to 1. 1-D in the axial direction of
{1976) {Cadek and h2,h3, hy,--- = boiling be specified the cladding and 1-D in the radial
Dominics, 1971)  curve approximation direction of the Fuel
2. The model inclides heat generation
in the cladding he
hy 12
hy 2 hn
Kirchner FLECHT 1. Multiple region model
(1976) (Cermak, 1970) 2. Boiling curves from steady
{Cadek, 1970) state correlations
Flias and Duffey and ky = 170 (30} 260(500)
Yadigaroglu Porthouse(1973) h hy,
(1977) {only low-flow-  ha, kj, hy,- - -= boiling- h 3
rate data) curve approximation h hy

Chambré and
Elias
(1978)

iuffey and

Porthouse
(1972)
Farmer
(1972)
Iloeje
(1974)

Rosal et al.
(1975)

Dua and Tien

(1977)

Not needed
to be specified

1. Taken from pool boiling correlations

2. The rewetting velocity is obtained a.
an cigenvalue of the heat conduction:
equation
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Heat-Transfer

coefficients, Quench Comments and
Experimental W/(m?)(°C) temperature, heat-transfer
Reference data correlated  [Btu/(hr)(ft?) (°F )] °C (°F) coefficient profile
Fischer et al. FLECHT 1. multiple region modei
(1978) (Rosal,1975) 2. Boiling curves from
FLECHT-SET steady state correlations
{Waring and
Hochreiter,1975)
Semiscale
(Peterson et al.
1976)
Elias and Seban et al. 1. Taken from pool boiling
Chambré (1978) correlations for water and
(1979} liquid nitrogen
Dua and Tien 2. Time dependent solution
(1978)
Wendrofl No experimental The solution is valid for
(1979) data correlated high Biot numbers also
h2
h3
Hirano and Yamanouchi Bs =0.41 — 0.73 For water Heat transfer coefficients are
Asahi(1670) (1968) 250(482) taken from boiling correlations
Dufley and For Nitrogen
Porthouse(1972) -171(-276)
Duffey and
Porthouse(1973)
Piggott and
Porthouse(1975)
Dua and Tien
(1978)
Olek and No experimental 260(500) Inclvding temperature
Zvirin data correlated dependent properties
(1985)

h2

A=

Simopoulos (1986)

Elliott and ha
Rose (1970), hiy
(1971)

0.75 — 1.0 x 10°
1.2 — 3.5 x 10°

0.3425 — 0.4464
(dimensionless)

1. Tit.:e dependent model
v+ an arbitrary
fo: n of the heat transfer
coc fRcient

2. Soi sdon by finite
differences
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Table 1: Two Dimensional Models

Heat-Transfer

coeflicients, Quench Comments and
Fxperimental W/(m?)(°C) temperature, heat-transfer
Reference lata correlated [Btu/(hr)(ft?) (°F )] °C (°F) coefficient profile
Yoshioka and Yoshioka and h; = function of wall Cartesian geometry
Hasewaga Hasewaga temperature and wet- h
(1970, 1975) (1970) front velocit: 2
(1975 =
\lglu) ha 0 ] h3
Duffey and Yoshioka and hy =10 — 2 x 10° 190 — 250 Cartesian geometry
Porthouse Hasewaga{1970) {1700 — 3.5 x 10%] (375 — 480)
(1973) Yamanouchi(1968)
Duffey and
Porthouse(1973) ha=0 h,
Andreoni and
Countand{1972) hq
Martini and
Premoli(1973)
Thompson(1972)
Campanile and
Pozzi (1972)
Edwards and No experimental  hmar = 2 — 4 x 10° Cartesian geometry
Mather data correlated [3.5 — 7 x 10]
(1973) bx < Qx
Cartesian gecometry
Coney Bennett et al. h, =094 — 1.3x 10° T, + 68°C Pressure range
(1974) (1966) (1.6 — 2.3 x 10%] (T, + 122°F ) 6.9 — 69 bars abs
hy =0 (100 - 1000 psia)
h2
v
Thompson Bennett et al. hih; =4—8x10° T, + 100°C 1. cylindrial geometry
(1974) (1966) (0.7 — 1.3 x 10%] (~T, + 180°F ) 2. Numerical solution
(peak values)
hy =0

3
hy = T 1
2 = RATs h3




Heat-Transfer

coefficients, Quench Comments and
Exrerimental W/(m?)(°C) temperature, heat-transfer
Reference data correlated  [Btu/(hr)(ft*) (°F )] °C (°F) coefficient profile
Blair Thompson k2 = 1.7 x 10* 260 Cylindrical geometry
(1975) (1974) [a000) {500) h,
ha =0
h3
Yeh No experimental Cylindrical geometry
(1975) data correlated h,
hs
Tien and No experimental 1. Cartesian geometry
Yao data correlated 2. Wiener-Hopf techrique
(1975)
Dua and Duffey and ha = 1.7 x 10* [3000) 260 (500) 1. Cartesian geometry
Tien Porthousz 2. Wiener-Hopf technique with
(1976) (1973) precursory cooling
Yamanouchi ¢ = (go/N)e™* 2
(1968) {N, a: parameters) —_Q
Pearson et al. Piggott and 150(302) 1. Cartesian geometry
(1977) Dufley 2. Filler and cladding model
(1975) hz
Pearson et al. h
(1977) 3
Durack and  No experimental 1. Cylindrical geometry
Wendroft data correlated 2. Isotherm migration
(1977) method
h2




Heat-Transfer

coefficients, Quench Comments and
Experimental W/(m?)(°C) temperature, heat-transfer
Reference data correlated  [Btu/(hr)(ft?) (°F )] °C (°F) coefficient profile
Salcudean et al. Lee and Chen 326(619) 1. Horizontal channels with a
(1978) (1978) circumferentially varying heat
transfer coefficient
Fairburn Fairburn et al.  kpay = 1.5 — 7.6 x 10° 250(482) 1. Cartesian geometry
(1979) (1979) [0.26 — 1.34 x 10%] 2. Fillcrhand Cladding model
| h3
Linehan et al. Linehan et al. 131 — 143 1. Cylindrical geometry
(1979) (1979) (267 — 290) 2. Stationary quench front.
3. Heat transfer coefficients are
taken from correlations.
4. One and two-dimensional
analyses
Wendroff No experimental Cartesian Geometry
(1979) data correlated

h, = RATS
hj

Salcudean and

Salcudean and  h; =2 x10* — 2.5 x 10°

1. Cylindrical geometry

Bui (1980) Bui (1980) (3.5 x 10° — 4.4 x 10%] 2. Horizontal channels
hs = (1 — 10%)A
3= %)h2 h,
e
hj
. A
Yeh No experimental 1. Cylindrical geometry
(1980) data correlated

2. Filler ;nd cladding

|h3
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Heat-Transfer

coefficients, Quench Comments and
Fxperimental W/(m*)(°C ) temperature, heat-transfer
Reference data correlated  [Btu/(hr)(it?) (°F )) °C (°F) coeflicient profile
Gurcak et al. No experimental  hz = 1.7 x 10*[3000] 267(512) 1. Cylindrical geometry

(1980)

data corrciaic ]

ha=10

2, Isother'l‘n migration method

.

Salcudean and
Rahman (1980-81)

Chen et al.
(1979)

hy =10 — 280 x 10°
[1.8 — 49 x 10%]

hz = 0.01 — 0.05 h,
hy =0

1. Cylindrical geometry
2.Honizontal channels

h;

hs

Laquer and
Wendroff (1981)

No experimentai
data correlated

1. Cartesian geometry
2. Separation of variables
and method of lines

Sawan and
Temraz(1981)

No experimental

Tlnl + 3.6 Anub
4+ 20°C
(T.a' 4+ 6.48AT,us
+ 280°F )

Cartesian geomcetry

h2

LN

hja

Bonakdar and
McAssey(1981)

Yamanouchi
(1968)

Duffey and
Porthouse (1973)

hz = 1.7 x 10*[3000)

Cartesian geometry

Caflish and
Keller(1981)

No experimental
data correlated

1. Cartesian Geometry
2. Wiener-Hopf technigue
3. An exact solution for all
Biot numbers
h2

Ihs
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Heat-Transfer

coefficients, Quench “omments and
Experimental W/(m?)(°C) temperature, heat-transfer
Reference data correlated  [Btu/(kr){it?) (°F )] °C (°F) cocfficient profil
Chan and Chan and 1. Cylindrical geometry
Banerjee Banerjee 2. A two flzid multi region model
(1981a, (1981¢) with steady state correla-
1981b) tions to represent boiling curves
3. Horizontal channels
Levine No experimental 1. Cartesian geometry
(1982) data correlated 2. Wiener-Hopf technique
3

. An exact solution for all

Biot numbers
h2

Iha

Kimball and Piggott and Taken from a 1. Cylindrical geometry
Roy(1982) Duffey(1975) correlation by 2. A four region model
Kimball and 3. Heat transfer coefficients are
Roy(1983) taken from correlations
4. Solution by finite integral transform
Hsu et al. No experimental 1. Cylindrical geometry
(1943) data correlated 2. Heat ﬁeneration is included
2
hj
Evans No experimental 1. Cylindrical geometry
(1984) data correlated 2. Wiener-Hopf technique
3. An exact solution for
all Biot rumbers
Castiglia No experimental 1. Cartesian geometry
et al. data correlated 2. An exact solution by
(1986) separation of variables

hs
hj
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Heat-Transfer

coeflicients, Quench Comments and
Experimental W/(m?)°C) temperature, heat-transfer
Referea-e data correfated  [Btu/(hr)(ft?) (°F )] °C (°F ) coeflicient profile
Chakraba!i  No experimental 1. 1. Cylinder with an insulated
(1986a) data correlated inner core
2. Wiener-Hopf technique
3. An exact solution for all
Biot numbers
h;
_ 1n
Chakrabati  No experimental 1. 1. Cartesian geometry
(1986b) data correlated 2. Composite slabs
3. Wiener-Hopf technique
4. An exact solution for all
Biot numbers
h;
__1hs
Carbajo No experimental  For a Two-region model: 139 - 321 1. Cylindrical geometry
(1986) data correlated  h; = 62.260 — 516.000 (379 — 610} 2. %iller and cladding, including
(10.990 - 91.060] heat generation
hy =90 3. Multiple region model
4. Finite differences solution
Olek et al. Yamanouchi For water: I. Both cartesian and
(1988a) (1968) 150 -~ 260 cylindrical geometry
Duffey and (302-500) 2. Conjugate heat transfer model
Porthouse (1972) For nitrogen: in which the temperatures in
Yu et al. -171(-276) the solid and the liguid are
(1977) solved simultancously
Dua and Tien 3. Heat transfer cocflicients are not
(1989) needed as input
Ueda and Inone 4. Wet side heat transfer coeffi-
(1984) cient can be calculated as

part of the solution

Olek (1987)

No experimental
data coirelated

1. Cylindrical geometry
2. Solution by separation
of variables
h,

932G e-b¥
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Reference

Heat-Transfer
coeflicients,

* f(m?)(°C)
[Btu/(hr){ft) (°F )]

Quench
temperature,

°C (nF )

Exper -uental
data corrclated

Comments and
heat-transfer
coeflicient profile

Olek et al.
(1988b)

No exgerimental

data correlated 260 (500)

1. Both cartesian and
cylin-drical geometry
. Conjugate heat transfe: model
where the temperature distribution
in the solid and the liquid are
solved simultaneo.. sly
3. Includes heat generation
4. Heat transfer coefficients are not
needed as input
5. Wet side heat transfer
coefficient can be calculated
as part «of the solution

te

Olzk (1988a)

No experimental
data correlated

1. Cartesian geometry

2. Both separation of variabies
and the Wiener-Hopf technique
are used for the solution

ha
—
hj

Olck (1988b)

Dua and Tien
(1978)

Bi = 0.0073
b=0.0085

-171 (-276)
(Liquid Nitrogen)

1. Cartesian geometry
Solution by separation
of variables

hs

q3=qoe-bx

;

Olek (1988c)

No experimental
data correlated

1. Cartesian geometry
2. Solution by the
Wiener-Hopf technique

QquOe'bx

)




Heat-Transfer

coeflicients, Quench Comments and
Experimental W/(m?)(°C) temperature, heat-transfer
Reference data correlated  [Btu/(hr)(ft?) (°F )] °C (°F) coefficient profile
Olek (1988d)  No experimr=ntal 1. Cylindrical geometry
data correlated 2. Solution by the
Wiener-1lopf technique
h
Olek (1988¢) No experimental 1. Fuel-and-cladding

w

data correlated . Solutioa by the

Wiener-Hopf technique

h2
hj
—_
Thomas (1988) No experimental 1. Fuel-and-cladding

[+

data correlated . Solution by the

Wiener-Hopf technigue
h2

ha
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4.2 Benchmark solutions for several rewetting models

The main importance of the simplified rewetting models (like the two-region model
with a step change in the heat transfer coefficient) is that they may serve to assess the
solution capability of more complicated models, usually solved by numerical schemes.
To this end, solutions in tabular form have been prepared for several rewetting models.
The accuracy of the results is beleived to be of the order of the fourth significant digit.
Results for the following models will be presented:

1. The two-region model for plane slab with a step change in the heat transfer coef-
ficient, Olek (1988a).

2. The Dua and Tien (1976) model with precursory cooling for plane slab, Olek
(1988b).

3. The Dua and Tien (1976) model with precursory cooling for solid cylinder, Olek
(1988d).

4. Yeh’s (1980) fuel-and-cladding model, Olek (1988e).
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The two-region rewetting model for plane slab
with a step change in the heat transfer coefficient

TABLE 1

The rewetting temperature 8y = (T, — T,)/(T,, — T,) for various Biot (B) and Peclet (P) numbers.

P 0.01 0.05 0.10 0.50 1.00 5.00 10.00 |} 50.00 | 100.00 | 500.00
B

0.01 0.09512 0.3902 0.6176 | 0.9615 |} 0.9888 | 0.9987 | 0.9994 | 0.9999 | 1.000 | 1.000
0.05 0.04372 0.1998 0.3576 | 0.8492 | 0.9482 | 0.9937 | 0.9968 | 0.9994 | 0.9998 | 0.9999
0.10 0.03112 0.1459 0.2695 | 0.7585 | 0.9051 | 0.9875 | 0.9937 | 0.9988 [ 0.9995 | 0.9999
0.50 0.01404 | 0.06809 | 0.1311 | 0.4887 { 0.7047 [ 0.9422 [ 0.9697 { 0.9931 | 0.9959 | 0.9994
1.00 0.009944 | 0.04861 | 0.09451 | 0.3785 | 0.5848 | 0.8945 } 0.9425 } 0.9874 | 0.9934 | 0.9987
5.00 0.004457 | 0.02199 | 0.04326 | 0.1896 | 0.3233 | 0.6770 | 0.7894 | 0.9426 | 0.9699 | 0.9937
10.00 0.003153 | 0.01559 | 0.03073 } 0.1371 | 0.2388 | 0.5516 | 0.6779 | 0.8951 | 0.9427 | 0.9875
50.00 0.001411 | 0.006987 | 0.01381 | 0.06279 | 0.1119 | 0.2929 | 0.3937 | 0.6780 | 0.7895 | 0.9426
100.00 | 0.0009977 | 0.004943 | 0.009772 | 0.04458 | 0.07977 | 0.2138 | 0.7935 | 0.5526 | 0.6781 | 0.8950
500.00 | 0.0004462 | 0.002211 | 0.004373 | 0.02001 | 0.03594 | 0.09868 | 0.1386 { 0.2935 | 0.3937 | 0.6779




The Dua and Tien (1976) model with precursory cooling for

plane slab TABLE 2

The rewetting temperature 8g = (Tp — T, )/ (T, — T,) for various Biot (B) and Peclet (P)
numbers, and for various precursory cooling magnitude parameters N. The influenced
solid length parameter is & = 0.005.
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TABLE 3

Tt tti -

nuzx\l;:‘:: ::: ;:rmf;li'ature 6o = (To—T.,)/(T, —T,) for various Biot (B) and Peclet (P)
; ’ OUS Precursor li i .

solid length parameter is b = 0.05. y cooling magnitude parameters N. The influenced
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TABLE 4

The rewetting temperature 6y = (To ~ T,)/(T., — T,) for various Biot (B) and Peclet (P)
numbers, and for various precursory cooling magnitude parameters N. The infirenced
solid length parameter is b = 0.5.
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The Dua and Tien (1976) model with precursory cooling for a
solid cylinder

The rewetting temperature ¢, =

TABLE 5
(To - 1,)/(T, — T,) for various Biot ( B) and Peclet (P)
numbers, and for various precursory cooling magnitude parameters V. The influenced
solid length parameter is b = 0.005.
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TABLE 6

The rewetting temperature 8, = (Tp — T,)/(T, — T,) for various Biot ( B) and Peclet { P)
numbers, and for various precursory cooling magnitude parameters N. The influenced
solid length parameter is b = 0.05.
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TABLE 7

Th rett =

nu;;:sﬂ::f ft:: lvpcr-at“"’ 0o = (To—T,)/(T - T,) for various Biot (B) and Peclet (P)
) arious precursory cooli i . |
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Results for the fuel-and-cladding model

The rewetting temperature 8y = (To — T )/(Tw — Ts) for various mode] parameters: Peclet
number P, wet side Biot numbers By, gap Biot number B,, dimensionless radius of the fuel
R, cladding to fuel ratio of thermal conductivities I' and fuel to cladding ratio of Peclet
numbers Q/P.

TABLE 8

Hollow cylinder with an insulated inrer core

R=109 B, =0

P 0.10 0.50 1.00 5.00 10.00 | 50.00
B,

0.10 0.09283 | 0.3827 | 0.6088 | 0.9597 | 0.9883 | 0.9987
0.50 0.04264 | 0.1953 | 0.3505 | 0.8437 | 0.9460 | 0.9936
1.00 0.03034 | 0.1425 | 0.2637 | 0.7511 [ 0.9015 | 0.9873
5.00 0.01368 | 0.06643 | 0.1281 | 0.4807 | 0.6976 | 0.9417
10.00 0.009693 | 0.04741 | 0.09225 | 0.3715 | 0.5774 | 0.8936

50.00 0.004345 | 0.0214% | 0.04220 ; 0.1856 | 0.3180 | 0.6753




TABLE 9
R=09 B, =10.1 Q/P=0.1
P 0.10 0.50 1.00 5.00 | 10.00 | 50.00
B,
T=0.1 | 0.3955 | 0.7235 | 0.7919 | 0.9632 | 0.9885 | 0.9987
0.10 T=10| 0.1581 | 6.5915 | 0.76.3 | 0.9632 | 0.9885 | 0.9987
r=10. | 0.09614 | 0.4056 | 0.6452 | 0.9623 | 0.9885 | D.9987
I=0.1] 0.1891 | 0.4343 | 0.5176 | 0.8542 | 0.9471 | 0.9936
0.50 TI=10| 0.07265 | 0.3211 | 0.4825 | 0.8539 | 0.9470 | 0.9936
['=10. | 0.04410 | 0.2071 | 0.3764 | 0.8514 | 0.9469 | 0.9936
[=01| 0.1353 | 0.3266 | 0.4004 | 0.7646 | 0.9022 | D.9873
1.00 T=10| 0.05171 | 0.2367 | 0.3704 | 0.7642 | 0.9032 | 0.9873
=10. { 0.03138 | 0.1511 | 0.2839 | 0.7610 | 0.9030 | 0.9873
T=0.1] 0.06130 | 0.1564 | 0.1997 | 0.4943 | 0.7008 | 0.9417
5,00 T[=1.0| 0.02332 | 0.1113 | 0.1833 | 0.4939 | 0.7007 | 0.9417
[=10. | 0.01415 | 0.07045 | 0.1382 | 0.4906 | 0.7003 | 0.9417
T=0.11 0.04346 | 0.1120 | 0.1444 | 0.3829 | 0.5806 | 0.8936
10.00 T'=1.0 | 0.01652 | 0.07952 | 0.1324 | 0.3826 | 0.5806 | 0.8936
r=10. | 0.01002 | 0.05029 | 0.09957 | 0.3798 | 0.5801 | 0.8936
=0.1] 0.01949 | 0.05082 | 0.06627 | 0.1917 | 0.3201 | 0.6753
50.00 TI'=1.0 | 0.007407 | 0.03601 | 0.06072 | 0.1916 | 0.3201 | 0.6753
T'=10. | 0.004492 | 0.02275 | 0.04556 | 0.1901 | 0.3198 | 0.6753
TABLE 10
R=09 B,=01 Q/P=1
P 0.10 0.50 1.00 5.00 ] 10.00 | 50.00
Bc)
F=0.1 04294 | 0.7179 | 0.7904 | 0.9632 | 0.9885 | 0.9987
0.10 T=1.0| 02017 | 0.5985 | 0.7552 | 0.9631 | 0.9885 | 0.9987
I'=10. | 0.1112 | 0.4363 | 0.6608 | 0.9622 | 0.9885 | 0.9987
F=0.1{ 0.2144 | 0.4297 | 0.5160 | 0.8542 { 0.9471 | 0.9936
0.50 T'=1.0| 0.09484 | 0.3329 | 0.4780 | 0.8538 | 0.9470 | 0.9936
=10. | 0.05131 | 0.2271 | 0.3922 | 0.8512 | 0.9469 | 0.9936
T=0.1| 0.1546 | 0.3229 | 0.3990 | 0.7646 | 0.9032 | 0.9873
1.00 =10 0.06774 | 0.2467 | 0.3670 | 0.7641 | 0.9032 | 0.9873
'=10. | 0.03654 | 0.1663 | 0.2970 | 0.7607 | 0.9030 | 0.9873
I=0.1 | 0.07046 | 0.1546 | 0.1990 | 0.4943 | 0.7008 | 0.9417
500 =10 0.03065 | 0.1166 | 0.1817 | 0.4938 | 0.7007 | 0.9417
'=10. | 0.01649 | 0.07781 | 0.1452 | 0.4904 | 6.7002 | 0.9417
'=0.1| 0.04999 | 0.1107 | 0.1439 | 0.3829 | 0.5806 | 0.8936
10.00 T=1.0| 0.02172 | 0.08337 | 0.1313 | 0.3825 | 0.5805 | 0.8936
I'=10. | 0.01168 | 0.05557 | 0.1047 | 0.3796 { 0.5801 | 0.8936
I'=0.1 | 0.02243 | 0.05023 | 0.06603 | 0.1917 | 0.3201 | 0.6753
50.00 I'=1.0 | 0.009740 | 0.03777 | 0.06020 | 0.1915 | 0.3201 | 0.6753
I'=10. { 0.005237 | 0.02514 | 0.04794 | 0.190n | 0.3198 | 0.6753
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TABLE 11
R=09 B,=0.1 Q/P=10
P 010 0.50 1.00 5.00 | 10.00 | 50.00
B,
T=0.1 | 0.6882 | 0.7417 | 0.7952 | 0.9632 | 0.9885 | 0.9987
010 T=1.0] 06157 | 0.7332 | 0.7923 | 0.9632 | 0.9885 | 0.9987
I=10. | 0.3338 | 0.6636 | 0.7660 | 0.9630 | 0.9885 | 0.0987
T=0.1] 03930 | 04528 | 05215 | 0.8542 | 0.9471 | 0.0936
050 T[=1.0] 0.3355 | 0.4448 | 0.5182 | 0.8541 | 0.9471 | 0.9936
I'=10. | 0.1629 | 0.3842 | 0.4907 | 0.8535 | 0.9470 | 0.9936
T TI'=0.1] 0.2902 | 0.3417 | 0.4038 | 0.7647 | 0.9032 | 0.9873
100 T=1.0{ 0.2455 | 0.3353 | 0.4010 | 0.7646 | 0.9032 | 0.9873
r=10. | 0.1171 | 0.2871 | 0.3779 | 0.7638 | 0.9032 | 0.9873
T=0.1| 0.1351 | 0.1642 | 0.2016 | 0.4943 | 0.7008 | 0.9417
500 T=10/ 0.1134 | 0.1610 | 0.2001 | 0.4942 | 0.7007 | 0.9417
T=10. | 0.05330 | 0.1368 | 0.1877 | 0.4935 | 0.7006 | 0.9417
T=0.1| 0.09610 | 0.1177 | 0.1458 | 0.3830 | 0.5806 | 0.8936
10.00 T=1.0 | 0.08062 | 0.1153 | 0.1447 | 0.3829 | 0.5806 | 0.8936
I'=10. | 0.03781 | 0.09792 | 0.1357 | 0.3822 | 0.5805 | 0.8936
T=0.1 | 0.04322 | 0.05343 | 0.06691 | 0.1918 | 0.3201 | 0.6753
50.00 T=1.0 | 0.03623 | 0.05234 | 0.06640 | 0.1917 , 0.3201 | 0.6753
r=10. | 0.01696 | 0.04440 | 0.06223 | 0.1914 | 0.3201 | 0.6753
TABLE 12
R=09 B,=o0 Q/P=0.
P o.10 0.50 1.00 5.00 | 10.00 | 50.00
B,
T=0.1| 0.4163 | 0.9300 | 0.9774 | 0.9941 | 0.9957 | 0.9987
010 TI=1.0]| 0.1568 | 0.6207 | 0.8507 | 0.9851 | 0.9931 | 0.9987
I'=10. | 0.09587 | 0.4020 | 0.6405 | 0.9660 | 0.9893 | 0.9987
T=0.1| 0.1982 | 0.7273 | 0.8969 | 0.9718 | 0.9792 | 0.9936
050 T=1.0| 0.07162 | 0.3310 | 0.5723 | 0.9317 | 0.9670 | 0.9936
I'=10. | 0.04393 | 0.2042 | 0.3704 | 0.8626 | 0.9502 | 0.9936
T=0.1| 0.1416 | 0.5876 | 0.8154 | 0.9459 | 0.9597 | 0.9873
100 T=1.0| 0.05088 | 0.2420 | 0.4414 | 0.8764 | 0.9375 | 0.9873
I=10. | 0.03124 | 0.1488 | 0.2785 | 0.7754 | 0.9084 | 0.9873 |
T=0.1| 0.06403 | 0.2999 | 0.5153 | 0.7950 | 0.8385 | 0.9417
500 T=101 0.02290 | 0.1126 | 0.2177 | 0.6379 | 0.7749 | 0.9417
r=10. | 0.01408 | 0.06923 | 0.1351 | 0.5047 | 0.7105 | 0.9417
I=0.1 | 0.04537 | 0.2165 | 0.3880 | 0.6815 | 0.7388 | 0.8936
10.00 T'=1.0 | 0.01622 | 0.08031 | 0.1570 | 0.5104 | 0.6602 | 0.8936
I'=10. | 0.009975 | 0.04940 | 0.09728 | 0.3915 | 0.5904 | 0.8936
T=0.1| 0.02034 | 0.09882 | 0.1842 | 0.3895 | 0.4485 | 0.6753
50.00 T'=1.0 | 0.007267 | 0.03630 | 0.07188 | 0.2640 | 0.3779 | 0.6753
I'=10. | 0.004471 | 0.02234 | 0.04449 | 0.1962 | 0.3267 | 0.6753
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TABLE 13

R=09 B,= Q/P=1

P 0.10 0.50 1.00 5.00 | 10.00 | 5000

B,
r=0.1| 0.4850 | 0.9205 | 0.9734 | 0.9941 | 0.9957 | 0.9987
010 TI=1.0{ 6.1997 | 0.6522 | 0.8471 | 0.9848 | 0.9931 | 0.9987
r=10.{ ©0.1114 { 0.4403 | 0.6705 | 0.9668 | 0.9894 | 0.9987
r=0.1] 02595 | 0.7393 [ 0.8875 | 0.9T14 | 0.9791 | 0.9936
050 I'=10] 0.09488 | 0.3855 | 0.5042 | 0.9314 | 0.9672 | 0.9936
r=10.] 005346 | 0.2303 | 0.4021 ! 0.8657 | 0.9507 | 0.9936
F=0.1{ 0.1914 | 06238 | 0.8094 | 0.9453 | 0.9595 | 0.9873
1.00 [=1.0| 0.06802 { 0.2916 | 0.4845 | 0.8768 | 0.9379 | 0.9873
r=10. [ 0.03666 | 0.1690 | 0.3056 | 0.7802 | 0.9094 | 0.9873
T=0.1| 0.09023 | 0.3556 | 0.5405 | 0.7940 | 0.8382 | 0.9417
500 TI=1.0{ 003095 | 0.1419 | 0.2553 | 0.6451 | 0.7773 | 0.9417
£=10.; 0.01655 | 0.07922 | 0.1501 | 0.5119 | 0.7129 | 0.9417
T=0.1] 0.06448 | 0.2646 | 0.4194 | 0.6809 | 0.7384 | 0.8936
1000 T=1.0{ 0.02196 | 0.1021 | 0.1868 | 0.5200 | 0.6637 | 0.8936
I=10. | 0.01173 ! 0.05660 | 0.1084 | 0.3982 | 0.5932 | 0.8936
£=0.1| 0.02915 | 0.1248 | 0.2072 | 0.3898 | 0.4484 | 0.6753
50.00 [=1.0 | 0.009858 | 0.04655 | 0.08677 | 0.2724 | 0.3819 { 0.6753
Ir=10. | 0.005258 | 0.02563 | 0.04967 | 0.2003 | 0.3289 ; 0.6753

TABLE 14
R=0.9 B, == o0 Q/P=10

Pl 010 0.50 : 1.00 5.00 | 10.00 | 50.00

By
r=0.1 | 0.9722 | 0.9930 { 0.9940 | 0.9953 | 0.9961 | 0.9987
0.10 T=1.0! 0.8127 | 0.2743 | 0.9849 | 0.9934 | 0.9954 | 0.9987
=10, | 0.3580 | 0.7950 | 0.8920 | 0.9807 { 0.9918 [ 0.9987
T=0.1| 0.8831 | 0.9664 | 0.9712 | 0.9771 | 0.9808 | 0.9936
0.50 TI=1.0! 0.5532 | 0.8900 | 0.9312 | 0.9686 | 0.9775 | 0.9936
£=10. { 0.1790 | 0.5264 ; 0.6759 | 0.9151 | 0.9614 | 0.9926
T=0.1 | 0.8020 | 0.9361 | 0.9448 | 0.9558 | 0.9628 | 0.9873
1.00 T=1.0] 0.4353 | 0.8112 { 0.8757 | 0.9401 | 0.9566 | 0.9873
r=10. | 0.1296 | 0.4096 | 0.5531 [ 0.8513 | 0.9277 | 0.9873
T=0.1] 0.5305 | 0.7664 | 0.7908 | 0.8252 | 0.8488 | (.9417
500 T=1.0! 0.2217 ! 05380 | 0.6366 | 0.7801 ; 0.8294 | €.9417
r=10. { 0.05953 | 0.2053 | 0.2983 | 0.6043 | 0.7526 | 0.9417
r=0.1| 0.4096 | 0.6456 | 0.6751 | 0.7199 | 0.7525 | 0.8936
10.00 T'=1.0 | 0.1606 | 0.4151 [ 0.5075 | 0.6644 | 0.7271 | 0.8536
I=10. | 0.04230 | 0.1484 | 0.2191 | 0.4812 { 0.6359 | 0.8936
r=0.1] 0.2005 | 0.3549 | 0.3802 | 0.4254 { 0.4628 [ 0.6753
50.00 TI=1.0]0.07351 | 0.2029 | 0.2585 | 0.3763 | 0.4376 | 0.6753
r=10. | 0.01901 | 0.06791 | 0.1021 | 0.2485 | 0.3603 | 0.6753




5 The use of transformations for 1-D models

There are cases where the use of certain transformations is superior to the original
formulation. For using the Isotherm Migration method see, e.g. Durack and Wendroff
(1977) and Gurcak et al. (1980).

In the following, examples for 1-D models will be given. Suppose we would like to solve
the following model

WET SIDE
20 _do N
EZ_—P(_{;*BO :0, << > (ll)

where liere the wet side heat transfer coeflicient is temperature dependent and

T-T, )

0:: , = —
T, - T, P «a
DRY SIDE
d’6 PdB—O <z<D (18)
dx? dz SIS
BOUNDARY CONDITIONS
#—-0 as = — o0 (19)
#=6, at z=0 (20)
#—~+1 as T — - (21)

For n =1 this is the model of Yamanouchi (1968). Let us outline the solution, since it
will serve for demonstration purposes. The temperature distribution on the wet side is

0 = Gpe* (22)

with

il

P P? 12
a E-(~‘1_+B)

whereas the temperature distribution on the dry side is
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0=1+ (0~ 1) (23)

Also we have

d0 0
wcl
da6(0
[() = P(86 - 1) (25)
dry
Equating these gradients and eliminating P yields
8
1/2
P=B ———~(1 o) (26)

Suppose we would like to solve Yamanouchi’s model numerically, with the formulation
given by Egs. (17)-(21). Let us pick an example where B = 0.1 and 6, = 0.270. Then
the analytical solution gives P = 0.100. The solution procedure was to assume a value
for P and calculate the temperature gradient at = 0, since from the dry side it is
given by Eq. (25). With the given value of the temperature and its derivative at z = 0,
Eq. (17) was integrated numerically for the wet side using the DGEAR subroutine from
the IMSL library. The correct guess for P is the one which gives § = 0 at ‘z = ~’.
Table 15 shows what happens if we guess the correct (calculated analytically) value for
P. Here Y denotes the temperature and YP its axial derivative. It can be seen that at
first the temperature decreases, but later it increases and reaches a value of, e.g. 511
at ¢ = 100. Tables 16 and 17 show how sensitive the solution is to the initial guess.
The initial guess which is selected in these cases is £1% of the correct value. It can be
seen that the solution is very sensitive to the initial guess for P. Even if we decided
that the correct solution gives a minimum for the temperature at a big value of z, say,
at z = 100, the strategy will not succeed because of the noted sensitivity. We conclude
that the original formulation given in Eqs. (17)-(21) is not suitable for a numerical
solution.
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TABLE 15

B= .10

Y

.270D+00
.206D+00
.157D+00
-1200+00
.9170-01
.700D-01
.534D-01
.408Dp-01
.311D-01
.237D-01
.181D-01
.1380-01
.106D-01
.806D-02
.615Lb-02
.469D-02
.358D-02
.2730-02
.209D-02
.159D-02
.122D-02
.9290-03
.710D-03
-5430-03
.414D-03
.316D-03
.241D-03
-183D-03
.140D0-03
.107D-03
.825D-04
.637D-04
.4890-04
.371D-04
.280D-04
-209D-04
-156D-04
.118D-04
.922D-05
.727D-05
-6000-05
.520D-05
.435D-05
.365D-05
.3650-05
-373D-05
.440D0-05
.5450-05
.717D-05

THO= .270

Yp

-.730D-01
-.557D-01
-.425D-01
-.325D-01
-.248D-01
-.189D-01
-.144D-01
-.1100-01
-.841D-02
-.641D-02
-.490D-02
-.374D-02
-.285D-02
.218D0-02
-166D-02
-.1270-02
-.9680-03
-.739D-03
-.564D-03
.430D-03
.329D0-03
.251p-03
.192D-03
-.147D-03
.112D0-03
-853D-04
-.650D-04
~-.495D-04
.378D-04
-290D-04
.223D-04
-172D-04
-.132D-04
-.100D-04
.755D-05
-562D-05
.417D-05
.313D-05
-239D-05
-183D-05
.142D-05
-.111D-05
-.756D-06
-.3800-06
-.109D-06

.264D-06

.657D-06

.1210-05

.195D-05
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.962D-05
-132D-04
.187D-04
.267D-04
.3800-04
- 545D-04
. 788D-04
.1150-03
.166D-03
.2420-03
.3510-03
.509D0-03
.738D-03
.107D-02
.155D-02
.225D-02
.325D-02
.471D-02
.683D-02
.989D-02
.143D-01
.207D-01
.300D0-01
.435D-01
.6300-01
.912D-01
.132D+00
.191D+00
.277D+00
.401D+00
.580D+00
.840D+00
.122D0+01
.176D+01
.255D+01
. 3690401
.535D+01
.775D+01
.112D4+02
.162D+02
.235D4+02
.3400.02
.493D+02
.714D+02
.103D+03
.150D0+03
.217D+03
.314D+03
.454D+03
.658D+03
.9530+03
.138D4+04

.304D-05
.457D-05
.667D-05
-965D-05
.1400-04
.203D-04
.295D-04
.428D-04
.6190-04
.898D-04
.130D-03
.1890-03
.2730-03
.396D-03
.574D-03
.832p-03
.120D-02
.175D-02
.253D-02
.366D-02
.530D-02
.768D-02
.111D-01
.161D-01
.233D-01
.338D-01
.489D-01
.708D-01
.102D+00
.148D+00
.215D+00
.311D+00
. 450D+ 00
.652D+00
.944D+00
.137D+01
.198D+01
.287D+01
.415D+01
.601D+01
.870D+01
.126D+02
.182D+02
. 264D+02
.383D+02
.554D+02
.8020-02
.116D+03
.1680.03
.244D+03
.353D+03
.511D+03
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TABLE 16
B- .10 THO= .270
Y YP

.270D+00 -.737p-01
.205D+00 -.566D-01
.156D+00 -.437D-01
.117D+00 -.341D-01
.865D-01 -.270D-01
.621D-01 -.221D-01
.416D-01 .190D-01
.234D-01 -.176D-01
.578D-02 -.179D-01
.131D-01 -.202D-01
.354D-01 -.248D-01
.639D-01 -.326D-01
.102D+00 -.447D-01
.155D+00 -.628D-01
.230D+00 -.894D-01
.338D+00 -.128D+00
.493D+00 -.185D+00
.717D+00 ~.268D+00
.104D+01 -.387D+00
.151D+01 -.561D+00
.219D401 -.812D+00
.317D+01 -.118D+01
.459D+01 -.170D+01
.666D+01 -.247D401
.964D+01 -.358D+01
.140D+02 -.518D+01
.202D+02 ~.750D+01
.293D+02 -.109D+02
.425D+02 -.158D+02
.616D+02 -.228D.02
.8920+02 -.331D+02
.1290+403 ~-.479D+02
.1870.+03 ~-.694D402
.271D0.+03 -.101D+03
.3930403 -.146D+03
.569D+03 -.211D403
.825D+03 -.306D+03
.120D+.04 ~.443D+03
.173D+04 -.6420403
.251D+04 -.930D403
.363D+04 -.135D+04
.527D+04 -.195D+04
.763D+404 -.283D+04
.111D+05 -.410D+04
.160D+05 ~-.594D+04
.232D+05 -.860D+04
.336D+05 -.125D4+05
.487D+05 -.181D+05
.705D+05 -.262D+05



49.0
50.0
51.0
52.0
53.0
54.0
55.0
56.0
57.0
58.0
59.0
60.0
61.0
62.0
63.0
64.0
65.0
66.0

69.0
70.0
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-.102D+06
~.148D+06
-.2150+06
-311D+06
.450D4+06
.652D+06
.945D.06
.137D407
. 1980407
.2870+07
.416D+07
.603D.07
.874D407
.1270+08
.183D+08
.266D+08
.385D+08
.558D+08
-.808D+08
-.117D+09
-.170D+09
-.246D+09
-.356D+09
-.516D+09
~.748D+09
-~.108D+10
.157D+10
.227D+10
.329D+10
.477D+10
.691D+10
~.100D+11
.145D+11
.210D+11
.305D+11
.441D+11
.639D+11
.926D+11
.134D+12
.194D+12
.282D+12
.408D+12
.591D+12
.857D+12
.124D+13
.180D+13
.261D+13
.377D+13
.547D+13
.792D+13
.115D+14
.166D+14

1

1

1

i

.379D+05
.549D+05
.795D+05
.115D0+06
.167D+06
.2420:06
.3500.06
. 5080406
.736D4+06
.1070.07
.154D+07
.224D+07
-.324D+07
-.470D+07
-.680D+07
-.986D4+07
-.143D+08
-.207D+08
-.300D4+08
-.434D408
-.629D+08
-.911D+08
-.132D+09
-.191D+09
-.277D+09
-.402D+09
-.582D+09
-.843D+09
.122D+10
-.177D+10
.256D+10
.371D+10
.538D+10
. 779D+10
.113D+11
.164D+11
.237D+11
.343D+11
.498D+11
.721D+11
.104D+12
.151D+12
.219D+12
.318D+12
.460D+12
.667D+12
.966D+12
.140D+13
.203D+13
.294D+13
.426D+13
.617D+13

!

1

i

1

t

1

4

1

1



TABLE 17

P= .099 B= .10 THO= .270
X Y Yp

.0 .270D+00 -.7230-01
1.0 -207D+00 -.548D-01
2.0 .159D+00 -.4130-01
3.0 .123D+00 -.3080-01
4.0 .969D-01 -.225D-01
5.0 .7719D-01 -.157p-01
6.0 .651D-01 -.9870-02
7.0 . 5800-01 -.447D-02
8.0 .562D-01 .1030-02
9.0 .603D-01 .7200-02
10.0 .711D-01 . 148D-01
11.0 -906D-01 .241D-01
12.0 .122D+00 .3830-01
13.0 -169D+00 .574D-01
14.0 .239D.00 .845D-01
15.0 .3420+00 -123D+00
16.0 .492D+00 -179D+00
17.0 . 709D+00 .260D4+00
18.0 .102D+01 .377D4+00
19.0 .148D+01 .546D+00
20.0 .214D+01 .791D+00
21.0 -.310D+01 .114D+01
22.0 .448D+01 .166D4+01
23.0 .649D+01 «240D4+01
24.0 .939D+01 -347D401
25.0 -136D+02 .502D+01
26.0 .197D+02 .727D401
27.0 .285D+02 .105D+02
28.0 .412D+02 .152D+02
29.0 .596D+02 .220D0+02
30.0 .862D+02 .319D+02
31.0 -125D+03 .461D+02
32.0 .181D+03 .667D+02
33.0 -261D+03 .966D+02
34.0 .378D.03 .140D+03
35.0 .547D+03 .2020.03
36.9 .7920403 .2930403
37.0 .115D+04 .424D403
38.0 .166D+04 .613D403
39.0 -240D404 .887D403
40.0 .347D+04 .128D+04
41.0 .503D+04 .186D+04
42.0 .728D+04 .269D404
43.0 -105D+05 .389D404
44,0 .152D+05 .563D+04
45.0 .221D+05 .815D+04
46.0 .319D405 .118D+05
47.0 -462D+05 .171D+05

48.0 -668D4+05 L247D405
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49.0 .967D.05 .357D+05
50.0 .140D+06 .517D+05
51.0 .203D+06 .749D+05
52.0 . 293D+ 06 .108D+06
53.0 .424D4+06 .157D+06
54.0 .614D+06 .227D+06
55.0 .888D+06 .3280+06
56.0 .1290.07 .475D+06
57.0 .1860+07 .688D4+06
58.0 .2690+07 .995D406
59.0 -390D0.07 . 144D+ 07
60.0 -564D4+07 .208D+07
41,0 .816D.07 .302D+0Q7
£2.0 .118D+08 .436D+07
63.0 .171D+08 .632D+07
64.0 .247D+08 .914D+07
65.0 .358D+08 .132D+08
66.0 .5180+08 .191D+08
67.0 . 7500408 .277D+08
68.0 .108D+09 .401D+08
69.0 .157D+09 .580D+08
70.0 .2270+09 .840D+08
71.0 .329D+09 .121D+09
72.0 -476D+09 .176D+09
73.0 .688D4+09 .254D+09
74.0 .996D+09 .368D+09
75.0 . 144D+ 10 .533D0+09
76.0 .209D+10 .771D+09
77.0 .302D+10 .112D+10
78.0 .437D+10 .162D+10
79.0 .632D+10 .234D+10
80.0 .915D+10 .338D+10
81.0 .132D+11 .489D+10
82.0 .192D+11 .708D+10
83.0 .277D+11 .103D+11
84.0 .401D+11 .148D+11
85.0 .581D+11 .215D+11
86.0 .841D+11 .311D+11
87.0 .122D+12 .450D+11
88.0 .176D+12 .651D+11
89.0 .255D+12 .942D+11
90.0 .369D+12 .136D+12
91.0 .534D+12 .197D+12
92.0 -772D+12 .285D+12
93.0 .112D+13 .413D4+12
94.0 .162D+13 .598D+12
95.0 .234D+13 .865D+12
96.0 .339D+13 .125D+13
97.0 .490D+13 .181D+13
98.0 -709D+13 .262D+13
99.0 .103D+14 .379D+13

100.0 -149D+14 -549D4+13
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An alternative way is to use a different formulation which is amenable to numerical
computation. This will be accomplished through the following transformation.
Making use of the relation

&0 _ (%) - d(d_")ie_}_(.l_) -13) -1
dz? ~ dx\dz/ ~ d0\dz/dx = zg\z4/e 2\zi/s 246

so that the original equation becomes:

ldy —- 1/ n
530 = Py'/- + B#
or
4y _ 2Py'/* + 2B6" (27)
dé
with
y(0)=0 (28)

With this transformation, a first order differential equation has been obtained for the
square of the axial temperature derivative as a function of temperature. The problem
is now solved as follows. A Peclet number P is assumed and Eq. (26) is integrated with
initial condition (27) till the point @ = 8, i.e. the integration is performed over a finite
interval. The resulting value of y!/? (which is the the axial temperature derivative)
is compared with the derivative obtained from the equations related to the dry side,
namely, to P(1 — 6,). Of course, the correct solution for P is obtained when the two
match to a desired accuracy. Note that this transformation can be used only when y
has a monotoneous behaviour, e.g. on the wet side only, or on the dry side only, but
not over the whole slab. Note also that instead of B8" a general function f(4) (which
is compatible with the boundary conditions) may be assumed.

As an example, let us take again Yamanouchi’s model, i.e. n = 1. Table 18 shows the
results obtained when the correct P is assumed and the resulting relative error in the
calculated temperature derivative, Tables 19 and 20 show the results when the guess
for P is off by £1% from the correct value. One nay realize that now the results are
much less sensitive to the guess for P.



TABLE 18
P= .100 B= .10 THO= .270
X Y
.0000D+00 .0000D+00
.2702D-01 .8237D-02
.54030-01 .1498D-01
.8105D-01 .2211D-01
.1081D+00 .2934D-01
.1351D+00 -3659D-01
.1621D+00 .4386D-01
.1891D+00 .5114D-01
.2161D+00 .5843D-01 P(1-THO) ERRORX
.2431D+00 .6572D-01

.2702D+00 .7301D-01 .7298D-01 .041
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For the formulation given in Eqs. (26)-(27), a more elegant solution can be derived
for n # 1 in the following way.

In order to scale out P and B, let us introduce the following new variables

v [}

‘= 2PrEBY "= 2Py (2BY

Inserting these variables into the differential equation gives
(2P)a—ﬁ(2B)‘y—Jg£ = (2P)]+a/2(2B)7/2C1/2 + (2P)nﬁ(2B)l+n6nn
n

Equating like powers of P and B, the following relations are obtained:

a—-ﬂ=1+g=nﬁ

2
1-8=2 =1+n
which yield:
2n+ 2 2 2 1
a_n—l ﬂ‘n—l 7_1—72 6—1-—72
The transformation is therefore
(= y n= 6
(2P)55 (2B) 75 (2P)7(2B)

With this transformation the differential eqution + initial condition become:

j_f_’ = (V2 g g (29)
((0)=0

For 8 = 6, one obtains

(2P)=(2B) =



_2‘3..

y(o) = P*(1 - 6o)*
which gives

P*(1 - 6,)?
(2P)H (2B)"5

lmo) =

An elimination of P from the last equation gives

1(1 —85)? ,izn

P=_——-(7 (30)

2 (2B)"5

Now plot 1 versus ¢ and P versus { for various values of 6. Their point of intersection

gives the desired value of P. Fig. 1 shows results for n = 3, B = 1 and different values

of 6y. It can be realized that for a given n, Eq. (29) has to be integrated only once,
which is the advantage of this method of solution.
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6 Axial versus normal heat transfer

The question of the relative importance of axial conduction and normal heat transfer
in a given situation cannot be answered by using theoretical models. The reason is that
an answer based on a given theoretical model depends on the boundary conditions that
are specified in the model. As an example, suppose we use the model by Olek et al.
(1988a), which regards the rewetting problem as a conjugate heat transfer problem. In
this model the temperature distributions in the solid and in the liquid are evaluated
simultaneously with the requirement of the continuity of temperature and heat flux at
the interface between the two. Thus, a heat transfer coefficient needs not be specified
on the wet side and the dry side is assumed adiabatic. In such a model (as well as
in other heat conduction models which assume an adiabatic dry side), heat from the
high temperature dry side can flow only axially towards the wet side. At the quench
front, part of this heat continues to flow axially and part is evacuated from the solid
in the normal direction by convection to the liquid. Thus, one can apriori deduce that
in this model axial conduction will be more important than normal conduction under
all circumstances. A typical example is presented in Fig. 2 for the calculated axial and
radial heat fluxes, which shows indeed the noted feature.

Obviously, if one assumes precursory cooling in such a model, the imortance of normal
heat transfer will increase and may surpass axial conduction for some values of precur-
sory cooling parameters.

Thus, a definite answer to the question of the relative importance of axial versus nor-
mal heat transfer cannot be given by using theoretical models. Intuitively one expects
normal conduction to be of increasing importance with higher fluid flow rates.



HEAT FLUX [MW/m?]

Top Flooding: Zircalloy—Water

10 Inlet liquid temperature: 20°C
Initial wall temperature: 700°C
Quench temperature: 260°C

Quench velocity: 2.6 mm /sec

1 1 1 v 1 v 1T ' 1T * 71T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DISTANCE FROM THE QUENCH FRONT [mm]

Fig. 2: The relative importance of axial versus radial heat transfer, as calculated from
the conjugate heat transfer model by Olek et al. (1988a).
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Appendix A: The Wiener-Hopf Technique

A.1 Introduction

In the following a short description of the Wiener-Hopf technique will be given, as well as its
application to rewetting models. The aim is by no means to cover this method thoroughly,
but to give some basic understanding of the method, which is one of the popular methods
that were used to solve rewetting models. Most of the introductory part is taken from the
book by Noble (1958).

The Wiener-Hopf technique provides a significant extension of the range of problems
that can be solved by the Fourier, Laplace and Mellin integrals.
To fix ideas, let us consider three problems which are connected with the steady state
wave equation. We use this equation, since later it will be shown that when employing
the Wiener-Hopf technique to the solution of rewetting models, there is a big advantage
in transforming the heat equation (through a well known transformation) into the stcady
state wave equation.

0% O
—a;g+-(-97f+k2¢=0 (A.1)

Suppose we wish to find a solution of this equation in the semi-infinite region —co < r < oo,
y > 0, such that ¢ represents an outgoing wave at infinity in each of the three scparate
cases

(1) o= f(x) on y=0, -oo<a< o0

(i1) 0¢/0y=g(z) on y=0, —-o0< 1< o0;

¢ = f(x) on y=0, 0<z <o
(i)
0¢/0y =g(z) on y=0, -o00<z<0; (A.2)

Separation of variables solutions exist for (A.1) in the form ¢ = X(z)Y (y) with
X(r)=e*"" Y(y) =,  y=(a’ k)

where o is a parameter. Together with the fact that the range of r is infinite this suggests
the use of the Fourier integral in —0o < r < o0, and in fact the first two problems can be
solved exactly by Fourier integrals, whereas the third one leads to equations which can be
solved by the Wiener-Hopf technique.




Although it will appear that we must use the Fourier integral in the complex plane,
consider in this section the ordinary (real variable) form

1 e ~
P(a.y) = W[m é(r,y)e' " dz

1 00
3z.y) = momgs [ Blay)e™"de (A3)

where o is real. We use the method of Fourier transforms. Multiply both sides of (A.1)
by (27) "%exp(iar) and integrate throughout with respect to r from —oo to co:
7P

1 > 62¢ tox 2
(—2?)75 -00-5-;2-6 dl‘+-a—y'2-+kq’—0 (A.4)

Integrate the following expression by parts:

A 02¢ tar — a¢ 1ar 4 . tar 4 2 4 iar
/_Awe dx—[—a;e ]_A—za[d)e ]_A—a ,/._,4¢€ dr

Let A — oo and assume that contributions from the bracketed terms at upper and lower
limits tend to zero. This is connected with the condition that ¢ represents an outgoing
wave at infinity. Eq. (A.4) then becomes

7 - =0, where 7°=(a®-1#k? (A.5)

y=+(@®— k)2 a>k

where k is assumed here to be real. A difficulty arises since we need to define v for a < k
and it is not clear, for example, whether to take the upper or the lower sign in the formula
v = %i(k* — a®)'/?, |a| < k. To answer this question one uses analytic continuation
arguments (see more in Noble’s book, chapter 1.2). Assuming that the definition of v has
been settled, the solution of (A.5) which must be used is

d = A(a)e™, (A.6)

since it appears that v = +(a® — k?)'/? for @ < —k so that this solution is bounded for
all o as y tends to infinity whereas the solution in exp(+7yy) increases exponentially as y
tends to infinity for |a} > k. The function A(a) is an arbitrary function determined from
the boundary condition on y = 0.

Now consider problems (i)-(iii) in turn. (i) Application of the boundary condition on y =0

to (A.6) gives



1 0 .
(q))y=0 = Ala) = W [m f({)emfdé

Substitute this value for A(a) in (A.6) and use the Fourier inversion formula (A.3). This
gives the solution

= —1- . etor-y /°° f(-f)ciaf(lfda

I Jox

(i1) In a similar way the second problem gives

aq’ — . _ 1 ot 1af
(30). = 74 = oo [ stEree
6= [Ty [ g(e)ededa (A7)

(111) In this case there are three methods of procedure which are basically identical but
deserve separate mention.

A.In (A.2) extend f(r) to denote the (unknown) value of ¢(z,0) = f(z)ony =0,z <0,
and g(z) to denote the (unknown) value of 3¢/3y on y = 0, z > 0. Define

1

‘I>+(n,y)=(—2—1r—);ﬁ

[ #z,p)eerds
0

1 :
b (0.) = g [ ompleords

Then ¢,(«,0), ®_(a.0) are the corresponding integrals of ¢(z,0) = f(r). Use a dash to
denote differentiation with respect to y, so that

’ a¢ 1 * far
%, (0,0) = (—BE)FO = W/O g(z)e'**dx
with a corresponding definition for #’_(a,0). The boundary conditions now yield

®,(a,0)+ ®_(a,0) = A(a)

% (a,0) + 9 (a,0) = —yA(a)

Eliminate A(a) from these equations



', (0.0) + &' (a.0) = —1(®4(,0) + ¢_{a.0)] (A.8)

The functions ®.®, are known but there are two unknown functions. ®, and ¢_. It
will appear that if a is taken as a complex variable in the original Fourier transform
(A.3). a process involving analytic continuation and Liouville’s theorem can be used to
determine the unknown functions in (A.8). This process is the ‘Wiener-Hopf technique’.
The approach is commonly referred to as Jones’s direct method.

B. Next consider an integral equation formulation of the problem. In (A.7) interchange
orders of integration, Let y tend to zero, introduce boundary condition (A.2) for r > 0,
split the range of integration in £ into (—oc,0),(0,00) and rearange:

ed 0
[ R -osterde = i) - [ g@OK@-0de. (x>0 (A.9)

where
K( = - i ~tgialf-x)
v(r —§&) 2. ] e o

and the quantities on the right hand side of the equation are known. This is an integral
cquation for the unknown function ¢(£), £ > 0. The important feature from the present
point of view is that the kernel K (x - £) is a function of (1 — ). Such integral equations
can be solved by the Wiener-Hopf technique.

In the literature the usual procedure is to obtain this type of equation by the Green function
technique, and then to reduce the integral equation to (A.8) by Fourier transforms.

C. Finally, consider the formulation in terms of dual integral equations. From (A.G)

1 .

The boundary conditions give

1 e )
(277_)1'/_2 /_m Alae " "da = f(z), (x> 0)
———1 i -0
"(2#)”2 /_OO'YA(O)E da = g(z), (r<0) (4.10)

These are dual integral equations for the unknown function 4(a). These equations can be
solved by a procedure depending on the essential step in the Wiener-Hopf technique.



This completes the introducory part. In order to solve problem (iii) above by any of the
methods A, B. C, it is necessary to consider complex «. This requires a discussion of
certain topics in complex variable and Founer transform theory, which is given in the next
chapter.

A.2 Complex variable theory

We start with a brief summary of complex variable theory required for succeeding develop-
ments. Greek letters will be used to denote complex variables, e.g. ( =€+ ip,a =0+ ir.
When the complex variable 1z associated with the Fourier transform we invariably use
a = o +it. Latin letters a, b, k, etc., will be used for constatnts. It will be clear from the
text whether these are to be regarded real or complex. We recall the following definitions
and results.

Analytic and regular functions

If to cach point ( in a certain region R there correspond one or more complex numbers,
denoted by y, then we write x = f({) and say that x is a function of the complex variable
¢. If the function has a uniquely defined value at each point of the region R it is said to
be single-valued in R. The crucial property possessed by useful functions is that at most
points in R they are differentiable, i.e.

oy e FE+8) — f(C)
f(¢) =lim F;

5—0

exists and is independent of the direction along which the complex numnber é teruls to
zero. The function y = f(¢) is said to be analytic at the point { when it is single-valued
and differentiable at this point. The function f is said to be regular in a region R if it
is analytic at every point of R. The phrase ” f({) is an analytic function in a region R”
means that the function is analytic at every point of a region except for a certain number
of exceptional points: this will be defined more precisely later in connexion with analytic
continuation. Points at which the function is not analytic are called singularitics. The
singularities of a function are very important since they characterize the function.

The next idea required is tiiat of a line integral. The central result concerning line
integral is Cauchy’s theorem.

Cauchy’s theorem

If f(¢)is an analytic function, continuous within and on the simple closed rectifiable curve
C. and if f'(() exists at each point within C, then


http://tli.it

[ ftod =0

From this can be deduced Cauchy’s integral formula: If f({} obeys the same conditions as
for Cauchy’s theorem and if a is any point within C, then

fay = L [ SO

- = dc

miJe ( -«
Some familiarity is assumed with the application of these theorems to evaluation of contour
integrals by residues and shifting of contours in the complex plane, particularly when
branch points are present.

An analytic function which is regular in every finite region of the (-plane is called an
inteyral function, e.g. a polyniomial in ( is an integral fuction; also exp( is an integral
function.

Liouville’s theorem

If f(¢) is an integral function such that [f(¢)] < M for all ¢, M being a constant, then
f(C) 1s a constant.

It is easy to extend this result to the following: if f(() is an integral function such that
[f(¢) < M[CIP as |¢| — oo where M, p are constants, then f({) is a polynomial of degree
less then or equal to [p], where [p] is the integral part of p.

Taylor’s theorem

If f(7) is an analytic function regi-'1r in the neighbourhood |¢ — a} < R of the point ¢ = a.
it can be expressed in this neighbourhood as a convergent power series of the form

_ 2 ((—a) _[4f
(o=t@+Yal st a = [7]

r=1

A zero of an analytic function f(() is a value of { such that f({)=0. It can be deduced
from Teylor’s theorem that the zeros of an analytic function are isolated points, i.e. if
f(¢) is vegular in a region including { = a then there is a region |[( —a| < p, (p > 0),
inside waich f(¢) has no zeros except possibly ¢ = a itself. If a singularity is isolated it is
possible o deduce a Laurent ezpansion. If this expansion is of the form

0

¢ = Z ar(¢ ~a), (n>0)

r=-n

then the fu nction is said to have a pole of order n at the point a.



Analytic continuation

It often happens that a representation of a function of a complex variable is valid only for
restricted a. Thus the series

flay=14+a+na?+...
converges only for |a| < 1. However for |a] < 1 we have
fla)=(1-a)™!

The extension of the definition of f(a) by identifving f(a) with (1—a)~! for |a] > 1is called
analytic continuation. It is possible to carry out analytic continuation systematically by
means of power series but we do not go into details. We assume merely that the functions

f{a) with which we deal are defined in such a way that if we start at any point a = a in the
complex plane and draw a continuous curve to another point. say, & = b in such a way that
no smgularities of the function lie on the curve, then the values of f(a) vary continuously
along the curve and can be determined from the definition of f(a). The expression “the
analytie function f(«a)” can now be defined as the totality of all the values of f{a) which
can be obtained by analytic continuation as just described, starting at a given point o = a.

The natural questioin which arises is whether a function which is continued along two
different curves from a = a to a = b will have the same final value for the two ways. This
question is partly answered by the following theorem (Titchmarsh (1939)): If we continue
an analytic function f(a) along two different routes from a to b and obtain two different
values of f(b) then f(a) must have a singularity between the two routes. Of course the
converse is not true, that if there is a singulanity between the two routes we necessarily
obtain two different values for f(b); it needs to be a special type of singularity, namely a
branch-point to produce a difference in value.

If the values of a function found by analytic continuation are unique. independent of

the path of continuation, then the function is called single-valued. Otherwise the function
is called many-valued.
A branch point a is a singular point such that there exists no neighbourhood ja - «| < ¢
in which f(a) is single-valued. By inserting certain lines in the complex plane and stating
that paths of analytic continuation must not cross these lines it is possible to specify a
branch of a many-valued function which is in itself single-valued. Such lines are called
branch-lines or cuts. Branch points always occur in pairs. and branch lines join branch
points.

A.3 Analytic functions defined by integrals

We often meet functions defined by integra's of the type



G(a) = /Cy(a.C)dC (A.11)

where g(a.() is a function of the complex variables a and (, and C is a contour in the
complex ¢-plane. The variable a will be assumed to lie inside a region R, i.e. the boundary
of R.if any. is excluded. The contour C is assumed to be smooth, i.e. it is possible to specify
position on the contour by means of a parameter t such that { = £(t) + in(t). o <t < ),
and £(t).7(t) exist and are continuous.

Before stating conditions for G(a) to be regular we remark that any line integral like (A.11)
can be reduced to real integrals and we shall assume that these are Rimannn integrals.
We now state conditions under which G(a) is regular

Theorem A

Let g(.() = f({)h(a,() satisfy the conditions

(1) h(a, ) 1s a continuous function of the complex variables a and { where a lies inside
aregion R and ( lies on a contour C.

(i1) h(a, () 1s a regular function of a in R for every ( on C.

(ii1) f(¢) has only a finite number of discontinuities on €' and a finite number of maxima
and minima on any finite part of C.

(iv) f(¢) 1s bounded except at a finite number of points. If ( is such a point, so that
g(a, () — o0 as { — (p, then

[oatadc =tim [ ga, g

exists where the notation (C' — é) denotes the contour C apart from a small length §
surrounding (p, and lim(é — 0) denotes the limit as this excluded length tends to zero.
The limit must be approached uniformly when a lies in any closed domain R’ within R.

(v) If C goes to infinity then any bounded part of C must be smooth and conditions (i)
and (i1) must be satisfied for any bounded part of C. The infinite integral defining G(a)
must be uniformly convergent when a lies in any closed domain R’ of R.

Then G(a) defined by (A.11) is a regular function of a in R.

As a special case ¢ may be real, say ( = £, and the contour may consist of the portion
a < € <b of the real axis. Then (A.11) is an ordinary real integral:

b
Gla) = / oo, €)dE

Suppose that g(a, () satisfies the conditions of the above theorem, and [g(a, () < M(t)
for any a in R where position on the contour C is specificd by the parameter ¢,

¢ = E(t)+in(t),a < t < b, and [P M(t)|E'(t) + 7/(t)|dt converges, then /. g(a,C)dC is
uniformly and absolutely convergent in R’



We can now deduce some important results. In the following ¢,,0_,7,,7_ are real con-
stants.

(1) If
Fila)= [ ” flr)erds,

where a = o + i7, f(r) satisfies conditions (ii), (iv) above, and |f(r)| < Aexp(r_z) as
r — oc, then F(a) is regular in the upper half-plan 7 > 7_. Similarly if f(x) satisfies (iii),
(1iv) and |f(r)| < Bexp(r,) as r — —oo then

F_(a) = /_(; f(z)e**dz,

is regular in the lowe.-half plane 1 < 7. These statements follow immediately from the
theorem since exp(iaz) obviously satisfies (i), (ii) and the restrictions as + — o0 ensure
uniform convergence.

(2) If

F(a)=/oo+ic _fﬁldc

—-oo+ic C el 4 ¢

where a = 0 + i1, ( = £ + 1c, ¢ is a given constant, f(£ + i:c) regarded as a function of ¢
satisfies (iii), (iv) and |f(€ + ic| < CJE|™%, k > 0, for [¢| > M, say, then F(a) is a regular
function of a in 7 > ¢. Again the result follows from the theorem since under the stated
conditions (¢ — a)™! satisfies (i), (ii). Also if we consider the region R’ of (v) such that
c+e<t<K,a<o<b, wehave

> If(€ +22)] 1f(u+o+ic)|
|Fa)| < /_m [(E—a)’+(c—r)’]‘/’d€ _/w (u? +£2)1/2 P ERETY L

on introducing u = £ — ¢. Divide the range of u into (—o00, A), (A, B), (B, c0) where
the finite number of discontinuities that f is allowed from (iii), (iv) li= in (A4, B), and
A< —(M+8), B> (M- a). Under these conditions |f(u + o + ic)| < Clu + o|7F,
k > 0, in (—o00,A) and (B,o0) and the integral is absolutely convergent, independent of
the position of a in 7',

Theorem B

Let f(a) be an analytic function of a = o + i7, regular in the strip 7. < 7 < 74, such
that |f(e +iT)| < Clo|~?, p > 0, for |o| — oo, the inequality holding for all 7 in the strip
T_+e<r,—-¢,€e>0 Thenfor . <c<7<d< T4,
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fla)y= fi(a) + f_(a)

fela) = 5= . f-(a)=~ ———d( (A.12)

C2mi Jeotic ( — @ 271 Jootid ( — @

1 otic f(C) _1—. /m«h'd (C)

where f.(a)is regular for all 7 > 7_, and f_(a) is regular for all 7 < 7.

The statements regarding regularity are proved as in (2) above. To prove (A.12) apply
Cauchy’s integral theorem to the rectangle with the vertices ta + ic, 2a + id. From our
assumption as regards the behaviour of f(a) as || — oo in the strip, the integrals on
o = ta tend to zero as ¢ — oo and we are left with the required equation.

We shall sce later that theoremn B enables the decomposition of certain kernels which is
one of the key steps in the Wiener-Hopf technique.

Theorem C

If log IV («) satisfies the conditions of theorem B, which implies in particular that K(a) is
regular and non-zero in a strip 7. < 7 < 74, —00 < ¢ < 00, and K(a) =+ +1 as 0 — oo
in the strip, then we can write K(a) = K, (a)K_(a) where K,(a), K_(a) are regular,
bounded, and non-zero in 7 > 7_, 7 < T, respectively.

The conditions of the theorem are more restrictive thean necessary but cover the applica-
tions in this report. A more general theorem which takes into account more complicated
cases, can be found in exercise 1.12 in Noble (1958). The more general theorem shows how
to deal with zeros of K(e) in the strip, and with cases where (a) — exp(ip), exp(iv) as
0 — +20, —00, respectively, or |K(a)| ~ |o|? as |o| — oo, in the strip.

To prove theorem C, apply theorem B to f(a) = log K(a).

log KN(a) =

T 27

S/ — e

e~ (—a 2mt Jid-o (—a

= fi(a) + f_(a), say, (A.13)

1 /.'c+oo log K(Od( 1 /id+oo log K ()

where ¢, d are any numbers such that 7. < ¢ < 7 < d < 7,. The integral for f, (a) is
convergent for all a such that 7 > ¢. Hence f,(a) is bounded and regular in 7 > 7_ since
we can choose ¢ as near as we please to 7_. Similarly f_(a) is bounded and regular in
T < Ty

If we set

Ki(a)=exp{fi(a)] 5 K_(a)=exp(f_(a) (A.14)

then
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log K (a) +log KN_(a) =log K{a), 1e. K,.(a)R_(a)= K(a).

From the properties of f, (a). it is seen that K (a) is regular, bounded. and non-zero in
r > 71_. Similarly K_(a) is regular, bounded, and non-zero in + < 1,. Therefore the
theorem is proved since K, (a), I_(«a) have been constructed which satisfy the necessary
conditions. Obviously. decomposition of kernels into sums. quotients and products is
carried out in much the same way.

A.4 The Wiener-Hopf procedure

The practical details of applying Fourier transforms in the examples considered later tend
to obscure the essential simplicity of the complex variable procedure. which is therefore
summarized in this section. The typical problem obtained by applying Fourier transforms
to partial differential equations is the following. Find unknown functions ®¢,(a), ¥_(a)
satisfving

A(a)P {a)+ B(a)¥_(a)+Cla)=0 (A.19)

where this equation holds in a strip 7. < 7 < 1,, —00 < ¢ < o0 of the complex a-
plane, ®,(a) is regular in the half-plane 7 > 7_, ¥_(a) is regular in 7 < 7. and certain
information which will be specified later is available regarding the behaviour of these
functions as a tends to infinity in the appropriate half-planes. The functions A(«). B(a).
C(a) are given functions of a, regular in the strip. For simplicity we assume that 4. B
are also non-zero in the stnp.

The fundamental step in the Wiener-Hopf procedure for solution of this equation is to
find N, (a) regular and non-zero in r > 7_, K_(a) regular and non-zero in 7 < 7, such
that

A(a}/B(a) = Ki(a)/K_(a) (A.16)

Sometimes K, K_ can be found by inspection but in any case, for the A, B which occur
in our applications, they can always be found with the help of theorem C (the precise
details will become clear in the next sections which deal with kernel decomposition). Use

(A.16) to rearange (A.15) as
Ki(a)b,()+ N_(a)¥_(a)+ K_(a)C(a)/B(a)=0 (A.17)
Decompose K _(a)C(a)/B(a) in the form

K_(a)C(a)/B(a) = Cy(a) + C_(a) (A.18)



where Cy(a) is regularin 7 > 7., C_(@a) i1s regular in 7 < 7,. In the general case this can
be done by using theorem B. With the help of (A.18) rearange (A.17) so as to define a
function J(a) by

J(a) = K (a)®,(a) + Ci(a) = ~K_(a)¥_(a) ~ C_(a) (A.19)

So far this equation defines J(a) only in the strip 7_ < 7 < r,. But the second part of the
cquation is defined and is regular in 7 > 7_, and the third part is defined and is regular
in 7 < 74. Hence by analytic continuation we can define J(a) over the whole a-plane and
J(a) 1s regular in the whole a-plane. Now suppose that it can be shown that

Ki(a)®i(a)+ Cy(a)l <|alf as a—o00, T>7T_

KN (a)¥_(a)+C.(a)|<|al as a— 00, T<T4 (A.20)

Then by the extended form of Liouville’s theorem J(a) is a polynomial P(a) of degree less
than or equal to the integral part of min (p, q), i.e.

Ki(a)®i(a)+ Ci(a) = P(a)

K_(a)®_(a)+ C_(a) = —P(a) (A.21)

These equations determine ® .(a), ¥_(a) to within an arbitrary polynomia! P(a}, i.e. to
within a finite number of arbitrary constants which must be determined otherwise.

The crucial step is the finding of K.(a), K_(a) to satisfy (A.16). The methods as-
sociated with the Wiener-Hopf technique for the solution of partial differential equatious
described in this report include an equation of the form (A.15).

If we say that a method is "based on the Wiener-Hopf technique” we imply that at some
stage of the solution a decomposition of the form (A.16) is involved.
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A.5 Kernel decomposition

The three common approaches to kernel decompositions are by inspection, by using theo-
rem B, or for seme kernels using infinite products. The last method will be explained in
the following.

A.5.1 Expansion of meromorphic functions in partial fractions

A function is meromorphic in a region if it is regular in the region except for a finite number
of poles. Let f(a) be a function whose only singularities except possibly at infinity are
poles. For simplicity suppose that all poles are simple. Let them be a),a;..., where
0 < jo1} < |az| € ..., and let the residues at the poles be a;,ay, ..., respectively. Suppose
that there exists an increasing sequence of numbers R,, such that R,; — oo ana such that
the circles C,, with equations |a] = R,, pass through no pole of f(a) for any m. Suppose
that f(a) is bounded on C,, for all m. Then

flo) = 10+ X an( =+ 1)

a-oa, a,

for all a except the poles. As an example

oo -

cosoca—%: z (_1)"( ! +i)

s a—-nmT  nw

where the dash means that the term for n = 0 is omitted.

A.5.2 The infinite product theorem

If f(a)is an integral function of & with simple zeros at ay, a5, .. ., then it can be shown that
f'(a)/ f{a) is a meromorphic function of o which can be expanded in partial fractions as
shown in the previous section. On integrating this expansion the following infinite product
representation of f(a) is found

fe) = f(0)yexp [a%] i (1- 2ot

In this form the exponential factors are necessary to ensure convergence, since a, ~ an+b
as n — oo on the examples considered below. If f(«) is an even function of a, the roots
occur in pairs, ay,, and f'(0) = 0, so that we can write
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0 5 o-2)er =0 (-2

n=-nc n n=1 n

where a_,, = —a, and the dash denotes that the term for n = 0 is omitted.
As examples of this type we have

(aa) 'sinaa ; cosaa

If K(a) is an integral function which can be expressed as an infinite product, the
decomposition is iimmediate. The important case from our point of view orcurs when
K(a) is an even function. Then we can write

fla)=f(0) D1 = (a/a,)?]

This can be decomposed in the form

I\:t (l [1\ ]I/ZC’.;\(Q) Z[l :{: (a/an)leq;(a/ﬁn)

n=1

where the upper and lower signs go together and the terms have been arranged so that all
the zeros of Ky (a) lie in the lower half-plane and vice versa. Hence K (a) is regular and
non-.ero in the upper half-plane (Im a) >-(Im a;). The function x(a)is arbitrary and can
be chosen to ensure that X, K_ have suitable behaviour as @ — oo in appropriate half-
planes. The infinit product will in general have exponential hehaviour as a — o whereas
the functions which need to be decomposed later have algebraic behaviour at infinity due
to additional terms multiplying the infinite products. These facilitate the choice of x(a)
and it is convenient to postpone further discussion until we require the decomposition
of concrete examples. It is emphsized that the correct choice of x(a) is crucial for the
successful application of the Wiener-Hopf technique.
When the function has a branch point the infinite product method will break down. In
this case one should use theorem B to perform the decomposition.

In the following sections, severil rewetting models are treated. These include the
formulation and solution part of several papers on rewetting models.



A.6 Rewetting of a slab with a step-like heat transfer
coefficient

A complete description of this model and its solution by the Wiener-Hopf technique and
by separation of variables can be found in Olek (1988a). Here we present the main features

only.

A.6.1 Formulation

The nondimensional quasi steady state heat conduction equation in a coordinate system
moving with the quench front at a constant velocity P is

0 9% oo
—+—-P—= - 29
o + o Pa:r, 0 O<y<l, 00 < <o (A.22

and the associated boundary conditions are:

6
0—:0 y=0, —00 < T < 00 (A.23)
dy
% _o  y=1, <0 (A.24)
dy
0
?—+B9:0 y=1, >0 (A.25)
dy
6 —1 r — —00 (A.26)
8 —0 r — 400 (A.27)
=6, =0, y=1 (A.28)
where _ . T_T s 5
T y - T, . pecu
rT=-— == = —0- = — =
=y YTy -1, "% PET

The axial and normal coordinates are # and g, respectively, and the slab thickness is 6.
The solid is at an initial temperature T, and it is cooled to a temperature T,. The density,
specific heat at constant pressure, and thermal conductivity are p,c and k, respectively.
The rewetting velocity is denoted by u, the rewetting temperature is Ty, and A is the heat
transfer cocfficient.

The main interest is solving for the rewetting velocity (Peclet number), P, in terms of the
Biot number, B, and the rewetting temperature 8, = (T, — T,)/(T\, — T,).
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A.6.2 Solution
Following Evans (1984), define

Br.y) =1—¢(r,y)e’* (A.29)
where s = P/2

and obtain

Do Do .
51-—2-+OT‘/2-52¢=0 O<y<l, —00<Tr < (A30)
@:0 yzO, -0 <T <™ (A3l)
Oy
0¢
—_— = 9
3y 0 y=1, z <0 (A.32)
9¢ sz
— + B¢ = Be™*", y=1, >0 (A.33)
dy
é(x,y) = O(e*™™) as T -— —00 (A.34)
o(z,y) = O(e™*) as r -—+ 400 (A.35)
o = oo, r=0, y=1 (A.36)

Let us define the following Fourier transforms:

Ba,y) = Byla,y) + & (a,y) = [ pla,y)erde (A.37)

with

@i(ay)= [ de,p)edz

0 .
&_(a,y)= [ dlz,y)eda
and note that from eq. (A.34) and eq. (A.35) it follows that the functions &, and ®_ are

analytic in the regions

D_:lma<s

and
D, :Ima > -5

respectively.
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The transform of eq. (A.30) is

d*®d
dy®

—-42% =0 (A.38)

where 4 = (a? + s%)1/2, with the positive branch of the squareroot. The solution of (A.38)
with boundary condition (A.31) gives

B(a.y) = Cla)cosh(vy), a €D,UD_ (A.39)
The transforms of conditions (A.32) and (A.33) are
. =0 a€D_ (A.40)

1B
a+1s

&, + Bd, = a€D, (A.41)

whilst from eq. (39)
¢’ = ytanhy(®, + ), (A.42)

where primes denote transforms of y derivates of ¢, and the arguments are (n, 1) through-
out.

From equations (A.40)-(A.41) follows the Wiener-Hopf functional relatior for the deter-
mination of the two unknown functions ®; and ®_ :

rothy _ iB cothy
®,(1+B )= e (A.43)
Let
K(a)=Ky(a)K_(a) =1+ B“’Eh i
where the functions Ky(o), K_(a) are analytic above and below the lines Ima = —s, +3,
respectively. Then eq. (A.43) can be re-arranged as follows
b, Ni(a)+¥_/K_(a) = — [Ki(a)—1/K_(a)]
a+1s
? . .
= o [Ky(a) —1/K_(~is)
1 . . .
P 1/K_(a) —1/K_(~is)]
=  My(a) + M_(a) (A.44)

where
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Mi(a)= = _:_ = [Kiia) = 1/K_(—is)]
M_(a) = —= il [1/K_(a) - 1/K_(~is)]

and My(a) is regular in Dy.
Thus. eq. (A.44) may be rewritten as

3. K,(a)—My(a)=-d_/K_(a)+ M_(a) = E(a), say, (A.45)

which characterizes an entire function. E(a), through its representation in the upper and
lower halves of the a-plane. Since ¢ ,(a) and ®_(¢) tend to zero av infinity in their half
planes of regularity. while K, (a) and N_(a) remain bounded, the entire function vanisies
according to Liouville's theorem.

Hence.
$,(a,1) = b,(a) = My(a)/Ky(a) = ——{1 — [K(a)N_(=is)]"") (A.46)
a+1s
$_(a.1) = d_(a) = M_(a)N_(a) = ~————{1 = K_(a)/K_(—is)} (A.47)
« + 18
Adding eqs. (A.46) and (A.47) gives
B(a.1) = iBeothy (A.48)

o+ i)y KN (a)K_(—1s)

B iBK_(a)
= (@ +is)(ytanh~y + B)K_(—is) (A.40)

and the solution for the temperature distribution in the slab is obtained by inversion

_ cmh(‘yy) e
(r.y)= ._./ ° coshy ¢ da (4.50)

The problem is solved once KNi(a) is determined.
For z > 0 it is advantageous to use (A.49) in (A.50) since then the contour may be
deformed into D_ picking up contributions from the residues due to the zeros of

ytanhy+ B =0 (A.51)

in D_. For similar reasons, for r < 0 it is desirable to usc (A.48) in { A.50).
The rewetting temperature needs not to be calculated from {A.50). Instead, following
Levine (1082) and Evans (1984), it can be evaluated in a simple way as follows

b,(a) = /()mé(f,l)e‘°’d1

ia16(0.1) — (i) [ 282, 1)00m d (A.52)
JU 31?
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It turns out that the in!egral term vanishes as a — oc in D, if it is assumed that 0¢/0r
15 bounded.
From (A.46) and (A.52) it follows that (assuming Ki(a) — 1 as a — oo in Dy)

6o=1-9(0,1) =1+ lim [ia®(a)] = [K_(—is)]”’ (A.53)
Now all it remains is to factorize

tl
K(a) =1+ B2

= Ny(a)(WN_(«a)

where Vg 1s regular in Dy.
On applying the Cauchy residue theorem within the strip | Ima |< s and noting the
asymptotic order of magnitude log K(a) = O(1/a),| Rea |— oo, it follows that

. 1 log K (&) 1 log K(¢)
= [ BoSlae- — [ B2l A.
K(a) 27ri./c+ t—a X ot Eoa & (4.34)
where C, /C_ is an infinite contour from Rea = —oo to Re a = oo lying in D and passing
below/above the point a € D.

Thus.

log K (a) = £5—

from which it follows that Ki(a) =1 as o — oo, as assumed earlier.
If o = i3, with 8 > s, the contours C; may be shifted to real axis yielding

1 log K(€)
- /Ct

> log K(7) )0 - l/mlogl{(ﬁz) (A.56)

dz
2 7 4T = 2
T2+ 0 T Jo z

ey B
log Ki(1i3) = TI'.L pn

Hence,

1 > . dz -
Bozexp[—;[) logI\(.sz)l+22] (A.57)

where

coth s(1 + z2)1/?

s(1+4 z2)1/2
This is the same expression as the one obtained by Levine (1982), using a singular integra
cquation formulation of the problem. The advantage of the simplicity of Jones’s direct

K(sz)=1+B

method employed here, over the integral formulation of Levine (1982) which involves using
Green functions, is obvious.

For computational purposes it is advisable to use the transformation sec?§) = 1 + 22, to
finally obtain

/2 .
8y = exp{—%/ﬂ log [1 + gw] dQ} (A.58)

secf)



An alternative ¢ ecomposition is possible in terms of infinite products. K(a) can be repre-
sented 1n the form

Kla) = l;inh‘y + Dcoshy

v sinh

so that it is a quotient of two even functions.
Each of these two functions can be decomposed as follows:

ysinhy + Fcoshy = Li(a)l_{a)

oo

= BJJ(1+7%6%.))

n=1

oo

= BIT[0+ /620" + ia/ s exp(—iajnn)

n=1

[s.¢}

x T1[(0+ 52072 - iafpacs |exp(ia/nm)

n=1

HCII('(‘

L_(0) = B TI[(1+ /2 )" + o/ posexplia/nr)
nxl -

oG
Ly(n)=B""T] [(1 + 82 p2_ W~ ia/p,._,]exp(ia/nn)
n=1
Similarly

ysinhy = Qu(a)@Q-(a)= (s*+a?) H(] +9%/n?x?)

nx=]

= (84 ia)(s—ia) ﬁ [(1 + 82?2 4 ia/nw]exp(—ia/nw)
n=1

[s <]
X H [(1 + s’/nzrz)'/z - ia/nr]exp(ia/nw)
n=1
so that

Q_(a) = (s+ ia) ﬁ [(1 + .-32/1127(")1/2 + ia/nn']exp(—ia/nw)
n=1

Q4la)= (s~ ia) ﬁ [(1 + 52 nPx?)V/2 - ia/nw]exp(ia/nw)
n=1

where the exponential factors have been included in the products to assure their absolute
convergence, and 1p,,n = 0,1,2,... are the zeros of 4 sinh y 4+ Bcothy = 0, or equivalently
pn are the positive roots of



ptanp=DB

Now the factorization of A'(a) is readily obtained as

L_(a)  B? X (14%)p2_ )2 +ia/pay
Q_(a)  s+ia iy I+ s2/n2x2)1/2 4 ia/nx

K_(a)=

Lila) _ B2 = 14 s2/pi )2 - iafpa-,
Qila)  s-tia 21+ 8222 — ia/ux

hi(a)=

Observe that K,(a) = K_(—a), and from the asymptotic nature of p,,
p.~nr + B/nx as n — oo

it follows that Ay(a) =1 as a — oo in D.

Hence.

2s = (1 + 83252 4 s/nx

= - = A5Y
CIER S TR PouN Ly P (4:59)

bo



A.7 A model for the rewetting of a slab with precursory
cooling

The model originally suggested by Dua and Tien (1976) is solved accurately by the Wicner-
hopf technique. The solution which appears in the sequel is taken from Olek (1988c).

A.7.1 Formulation

Assuming a constant rewetting velocity u, the quasi steady state heat conduction equation
can be written as
o8 0% 0o

— _ 9

E; a7 bé)r:() O<y<l, —o << (A.60)

where 8 1s a dimensionless temperature, and r and y are the longitudal and traversal
coordinates, respectively, which are normalized with respect to the thickness of the slab,
0. The Peclet number, 25, represents the dimensionless rewetting velocity, and it is given
by

§
2s = i
a
with a denoting the thermal diffusivity of the slab.

Eq. {A.60) is subject to the following boundary conditions

0
%y- =0 y=0, -00 < T <00 (insulated boundary) (A.61)
a0 br .
—‘d_y = Ae y=1, z<0 (decaying heat flux) (A.62)
17 .
5!; +B=0 y=1, x>0 (B = constant cooling rate) (A.63)
#—1 as I— - (hot end of the slab) {A.64)
# -0 as T = 400 (cold end of the slab) (A.65)

With the additional condition, which establishes the relationship between the rewetting
velocity and the rewetting temperature

=606 at y=1,z=0 (rewetting temperature at the solid-liq:id-vapor interline) (A.66)



A.7.2 Solution
Following Evans (1984) we define

Br.y) =1 - o(z,y)e™ (A67)
and obtain
7’ 9o,
A =0 A.
ot Ty 0 (4.65)
%zﬂ . y =0, -0 < T <00 (A.69)
dy
@ =—4ebF 0 y=1, <0 (A.70)
¢y
@-+B¢=Bc'” , y=1, z>0 (A.T1)
0y
¢ =0(e™*) as x — 400 (A.72)

About this behaviour of ¢ as £ — —oo we can learn from the solution of this problem by
Olek (1987h), using scparation of variables. For z < 0 it was shown that

1 2 4,.(b—s)r — [82+(n-l)21r2]‘/21: ane(b--')-l'
i * Z{c"e YR )T+ 2sb = B cos{(n —~ 1)7y]

n=1

where ¢, and ¢, are constants. From the above expression it follows that
é= O[e(b_")’] as T — —00 (A.73)

Cenditions (A.72) and (A.73) ensure that the Fourier transform

d(a,y) = /oo #(z,y)e'"dr existsin D:—s < Ima < —(s—b) (A.74)
whilst
¢ (a,y) = /oo o(z,y)e°%dr existsin D, :Ima > —s
0

0 .
®_(a,y) = / d(z,y)e' " dz existsin D_:Ima < —(s —b)

The transform of (A.68) is



2
‘_I_(g % =0 (A.75)
dy?

where 7 = (a? 4 s7)V/2, with the positive branch of the squareroot.
The solution of (A.75) subject to the transform of condition (A.69) gives

$(a,y) = C(a)cosh(yy) , a€D=D,UD. (A.76)

The transforms of (A.70) and (A.71) yield

id
(' N = e— _ A_—'
V(0= iy . @€D (A.77)
:lIl(l
| B
<I>'+(a,1)+B<I>+(a,1)=al+is .,  a€D, (A.78)

whereas from (A.76) it follows that
#(a.1) = tanh7[¢+(a, 1)+ %_(a, 1)] . a€D (A.79)
where prime denotes transforms of y derivatives of . Henceforth, the argument (a, 1) will

be omitted for brevity.
From (A.77)-(A.79) follows the Wiener-Hopf equation

oth’y 1B coth'y
1 _ A.80
P+(1+ 5 )+ [a+zs+a+z(s—b) a€D (A.80)
Suppose
o coth’y
K(a)=1+B K, (a)K_(a) (A.81)

where Vy(ar) is regular in Dy, Ki(a) # 0. Then rearrangement of (A.80) gives

G Ki(a)+ D /K (a) = [a _:_ - + = ::“B b)] [I\+(a) ] Mi(a)+ M_(a)
(A.82)
where
B i 1 iA/B ; PP
My(a) = T s Ki(a) -~ 1\'_(-1'3)] + atis-0) {I\+(a) - K, [-i(s- b)]}
_ i - 1 i1/B ey
M_(a) = a4 ia [K-(a) K..(-—i.s)] + a+i(s- b){K+[ i(s—b)l 1\"-((1)}

Eq. (A.82) can now be recast in the form



b, K, (a) - M, (a)=M_(a)- ®_/K_(a) = E(a), say, (A.83)

which characterizes an entire function E(a), through its representation in the upper and
lower halves of the a-plane.
Since it will be shown that

Ki(a)=0(1) as a — x in D.:
whilst
by =0(1l) as a — o0 In Dy
it follows from Lionville’s theorem that E(a) = 0, so that

_ Mya) _ i [

Pilo. )=y Ki(a)  a+is

_ iA/B [ Kyl-ils = b\
K+(a)l\"_(—is)] + n+ (s — b){I Ki(a) J

(AR

. S K_(a) iA/B { e e }
P _(a,1)=d_ = M_(a)K_(a) = “atis [l - (i)l Taris=b) K_(a)Ki[-i(s-b)]-1
(:A.83)
Adding gives
_ _ iB(a+is)"! cothy . (iA/B)K[—ils - b)][ i ]
Mo =) = TR a) 7 T atis=b) M) +( | (A0
Hencee, the temperature distribution is given by
cosh Yy "
o(z,y)= —/ da (A.87)
cos ¥
Following Levine (1982) and Evans (1984) we use the relation
d,(a) = /"o Hz,1)e "% dz = ia~'¢(0,1) — (ia)™! /m %(z,l)e‘°‘d1: {\.88)
0 0 oz

and note that the integral term vanishes as &« — o0 in Dy, provided 94/9x is bounded. to
obtain the following expression for the rewetting temperature

6o = 1-0(0,1)=1+ }igrgo[ia¢+(a)]

I

(K_(—is)]"" (A/B){I—I\’,L[—i(s——b)]} (A.89)

since Ny(a) > 1asa — 00 in D,.
The factorization of K(a) in terms of infinite products is given by Olek (1987a):



i B2 = (14502 )"/ +ia/pa
Kzla)= s:i:ia"I;I1 (1+ s?/n?x2)V/2 +4a/nm (A.90)

where ip,.n = 0,1,2,... are the zeros of v sinh~y + B cosh vy = 0, or equivalently p, are the
positive roots of

ptanp= B (A.91)

A heat balance at the quench front yields

A 6 ,
22 A.92
B N ¢ )

where N is the magnitude of precursory cooling, which represents a fractional drop in the
heat flux within an infinitely small distance ahead of the quench front, e.g. Dua and Tien
(1976).

Inserting (A.92) iu (A.89) gives the rewetting temperature in the form

[K_(—is)]!

B, = '
0 1-{1 —I\'+[—z'(3—b)}}/N .
with
1 2 = (14 i)V 4 s
Ko ] 25 AN
[\ \ 13) B ngl 1+-92/p,2,_])1/2+5/pn—l ( 9 )
and
, B2 2= (14 /gt W2 — (5= b)/pucy
i _ vl = n—1 n
I\+[ s b,] b H (1+ s"/n77r2)1/2 —(s - b)/mr (4.95)

n=1

An alternative direct decompositior: of K(a) is possible by applying Cauchy’s residuc
theorem within the strip —s < Ima < —(s — b). Noting the asymtotic order of magnitude
of log K'(£) =0(1/a) asa — o0 in D, one obtains

(A.96)

K(a) = exp [—1—/ Mdf _ __1_ 1081‘ (f)d ]
Ut

21 £-a 27r1

where the point £ is located above/below the infinite contours C,/C. passing between
Rea = =0 to Rea = +o00.
Thus,

log log K (€)

Ki(a) = exp[:i:zm -

dﬁ] (A.97)

If £ =8 with 3 > s, the contours C'y may be shifted to the real axis, giving

Ki(+if) = exp [g /O°° 125_’1’_)(1,]

72 + 2 {A.98)



or in a more useful form for computicn

. 1 (/2 coth[s? + %(sec?Q — 1)]!/2
KNi(+i8) = EXP{;/() log{l +B [ + (s — P/ dQ (A.99)
It should be noted that in order to be able to use ( A.29) for the calculation of
I, [—i{s — b)], we must have b > 2x.
The solution to a model which neglects the precursory cooling (assuming an insulated

slab ahead of the quench front), may be obtained as a special case, by setting N = oo in
cq. (A.93).
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A.8 Rewetting of a solid cylinder with precursory cool-
ing

The following model and its solution are extracted from Olek (1988d).

A.8.1 Formulation

Consider an infinitly long solid cylinder. The heat conduction equation in a coordirate
system which moves at a coustant rewetting velocity, u, can be written in the form

00 108 050 00
AT YA - .
3r2+r8r+322 3 0 0<r<«l, <z <0 (A.100)

where 8 is a dimensionless temperature, and r and ¢ are radial and axial coordinates,
respectively, which are normalized with respect to the radius of the rod, R.
The Peclet number, P = 2s, represents the dimensionless rewetting velocity, and it is given

with the thermal diffusivity of the cylinder denoted by «.

The solution of eq. (A.100) must saiisfy the following boundary conditions

00

—_— at r=0, - <z <™ (A.101)
or

60 b .

3 = Ae* at r=1, : <0 (decaying heat flux) (A.102)
a0 .

o +BA=0 at r=1, 2 >0 (B = constant cooling rate) (A.103)
—1 as z — — (hot end of the rod) (A.104)
-0 as z—o (cold end of the rod) (A.105)

0 =8, at r=1, 2=0 (rewetting temperature) (A.106)



A.8.2 Solution
Define

o(r.z) =1 —-68(r,z)]e™**

to obtain the following new formulation of the model

¢ 10¢ %9 ,

o Trar Tom Yo

%‘é: at r=0, —-c0o<z<o
-

%ﬁ = —4elt-2): at r=1, 2 <0
r

.?).(_é+13¢: Be™ at r=1, z>0
r

é = Ofe!®7] as z— —00

¢ =0(") as z— 00

o= oo at r=1, z=0

Conditions (A.112) and (A.113) ensure that the Fourier transform

O(r,a) = /90 o(r,z)e**dz existsin D :—s <Im< —(s—b)
while

$,(r,a)= / é(r,z)e**dz  existsin D, :Ima > —s

0
and
. 0 N
®_(r,a) = / #(r,z)e'*dz exists in  D. : Ima < —(s — b)

The transform of (A.108) is

2eé 14
T e

where v = {a® + 5%)"/2, with the positive branch of the squareroot.

The solution of (A.116) which satisfics the transformn of condition (10) is

®(r,a)=ClaMo(yr) , a€D=D,UD.

(A.107)

(A.108)

(A.109)

(A.110)

(A.111)

(A.112)
(A.113)

(A.114)

(A.115)

(A.116)

(A.117)
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with Iy denoting the zero order modified Bessel function of the first kind.
The transforms of (A.110) and (A.111) are
iA

@__(l.(\) = m y «a € D_ (AllS)
and

P (1.a)+ B, (1,a) = B €D A.119)

Ll a T s a + (A.

respectively, whereas from (A.117) it follows that

I(
¥(1,a) = ’,‘(”’))m o) +8_(1,0) (A.120)
where I is the first order modified Bessel function of the first kind, and prime denotes
transforms of r derivatives of ¢. Henceforth, the argument (1,a) will be omitted for
brevity.

From (A.118) -(A.120) follows the Wiener-Hopf equation

In(v) [ B 1A Io(7)
(I>+{1 B v (7 )] te-= [a +1s + a+i(s— b)] vI,(7) (A.121)
Suppose
K(a)=1+B21 I}’f(’) = K, (a)K_(a) (A.122)

where Iy () is regular in Dy, Ki(a) # 0. Then rearrangement of (A.121) gives

Pilyfa)+ 0 /K- () = [a -:- is a -i-“?({sB— b)] [I‘ —1\_-1(;)-J = Mo} + M=)
(A.123)
where
] . A/B . _—
My(a)= a-:-i.s [I\+(a) o zs)] a-:zl b){]\'.r(a)— Ii+[—-1(.s—b)]}
B i iA/B
M(a) = - a+n[1( (a) ts)] a+i(s~b) { +l=is - b)) - _—(-—}

and M, (a) is regular in Dy.

Eq. (A.123) can be rewritten as follows

®,K,(a) - My(a) — ~&_/K_(a) + M_(a) = E(a) (A.124)
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where E(a)is an entire function which is regular everywhere in the a-plane. Since Ki(a) =
O(1) as @ - o in Dy, and ®4(a) = o(1) as @ — oo in Dy, it follows from Liouville’s
theorem that E(a) =0, giving

P (l.0)=d, (n)=

My(a) i [ _ iA/B ){1_1\'+[—i(8—b)]}

K+(n)l\'_(—is)] + a+ils—b

Ki(a) a+is Ki(a)
(A.125)
o _ Co i [, K-(a) iA/B { L
b{1.a) = 8_(a) = M_(@)F (o) =~ -2 O Lo, I\_(a)l\+[—2(s—b)]—l}
(A.126)
Adding gives
, _ _iBla+is) ' y(y) (iA/B)K . [- z(s b)]
o) =) = K (v h () ot i(s— [’ -l -3 )] (A.127)
so that the temperatire distribution in the rod is expressible by
o
8(roz) = / #(a)22) (7’”)) oz gy (A.128)
The rewetting temperature can be found using the fact that
ICIZ - -1 -1 -r el ]~
/ (1 dz = ia” " ¢(1,0) — (za) /0 az(l,..)e dz
with the integral term vanishing as a — oo, provided 9¢/0z is bounded.
Hence,
bo=1-0(1,0) = 1+ lim [iad>+(a)]
- [K_(is)] - E{l — K, [-i(s - b)]} (A.129)
since K3(a) —» 1 as a — oo in Dy.
A heat balance at the quench front yields
A 6
5 =" (A.130)

where the dimensionless constant V is controlling the magnitude of the precursory cooling,
e.g. Dua and Tien (1976).
Thus, inserting (A.130) in (A.129) and eliminating 6, gives



(K _(=is)]"!

8 = —
1-{1-K,[-is(s-b)}/N

(A.131)

It is interesting to note that instead of a relation between the rewetting temperature and
the rewetting veloeity of the forin

B0 = f(6o, 5)

(with f being some function) which is obtained by separation of variables, see for example,
Olck (1988L), a relation of the form

(with ¢ being another function) is obtained in eq. (A.131). This means that in order to
map the rewetting velocity vs. the rewetting temperature with the Wiener-Hopf technique
solution no iterative procedure, like in the case of the solution by separation of variables,
is needed.

It remains to carry out the decomposition of

I,
Kio) =1+ B2 _ k()R (a)
h(7)
where Ky(o) is regular in Dy.
First present K(a) in the form

_ 2h(y) + Blo(v)

K(a
He) AI(7)

(A.132)

and note that both numerator and denominator in (A.132) are even functions. Each of
these two functions can be decomposed in a manner similar to the one in [A.113], giving

(2B)'? = (14 8%/p2_)"* +ia/py

K_(a) = (1+ 2/v2)\ + ia /v,

— (A.133)

n=]

(2B)'/2 = (1+ % [p2_)/? —ia/pay
oo (14832 —dafv,

R.(a)= (A.134)

$—la

where iv,, n =1,2,... are the positive roots of I;(y) = 0, and ip,, n =0,1,2,... arc
the positive roots of yIj(y) + Blo(y) = 0.

From eqs. (A.133) and (A.134) it follows that the rewetting temperature is given by eq.
(A.131) with

[K ( is)]" _ 2 = (14 8 s,
I R T ey P ey e

(A.135)
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and

2B)"2 % (14 5/p2 )2 — (s = b)/pu_y
b (1+ s2/u2) 72 — (s = )/v,

K, [——i(s - b)] | (A.136)

n=1
Another way to factorize K(a) is possible by applying Cauchy’s residue theorem within
the strip —s < Ima < —(s = b).

Since log K(£) = O(1/a) as a — oo in D, it follows that

con 1 log K ({) 1 log K(E) ]
k{a) = exp [‘77rz /C+ £ —«a dt = 2w / ~_a % (A.137)
where the contours Cy pass between Rea = —oc0 to Rea = oo above/below a point £,

located within the aforementioned strip.

Thus,

. 1
I\i(a) = Cxp[:t-z?z: /C*

If £ =3 with 3 > s, the contours Ci may be shifted to the real axis, giving

log K(¢) d{] (A.138)

= loglR(r)] |, ] (A.130)

Ky(d18) = exp [n’ o 1472
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A.9 Solution to a fuel-and-cladding rewetting model

In the following a riodel of suggested by Yeh (1980) is solved by the Wiener-Hopf technique.
Further details can be found in Olek (1988e).

A.9.1 Analysis

The model is schematically depicted in Fig. 1. 7ar upstream of the quench front (at
z — —00), the wet region is quenched to a temperature T, while the far pre-quenched
zone (at z — o0) is still at the initial wall temperature Ty,. The ueat transfer coefficient
h in the wetted region is assumed to be constant, whereas the dry portion of the rod is
assumed to be adiabatic. The gap is modelled by a convection boundary condition.

WET REGION (A): z < 0
DRY REGION (B): z > 0

O (<

CLADDING

-
.
~ e
-

u
A B
T S
() (b) (c)
FIG. 1

Schematics of the rewetting model: (a) bottom-flooding, (b) top-flooding.
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Assuming a constant rewetting velocity u, the quasi-steady-state heat conduction equa-
tion for a frame of reference (7,Z) moving along the solid at this velocity is

1 3 aol 8291 aol

(s 95, 2

rar(rar)+a:2 +-~laz 0 O0<r<R
for the fuel. and

10 s 06, 0%, 08,

——(r 2 Dy 2

rar(rar)+3:2 +~"232 0 R<r<l
for the cladding, where

8 = T- Ts r= _i_ z = i =

T T -Ts "R, T TR, B

, —00<z<00

, —oo <z <00

R
R,

(A.140)

(A.141)

R, and R; are the radii of the fuel and the outer surface of the cladding, repectively, 6
the dimensionless temperature, and

with a; and a; denoting the thermal diffusivities of the fuel and the cladding, respectively.
The solution of cqs.(A.140) and ( A.142) is sought for the following boundary conditions

28,
o 0
002 _ aal _ 382
E‘+Bg(91—02)—0, E‘——ra‘r
5]
a—: + By, =0
09,
E'- 0
6,,6, -0
6,0, - 1
0;, % ~0(1)
r
where
_ h,R, kR,
B, = © Bo=+

at

at

at

at

at

r=0, —-oco<:z<o
r=R, —-o0<:z:<o00
r=1, z2<0

r=1, z>0

z— —00

z =0

r=1, z=0

(A.142)

{A.143a,b)

(A.144)

(A.145)

(A.146)

(A.147)

(A.148)
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Here B, is the gap Biot number (the reciprocal of the gap resistance) , based on the gap
heat transfer coefficient h, and the thermal conductivity of the gap k,, By is the wet side
Biot number. The ratio between the thermal conductivity of the cladding k; and the that
of the fuel by 1s T = ky/ky.

The additional condition which establishes the relation between the rewetting tempeorature
and the other model parameters is

0 =26, at r=1, =90 (A.149)
Let new dependent variables be defined by
,(r.2)=1-¢;(r.2)e” >, (j=1") (A.150)

With these new variables, eqs.(A.140)-(A.149) transform into the following equations

19 9¢;\, &, _
;E<T%)+%—Sf¢j=0, (1=12), ra<r<r;, —oo<z<oo(A.151)

whererg =0, = Randr, = 1.

%z at r=0, —oco<z< (A.152)

or

0¢2 -3z -8,z . =827y __ _ - \

?)r—e + By(dre — e )=0 at r=R, —oco<z<oo (A.153a)

Qﬂc"‘;" = I’ﬁsze‘s22 at r=R, —oo<z<oo A.153b)

dar or

0

‘% + B()(bz = B()Eszz at r= 1, 2 <0 (.‘\154)

-

901 _ at =1, z>0 (A.155)

or

¢y~ 0(e*?) and ¢; ~ O(e’*) as z — —00 (A.156)

¢1~0(e %) and ¢, ~ O(e™*+) as z — 400 (A.157)
A

¢2,-0—-2-~()(1) at r=1, z=0 (A.158)
or

¢2=¢0=1‘-00 at 7'———1, z=0 (A159)

Conditions (A.156) and (A.157) ensure that the Fourier transform

m .
®(r,a) = / #;(r,z)e’**dz existsin D=DyUuDy: r~ <Im(a)< r*,(j = 1,2)
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{A.160)
whilst
(Pj’(r,a) = /0m éj(r,:)ei‘"dz existsin D, :Inna>71", (3=1,2)
¢ (r,a) = /-u é(r,z)C'i“zd: existsin D_:Ima<7tt, (j=1,2)
where 7% = min(s;, s2) and 77 = max(—s;, —s3).
Applying a Fourier transform to eq.(A.151) gives
dg(bj(r.a) ld(I)J-(r,a) 2 .
- - ' — ;P = ) =1,2 .
= + T v;®;(r,a) =0 (y=12) (A.161)
with v; = (o + s?)'n, (3 =1,2).
The solution of eq.(A.161) which satisfies the transform of e .(A.152) is
®,(r,a) = A(a)lo(n7)
®,(r,a) = B(a)lp(y,r) 4+ C(a)Ko(712r) (A.162)

Taking the Fourier transform of condition (A.153a) gives
(@ + is2)® + $1/2{ Bla + is)) i [R(a + is2)? + 53)'/7)-
~Cla +iss) K\ [R((a +is2)? + 83)%]} + Bo{Aa -+ is))o[R((a + is1)* + 51)/%)-

~B(a +is))lo[R((a + i53)* 4 82)?] — C(a + is) Ko[R((a + i52)* + s3)V3]} =0 (A.163)

whereas the transform of (A.153b) gives
[(a +is1)? + 832 Aa + isy) L[ R((c + isy + 53)'/?] = T[(a + isp)? + 53]/ *x
x{B(a + is)[1[R((ax + i32)* + $3)'/?] = C(a + is) K1 [R((a + is2)? + s2)'/?]} (A.164)

Application of Fourier transforms to conditions (A.154) and (A.155) results in the following
relations

iB,

a— 187

BO(I)2+(110) -

= B(a)[v2Li(72) + Bolo(72)]

+C(a)[~72K1(72) + BoKo(72)] (A.165)
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P(1.0) = &, (1,a) = 12{B(a)fi(12) — C(a)K1(12)] (A.166)

where prime denotes a denvative with respect to r.
Solving ¢qs.(A.163) and (A.164) for B(a +1s;) and C(a + t3,), with a formal replacement

of a by @ — s, vields

B(a) = A(a + s, — 1s3) fi(a) C(a) = A(a + 131 —152)f2(a) (A.167)

where
fi(o) = pl( Rp)(B,Ko( Rq) + ¢K\(Rq)] + TqB, K\(Rq)Io(fp)
: Tq{[B, Ko Rq) + ¢k \(Rq))\( Rq) — B,Jo( Rq) — q11(Rq)|K,(Rq)}

o) = B,TqL,(Rq)Io( Rp) — pIi( Rp)[B,Io(Rq) — ¢1i( Ry)] (A.168)
o Tq{[B, Ko Rq) + ¢ ((Rq)|Ii( Rg) — [B,Io(Rq) — ¢i( Rg))K,(Rg)}

whence p = [(a — is;)(a + 2is, — i59)|V2, g =7, = (a* + s2)'/2
Substituting from eq. (A.167) the values of B(a) and C(«) in the relations (A.165) and
(A.166), and eliminating A(a + s, — 1s,), finally gives the Wiener-Hopf relation
1 B
il (A.169)

Bo®}(1,a) — K(a)®, (1,a) = —
-_ .-,2

where

«
K(ay=14 Dol 1+ 7 ) (A.170)
Y2 hi(72) 1 - fl-'}m
1 him)

From eq.(A.170) the following particular cases may be recovered:
= 0, and eq.(A.167)

1. Hollow cyhnder with an insulated snner core. For this case B,

yields

__fz _ II(R%)
hi K;(Rv;)

so that

By Ii(Ry2)Ko(v2) + Bi(Ry2)lo(72) (A.171)

K(a)=1+ 72 Ki(Rv2)i(v2) — Hh(R12)Ki(12)

which is the form obtained by Chakrabarti (1986a).
2. Homogeneous cylinder. Set R =0 in eq.(A.171) to obtain
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9310(‘7'2)

Ka)=1+ Y2 Di(72)

(A.172)

which agrees with evans (1984).

3. Planc slab. Setting in ¢q.(A.171) R = 1 — ¢ where ¢ — 0 together with R,, R; — oo (so
that the modified Bessel functions may be repliced by their asymptotic approximations)
vields

_ coth(3
K(a) =1 + B,22h(2) (A.173)

Y2

where By = By, i.e. a Biot number based on the thickness of the slab and 4, = €72, which
yields the same expression as derived by Olek (1988a).

A.9.2 Solution

Setting h'(a) = Ky(a)R_(a) and utilizing it in eq.(A.169) gives, after some rearrange-
ment, the following relation

1

&t (1,a) i [ 1 1 ]21

Ki(a) a—iss|Kyp(a)  Ky(is) =% (La)h (a)-

B (A.174)

a— i3 K4(1s2)

Since the left-hand side of (A.174) is analytic for Im(a) > 7_ while the right-hand side
is analytic for Im(a) < 1, each side represents the same entire function E{a), say, E(a)
which is found by analyzing the asymptotic behavior as | a |— oo of each side of (A.174)
in the respective half-planes, and applying Liouville’s theorem.

As ®3(1,a) and ®;(1,a) tend to zero at infinity in their half-planes of regularity, while
K (a) remain bounded, it follows that E(a) = 0, giving

e i [ Ky
#}(1,0) = — [1 A (A.175)
:(1,0) = —2° ! (A.176)

a—18; K, (is2)K_(a)

Following Levin (1982) and Evans (1984), we use the relation

®1(1,0a) = /Om¢(1,z)e"°'dz =ia"¢(1,0)—(ia)"'/{)¢o -g—f(l,z)e"“dz (A.177)
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and note that the integral term vanishes as a — oc in Dy, as implied by (A.158).
Combining (A.175) and (A.176) and assuming K;(a) — 1 as a — oo in Dy, the following
relation for the rewetting temperature is obtained

Bo=1-¢(1,0)=1+ (}i_pgo[ia@;(l,a)] = [K4+(is2)]™? (A.178)

It remains to factorize K(a). Following Chakrabarti (1986b), we choose a direct decom-
position approach.
Since log[A'(¢)] = O(1/a) as a — oo in D, it follows from Cauchy's theorem that

oy L[ log[K({)] 1 [ log[K(Q)]
log () = o— /C+ el S /C Sl (A.179)
where C,/C_ is an infinite contour from Re(a) = —oo to Re(a) = oo located in D and
passing below/above the point a € D.
Thus,
. 1 log[K(¢)]
=+t— | —=—==d .
log K4(0) = 35— /C* e (A.180)

In particular

o 1 [~ log|K (o
log[l\ +(132)] = -2_.;; /—co —(-Tg_[——l(-;z—)]da

(A.181)

where the contour has been shifted to the real axis. eq.(A.181) can be put in a different
form

* log[K(0)/K(~ © log[K -
giving
(Ky(isp)] ™' = CXp{ - -71; /Ow = log[’;(f l] :g%(”) da} (A.182)

or in a form which is more convenient for numerical computation

(K.(isy)] = exp{ - % /0 " loglp(sa tan e)] + ¥(sz tane) tane}dc} (A.183)

where the functions p(o) and (o) are given by
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N Iy (,z+ 2)1/2
80]0(02 + 8%)]/2 1+ [0(0) + tb(a)]ro(‘ﬁ:)—ﬁ:—
9 (,2+,2)l[¢

W) = K(o) = 1
plo)e (o) + (02 + s3) /2 1y(0% + s2)1/2 | _ (o) + ib(”)]!;‘@z_“:)_nﬁ

(A.184)

with  a(o) + ib(o) = fo(o)/ filo)

The explicit expressions for the function: ;. tane) and ¢(s;tane), which appear in

eq.(A.183) are

p(sztane) = (X2 + Y?)1/? (A.185)
P(sytane) = tan™'(Y/X) (A.186)
where
AVAR NAYT 224 — 2,23
X=14+2p——— - Y = Z,—/—=—= =272
AT Y

The Z functions are defined through the following sequence of relations

ByIy(s; sece)

sy sec el (sgsece)

Z()=

K, (sysece)

I(sysece)

I\’](Sg sec 6)
I|(82 sec C)

Zy, =1—as;tane) Z, = —b(sztane)

Ky(szsece) Ky(szsece)

Z3 =1+ a(s;tane) Z; = b(sytane)

Io(s2 sece) Io(s2 sece)
The explicit expressions for a(s;tane) and b(s; tan€) are
_ (WhVi + Wo)(W, + Wah) + Wi,V
ST (Wat WaVeR + W] (A18D
b= WiVa(Wy + WaWh) = WaVo(WiWh + W) (A.188)

(Wi + W32 + W3V}
with

W, = B,T¢'I,(Rq) W, = ¢(R.) - B,Iy(Rq)
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W5 = B,T¢'K\(Rq) W, = ¢'K\(Rq') + ByKo( Rq')

p = p(s2tan¢) = [(sg tane¢ + 25182 - sg) + 12s7(s1 — s2) tan (]'/2 =(A+ i{'\)'/2 =€+

q = sysece £ = pcos(A/2) 7 = usin(Af2)

p=(A2+AHY = s;“ sec €[s2 + (s — 32)% + 25181 — $2) cos 2¢]*/*

_ (sy — s2)sin 2¢
A=tan™! Ll (51— s7)cos2e A= s§ tan®e + 2s;5; — 3% A = 2382(s) — s2)tanc
and
Io(Rp')

— =V, 4+:1V;
PLRp) T
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A.10 Integral equation formulations

In this section. solutions by integral equation formulations will be presented. These will
be explained through concrete examples, which are the solutions to the model for the
rewetting of a plane slab by Caflisch and Keller (1981) and Levine (1982). The former solve
the model using the oniginal formulation, whereas the latter uses a new dependent variable
which transforms the differential equation iuto a steady state wave equation (similar to
what we did when using Jones’s direct method). The advantages of the second approach
will be demonstrated. Finally, a comparison between Jones’s direct approach and the
single integral equation formulation is given. From the comparson it is concluded that the
direct method is preferable to an integral equation formulation.

A.10.1 Solution with the original formulation
We begin with a formulation similar to (A.22)-(A.28).
J0 96 06

0—y;+-072--Pb;=0 0<y<l, —0< <™ (A.189)

where 8 is a dimensionless temperature, and y and z are traversal and axial coordinates,
respectively, which are normalized with respect to the radius of the rod, 6.
The Peclet number, P represents the dimensionless rewetting velocity and is given by

P

fit

ud
o

with the rewetting velocity denoted by u and the therma! diffusivity of the slab denoted
by a.

The solution of eq. (A.189) must satisty the following boundary conditions

0
— =0 at y=0, -0 < T <X (A.190)
dy
_32__0 t =1 r>0 A.101
ay_ at y=1, r > (A.191)
0
Q—+BB=0 at y=1, r<0 (A.192)
dy
6—0 as r — —00 (A.193)
0—1 as T — 00 (A.194)

=8, at y=1, z=0 (A.195)
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with

.-, U°%

il

T-T, hé

where h ix the wet side heat transfer coefficient and & is the thermal conductivity of the

stab.

Cousider the Green function G(z — zg,y,%0)- This function is defined as the solution of
cq.{ A.189) representing the potential at a point (x,y) caused by a line source at the point
{ro. o) in a region of any shape with given boundary conditions. In our case G satisfies
the following equations:

P 2 ;
7C 28 PG s~ 20)8(y — wo) (A.196)
oyt Jxt Jr

-

oG
dy

o= 0 on Yy = 0, 1 (1\.107)

We can express 8(z,y) in the strip —00 < 7 < 00, 0 < y < 1 in terms of 6(r,1), its
normal derivative and the Green function. Green’s theorem is applied over a rectangle
whose boundaries are y =0,y =1,z = -1, z = [, (I,1; >> 0) and we get

| 96(zo, 9G(z,y, 20,
vir,y) :/[G(z,y,:ro,yo)—%—:"w = 6(z0,%) = gn:ro yO)]ds

wlere ds is the element of arc-length along the boundary of the rectangle which we have
deseribed. The operation @/8n denotes the outer normal derivative. It is to be noted
that this integral is treated as an improper one in the sense that we may aillow [ and [, to
become infinitive after we discuss the magnitude of the integrals along these boundaries.
We are permitted to do this because of the decay properties of G(z,y, xo, 30) for z >> z9
or T << To and the assumption regarding 6(z,1) for |z] >> 0.

The Fourier transform of G in 7, — 7 is given by (Morse and Feshbach (1953))

: 27)1/2
Gla,y. yo) = ——=— cos(oy<) cosa(y> — 1) (A.198)

Here

e = min(y, yo), y> = max(y, yo)

and
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o = (—iaP - a?)V? (A.199)

In particular

- _,/zcot o

G(a.1.1) =(27) (A.200)

g

The only real pole of G is at a = 0. and near it G is of the form (27)"Y2/ Pa. This is the
transform of the discontinuous function with a vaiue 1/2P for ¢ — zo > 0 and —1/2P for
ro — r < 0. Therefore

1
G(xr — z0, ¥, %) — ié—ﬁ’

as Tg—x — 100 (A.201)
In fact G approaches these constant values at a rate e~F1¥0~2l, and consequently

0
+ B/_ 8(x.1)C(z0 — ,yo, 1)dx (A.202)

1
0( Tg, UD) = ;

When we set yo = 1 in (A.202), it becomes an integral equation for 8(x,1).
To solve this equation, we introduce 8, (z) defined by

0+(I): s x<0,

[N

1
= 6(z) - > x>0 (A.203)

Then we define the Fourier transforms ®.(a) by

1 bl ar
(I)+((1) = W./o 0+(I, 1)6 d.l'
1 o .
®_(a) = (—2?)17/.@ 6(z,1)e==dx (A.204)

Upon taking Fourier transforms of both sides of eq.(A.202) with yp = 1, we get
o, +&_ = (2r)/*B3_G (A.205)
By using (A.200) for G we can rewrite (A.205) in the form

_(I_)_-_t=_asina—.Bcosa (A.206)
L 3 osimno
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We can determine @, and ¢_ from (A.206) by modifying slightly the result of Morse and
Feshbach (1953), p. 1528 to yield

a —o0 1 + /-’m)
ol t5 V2 1 2iP(1 — fn
o =_ci’2( H Y ) ] &3P = n) (A.207)
B m2x? a+-zP 1-) m_,a+;1P(l—‘ym)
Here ¢ is undetermined, but 7,, and 3,, are defined by
=(1+ 43/ P*)"V?,
3m = (1 + 4n%m?/P})'/2, (A.208)
where v,, is the (m + 1)st positive root of
vy tanv, = B (A.209)

We note that mn < v, < (m+ -%)11' and v, > 1,0, > 1.

The function ®, is analytic in a > 0 with an infinite number of poles on the negative
imaginary axis; ®_ is analytic in Im @ < $P(v0 — 1) with an infinite number of poles on
the positive imaginary axis. The term —3 in 6§, implies that 6,(+00) = +1 and leads to
the pole in @, at @ = 0. We introduce it to eliminate the delta function which occurs in
the transform

/ 8(z,1)e%dz = &, + = (27r)'/’6(a)

9.,r)1/2

For the same reason we have chosen the arbitrary constant in G to make it antisymmetric
at r = *o0.
The temperature 8 is obtained by inverting its transform to get

1 1 > —iax
0 5 + W’/.m[‘b.;(a) + <I>_(a)]c da

11 -
2t o )m/ &,(a) " da, 2 >0,

1
" @)

/ & (a)e**da, z<0 (A.210)



The second and third expressions result from deforming the contour to Im o = Foe and
using the analiticity of ®;. respectively. By letting r tend to +oc in equation ( A.210) and
using eq. {A.194), we get the following equation for ¢:

1 IQ:
1= 5 I11{1)1c (71')'/2/ P, {a)e " "da (A.211)

The integral in (A.211) can be calculated by deforming the contowr downward. Since
Re(—inxr) < 0if £ > 0 and Im o < 0, the deformed contour integral vanishes and the
residues at all poles other than @ = 0 tend to zero as r — +50. Since the original contour
passes through a = 0. this pole contributes only half of its residue. Thus

1 o emVr B 14 .
3 ::1-1-.123[ o )1/2( 2ri)—= Resc,_o(}+] =-— ic H 1+ 5. (A.212)
By solving (A.212) for ¢ we obtain
1+ 3., 5
)1/2 H T+ Y (A.213)

This completes the determination of the solution for 8(z,y) in terms of B and P.

Calculation of 6,

Finally we shall calculate 8o = 65( B3, P) in terms of B and P. From the second form of eq.
(A.210) we obtain

1 —tor — 1
fo=35+ lim, (‘)7r)‘/2./ byeda =3

1 "0
+Z2—ﬂ_)m/_mq’+da

. 1 -iax 2
- Jim o= / (1 - e"%)da (A.214)
To evaluate the first integral in eq. (A.214), we deform the contour to an upper semi-circle
I') of infinite radius. This pics up half the singularities of the residue at & = 0, and yields

x 1 1
= i~ _ — — :
/_ _ ®ydoc = 2rigRes,cobs — /r @d (A.215)

2

To evaluate the second integral in eq. (A.214), we deform the contour to the lower semi-
circle T'2( R) of radius R. This pics up residues at poles along the imaginary axis. However
as ¥ — 0, the factor 1 = e~*% tends to zero, and a]l these residues tend to zero. All that
remains is the integral along I'z(R). But as R — o0, e7*** — 0. Thus
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> —_ —I‘II — d .2
[ #u1=¢"da = Jim [ Beda (A.216)

The poles of @4 are at ay = —3iP(1+ Bn) = —i(7m + 1P)+ O(1/m). If |a| — oo, with
R in’, then &, = c/a + O(1/a?). Therefore

lim o, do = / ®, da = cri (A.217)
R Jry(R) T

Also Resg—o®; = [15_o(1 4 ¥ )/(1 + B ). Substituting this with eq. (A.217) and (A.213)
into cq. (A.214) yields

= 1+ 08,
6,(B,P) = A.218
o ) rr£-[01+7m ( )

We could also calculate

6= lim ——— / d_e """ da

;r—oO" ‘)7I')|/2

by the same procedure to find

2 1+ .
6(B.P) = 2 1’[ 7 | 1’[ 1+5 (A.219)

From eqs. (A.218) and (A.219) we can see that v,, must satisfy

ﬁ (A.220)

mn'2

t:lon

This is consistent with the inequalities listed after eq. (A.209). It follows from eq. (A.208)
that 64(B, P) given by eq. (A.218) is a strictly decreasing function of P, so it can be
inverted to yield P(B, 6,).

Validity of the solution

We now show that 6(z,y) defined by eqs. (A.202) and (A.210) solve eq. (A.189). The mth
term in either of the infinite products in (A.207) is 1+0(B/m?) for m large and a not at
one of the poles. It follows that these products converge absolutely and uniformly away
from the poles and that ®,, ®_, and G have the following properties:
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. 1
¢+(0)=lm+0(1) for a~0,
=< 40(1/u?) as a— +oo (A.221)
a

d_(a) =0(1) for a~0,

vl vh1 0 2 A 979
= —CE("E[l m27r2); +0(1/a®) as a — oo, (A.222)
X i
G(n,l,l) = m, for a~ 0,
=4:'(2—n_.)l'/—2;+0(1/02) as a — too (A.223)
From eqs. (A.222), (A.223) and (A.205) we see that &, + &_ = O(1/a?) as a — .

Thus the coefficients of the 1/a terms must cancel. This is an independent proof of the
identity (A.220). A comparison of the residues at a = 0 of the two sides of eq. (A.205)
shows that

P

‘I’_(O) = m

(A.224)

Except for the singularity of &, at « = 0, &, and $_ have infinitely many derivatives
which decay as @ — oo on the real axis.
We now define 6,(z) by

11 .
O(2) = 3+ oy [_m[¢+(a) + &_(a)le" da (A.225)

From the properties of ®,, ®_ listed above, it follows that 8, decreases rapidly (i.e. faster
than z~™ for any integer n) at £ = —oo, that 8; — 1 is rapidly decreasing at r = oc and that
6, is continuous. The Fourier transform of eq. (A.225) is just the second of eqs. (A.204)
with 6 replaced by 6,.

Next we define ¥ by

Y(a,y0) = (27)/*B®_(a)G(a,y0,1) for 0<yp <1 (A.226)



This funetion decays exponentially fast at a = toc for 0 = yo < 1. By using in eq. (A.
226) both eq. (A.224) and the fact that Gla.y.1) = (2‘_)"”_1—’: + O(1) for a ~ 0 we see
that ¥{a. 1) = === + O(1) for a ~ 0.

(27)1/2
Finally we define 8(xg.yo). which we will show to be the solution of eq. (A.189), by

1 1 B —iox -
;+W/_N‘I'("~'Jo)e do for —x <r<oc, 0<y<1

B ry. o) =
(A.227)

From the properties of ¥ it follows that 8 is infiniteit differentiable in the open strip and
that # approaches 0 and 1 as r approaches +200 and —ac., respectively. thus satisfying cqgs.
(A.193) and (A.194). Moreover, from eq. (A.198) it follows that 8 solves the differential
equation (A.189).

Next we check the flux conditions (A.190) and (A.191). A direct calculation shows that
(0/0yp)¥ 15 continuous on 0 < yp < 1 and

J
—WP(a.y) =0 for yo=10
Yo

= B®d_{a) for yo=1 {A.2928)

Also
Gla.y. 1) = Gla,1.1) as yp—1

uniformly in a. Thus a comparison of eqs. {A.226) and (A.227) with cqs. (A.205) and
{A.225) shows that

B(r0.y0) — Bi(70) as yo — 1 (A.229)

The flux conditions (A.190) and (A.191) follow from eqs. (A.228) and (A.227) by using
eqs. (A.229) and the second equation of (A.204), with 8 replaced by 8,. The final condition
(A.195) then holds as a consequence of eq. (A.218). Thus the solution we have constructed
does solve the problem.



51

A.10.2 Solution with a new dependent variable

We begin with a formulatior similar to (A.189)-(A.195).

70  9%6 06

—+75+257—=0 0<y<l, -0 < T <00 A.230

Oy? + Or? Or y ( )
where 8 is a dimensionless temperature, and y and x are traversal and axial coordinates,
respectively, which are normalized with respect to the radius of the rod, é.
The Peclet number, 2s represents the dimensionless rewetting velocity and is given by

s

il
N e
R |on

with the rewetting velocity denoted by u and the thermal diffusivity of the slab denoted
by a.

The solution of eq. (A.230) must satisfy the following boundary conditions

00
— = at y=0, -0 <z <00 (A.231)
dy

0 ;
_0__ =0 at y=1, x>0 (A.232)
dy
00
Z4+89=0 at y=1, <0 (A.233)
Jy
-0 as I — —00 (A.234)
61 as I — oo (A.235)
=46, at y=1, z=0 (A.236)

with

T-T, __hé

.1, B=%

where h is the wet side heat transfer coefficient and k is the thermal conductivity of the

slab.
Let a new dependent variable be defined by

#(z,y) = e”8(z,y) (A.237)

With this new variable eqs. (A.230-A.236) become



Introduce a Green function G(z, y;z’,y’) which obeys the relations

o 0%
o2 " Oyt

— =0 at

o ~ee’™ =0, as

¢=¢=10

—-s%6=0 0<y<l, —00 < T < 00

I — —00

~ o o
7z + 77 5°G = —b(z —z")o(y —¢')
%—5_0 at y=0,1

and admits the series representation

where

1 :
Glz,u;2',y) = —e 1 4 -
2s

o ':
1 COSNTY cCoOsSNTY ¢~ 1nlz-2'|

$ p=1 ,Bn

Ba = (14 nr?/sh)1/

(A.238)

(A.239)

(A.240)

(A.243)

(A.244)

(A.245)

(A.246)

(A.247)
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On the use of Green’s theorem the expression

0
ox.y) ="~ B [ Glz,y:a, 1)g(z, 1)de’ (A.248)

follows and thence an integral equation for

é_(r)=¢(r,1), for r<0 (A.249)
namely,
0
6_(z)=€e"—-B / K(|z - 2'|)$_(z")dz’ (A.250)
wherein
K(Jz — 2'|) = G(z,1;7',1) (A.251)

An extended form of this integral equation, viz.

6_(z)+64(z) =€ - B /_°° K(Jz - £))¢_(z')de’, z <0

=B [ K(e-)s()dz’,  z>0 (A.252)

with the stipulations

6_(z)=0, >0

6+(z)=0, <0 (A.253)

provide the requisite functional relation that lends itself to Wiener-Hopf analysis via com-
plex Fourier transforms; thus, define the individual transforms

¢_(a) =/0 ¢-(-’C)ﬁe""”dx

-0

®,(a) = / " gu(z)emrdz

K(a) = / ” K(|z|)e™=dz (A.254)
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and a ready consequence of (A.252) is that

®_(a) + dy(a) = ;—J:: — BK(a)®_(a)

or

1

[1+ BR(a)]®-(a) + ®4(a) = (A.255)

a+1s

Once the transform of the Green’s function has been found that of the function K follows
immediately; the appropriate expressions are

Gla,y,y') = _/_: G(z,y;0,y )dzx

cosh vy cosh (1 — y5)

_ 2
4 sinh ¥ (A.256)

where v = (a? + s?)'/? and

K(a) = G(ay1,1) = <27 (A.257)
which enables us to treat (A.255) in the form

U(a)®_(a)+ &, (a) = —— (A.258)

o+ s
where
th
¥(a) =1+ B2 (A.259)

The transform relation (A.258) is valid within the strip [Im a| < s of the complex a-plane;
and ¢_(a)! ,®,(a) are analytic functions in the overlapping half-planes Im a > —s(+),
Im o > s(—), respectively. Both K(a) and ¥(a) are analytic functions in the strip, the
latter possessing simple poles at a = +is, & = +isfB,, n = 1,2,... and zeros at the points
a = +isb, (v = %iv,), n = 1,2,... outside the strip, where 6, = (1 + 1?/s?)!/?, We sce
that with the original formulation, the Green function chosen by Caflisch and Keller has
a pole at the origin, a complicating feature which ~alls for particular attention.

1d_(a) is analytic in the half plane Im a > —(s?413)!/2, where v, is the first positive root of ytany = B
since ¢_(z) = Olexps(1 + v3/8*)' %z}, z — 00
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Let
‘I’+(0)

) = A2
Y{a) T_(a) (A.260)
where the functions ¥, (a), ¥_(a) are analytic above and below the lines Im o = —s, +3,

respectively, and Pyi(a) # 0: then (A.257) can be rewritten in the form
PU_(—is ] )
V()P () — 2._(_:_2 =—¥_(a)— ¥(a)P,(a) + —l—.[\Il_(a) - ¥ —(—i3)]
o+ 1s a+1s

= E(a), say, (A.261)

which characterizes an entire function E(a), through its representation in the upper and
lower halves of the a-plane. Since ®_(a) and ®,(a) tend to zero at infinity in their
repective planes of regularity, while ¥, (a) and ¥_(a) remain bounded, the entire function
vanishes and the determination

i W_(—1s)
a+1s $,(a)

®_(a) = (A.262)

results.
The decomposition (A.260) was already performed, and we can use, e.g. (A.99)

coth(s? + x*(sec? 2 — 1)] }dg} (A.263)

' 1 ¢~/2
Uy (£iy) = e"p{ * /o log {1 +B (82 + x*(sec? @ — 1)]'/2

if o =y, with x 2 s. To evaluate the rewetting temperature, let us use the relation

b (a)= /Ooo ¢-(z)e "dzr = $-(0) + L /0 Me'iazd:c (A.264)

- —ta) itat-wo Oz

and noting that the latter integral vanishes when a — oo (Im a > 0) since d¢_(z)/0z is
integrable, we arrive at the connection

6-(0) = lim [-ia®_(a)] (A.265)

Q=00

The latter implies, after recourse to the characterization (A.262) for ®_(a)

o L a V_(—is) _
bo=00=0-(0)=lim == o) -

U_(—is) (A.266)

Therefore
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Ir/? S
8, = b_(—is) :exp[—%/o log, (1 +BM)({Q] (4.267)

ssec{

A.10.3. Comparison of methods

We compare here Jones’s direct method with the integral equation method.

The integral equation method needs: choice of Green’s functions, formulation of the
integral equation, application of transforms. Jones’s method is more direct since the
Wiener-Hopf equation is obtained directly from transforms applied to the partial differen-
tial equation.

The Green's function method for formulating integral equations is cumbersome. It
is sometimes not completely obvious which Green’s function should be chosen; examples
have occured in the literature where this has caused confusion or made problems scem
more complicated than need be. Also complicated functions may be introduced, whose
Tourier transforms are required; these complicated functions are avoided altogether in
Jones's method-the required transforms are obtained in the process of solution. In each
Wiener-Hopf equation of the type (A.15) there are two unknown functions. In Jones’s
method these appear in a completely symmetrical way and the physical significance of
cach of the unknown functions is immediately obvious. In the integral equation approach
the symmetry is lost in the integral equation itself, though it reappears when the integral
cquation is transformed.

The main advantage of the integral equation method of approach seems that it is very
easy to recognize problems that can be solved by the Wiener-Hopf technique since the
corresponding integral equations have semi-infinite range and the kernels are of the form
k(x — €) only. Sometimes when using Jones’s method in complicated problems it may not
be so immediately obvious that the transform equation can be reduced to the Wiener-Hopf
form.

It may be possible that a solution can be obtained by means of the Wiener-Hopf
technique from an integral equation formulated by a Green’s function prodedure, whereas
it may not be possible to obtain the same solution by Jones’s method. But no such case
has so far occured in connection with partial differential equations, to our knowledge.

To summerize, a sufficient number of points have been shown to recommend the use of
Joenes’s direct method.

A.11. Summary of the Wiener-Hopf technique

The basics of the Wiener-Hopf technique which were presented in this appendix are like the
tip of the iceberg. A large amount of material has not heen covered, such as: the decom-
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position of complicated kernels, the approximate decomposition of complicated kernels,
the use of the dual integral equations method, use of transforms other than the complex
Fourier transform, limitations of the Wiener-Hopf technique, simultaneous Wiener-Hopf
equations, the complex variable problem solved by the Wiener-Hopf tecgnique as a special
case of the Hilbert problem, etc.

For example, there are some guidelines how to perform an approximate factorization.
When ceratain rules are not obeyed, an erroneous decomposition may result like in , e.g.
Tien and Yao (1975) and Dua and Tien (1976).

The two-sided Laplace transform is often used in the literature (not for rewetting models
until now) instead of the complex Fourier transform. Sometimes Mellin's transform is used
in problems of cylindrical geometry.

For additional reading the books of Noble (1958) and Carrier et al. (1966) are recom-
mended.



